From 0902c631109fcd2d89dee15a2d77d456bdc8a6f8 Mon Sep 17 00:00:00 2001 From: Avik Pal Date: Mon, 6 Nov 2023 11:05:07 -0500 Subject: [PATCH] Use Jacobian Based Algorithms if user supplies custom Jacobian --- Project.toml | 2 +- src/default.jl | 46 +++++++++++++++++++++++++++++++++------------- 2 files changed, 34 insertions(+), 14 deletions(-) diff --git a/Project.toml b/Project.toml index ee073a893..b675f1126 100644 --- a/Project.toml +++ b/Project.toml @@ -1,7 +1,7 @@ name = "NonlinearSolve" uuid = "8913a72c-1f9b-4ce2-8d82-65094dcecaec" authors = ["SciML"] -version = "2.8.0" +version = "2.9.0" [deps] ADTypes = "47edcb42-4c32-4615-8424-f2b9edc5f35b" diff --git a/src/default.jl b/src/default.jl index e1138e8fb..96c1d906b 100644 --- a/src/default.jl +++ b/src/default.jl @@ -166,7 +166,7 @@ end """ RobustMultiNewton(; concrete_jac = nothing, linsolve = nothing, precs = DEFAULT_PRECS, - adkwargs...) + adkwargs...) A polyalgorithm focused on robustness. It uses a mixture of Newton methods with different globalizing techniques (trust region updates, line searches, etc.) in order to find a @@ -212,7 +212,7 @@ end """ FastShortcutNonlinearPolyalg(; concrete_jac = nothing, linsolve = nothing, - precs = DEFAULT_PRECS, adkwargs...) + precs = DEFAULT_PRECS, must_use_jacobian::Val = Val(false), adkwargs...) A polyalgorithm focused on balancing speed and robustness. It first tries less robust methods for more performance and then tries more robust techniques if the faster ones fail. @@ -238,15 +238,25 @@ for more performance and then tries more robust techniques if the faster ones fa [LinearSolve.jl documentation](https://docs.sciml.ai/LinearSolve/stable/). """ function FastShortcutNonlinearPolyalg(; concrete_jac = nothing, linsolve = nothing, - precs = DEFAULT_PRECS, adkwargs...) - algs = (GeneralKlement(; linsolve, precs), - GeneralBroyden(), - NewtonRaphson(; concrete_jac, linsolve, precs, adkwargs...), - NewtonRaphson(; concrete_jac, linsolve, precs, linesearch = BackTracking(), - adkwargs...), - TrustRegion(; concrete_jac, linsolve, precs, adkwargs...), - TrustRegion(; concrete_jac, linsolve, precs, - radius_update_scheme = RadiusUpdateSchemes.Bastin, adkwargs...)) + precs = DEFAULT_PRECS, must_use_jacobian::Val{JAC} = Val(false), + adkwargs...) where {JAC} + if JAC + algs = (NewtonRaphson(; concrete_jac, linsolve, precs, adkwargs...), + NewtonRaphson(; concrete_jac, linsolve, precs, linesearch = BackTracking(), + adkwargs...), + TrustRegion(; concrete_jac, linsolve, precs, adkwargs...), + TrustRegion(; concrete_jac, linsolve, precs, + radius_update_scheme = RadiusUpdateSchemes.Bastin, adkwargs...)) + else + algs = (GeneralKlement(; linsolve, precs), + GeneralBroyden(), + NewtonRaphson(; concrete_jac, linsolve, precs, adkwargs...), + NewtonRaphson(; concrete_jac, linsolve, precs, linesearch = BackTracking(), + adkwargs...), + TrustRegion(; concrete_jac, linsolve, precs, adkwargs...), + TrustRegion(; concrete_jac, linsolve, precs, + radius_update_scheme = RadiusUpdateSchemes.Bastin, adkwargs...)) + end return NonlinearSolvePolyAlgorithm(algs, Val(:NLS)) end @@ -288,12 +298,22 @@ end ## Defaults +## TODO: In the long run we want to use an `Assumptions` API like LinearSolve to specify +## the conditioning of the Jacobian and such +## Defaults to a fast and robust poly algorithm in most cases. If the user went through +## the trouble of specifying a custom jacobian function, we should use algorithms that +## can use that! + function SciMLBase.__init(prob::NonlinearProblem, ::Nothing, args...; kwargs...) - return SciMLBase.__init(prob, FastShortcutNonlinearPolyalg(), args...; kwargs...) + must_use_jacobian = Val(prob.f.jac !== nothing) + return SciMLBase.__init(prob, FastShortcutNonlinearPolyalg(; must_use_jacobian), + args...; kwargs...) end function SciMLBase.__solve(prob::NonlinearProblem, ::Nothing, args...; kwargs...) - return SciMLBase.__solve(prob, FastShortcutNonlinearPolyalg(), args...; kwargs...) + must_use_jacobian = Val(prob.f.jac !== nothing) + return SciMLBase.__solve(prob, FastShortcutNonlinearPolyalg(; must_use_jacobian), + args...; kwargs...) end function SciMLBase.__init(prob::NonlinearLeastSquaresProblem, ::Nothing, args...; kwargs...)