diff --git a/src/NonlinearSolve.jl b/src/NonlinearSolve.jl index 3a38989d4..15ff8b822 100644 --- a/src/NonlinearSolve.jl +++ b/src/NonlinearSolve.jl @@ -67,6 +67,7 @@ include("trustRegion.jl") include("levenberg.jl") include("gaussnewton.jl") include("dfsane.jl") +include("pseudotransient.jl") include("jacobian.jl") include("ad.jl") include("default.jl") @@ -95,7 +96,7 @@ end export RadiusUpdateSchemes -export NewtonRaphson, TrustRegion, LevenbergMarquardt, DFSane, GaussNewton +export NewtonRaphson, TrustRegion, LevenbergMarquardt, DFSane, GaussNewton, PseudoTransient export LeastSquaresOptimJL, FastLevenbergMarquardtJL export RobustMultiNewton, FastShortcutNonlinearPolyalg diff --git a/src/jacobian.jl b/src/jacobian.jl index eddfdaef4..1f0f689bb 100644 --- a/src/jacobian.jl +++ b/src/jacobian.jl @@ -98,6 +98,12 @@ function jacobian_caches(alg::AbstractNonlinearSolveAlgorithm, f, u, p, ::Val{ii linprob = LinearProblem(needsJᵀJ ? __maybe_symmetric(JᵀJ) : J, needsJᵀJ ? _vec(Jᵀfu) : _vec(fu); u0 = _vec(du)) + if alg isa PseudoTransient + alpha = convert(eltype(u), alg.alpha_initial) + J_new = J - (1 / alpha) * I + linprob = LinearProblem(J_new, _vec(fu); u0 = _vec(du)) + end + weight = similar(u) recursivefill!(weight, true) diff --git a/src/pseudotransient.jl b/src/pseudotransient.jl new file mode 100644 index 000000000..debd4b3b9 --- /dev/null +++ b/src/pseudotransient.jl @@ -0,0 +1,180 @@ +""" + PseudoTransient(; concrete_jac = nothing, linsolve = nothing, + precs = DEFAULT_PRECS, alpha_initial = 1e-3, adkwargs...) + +An implementation of PseudoTransient method that is used to solve steady state problems in an accelerated manner. It uses an adaptive time-stepping to +integrate an initial value of nonlinear problem until sufficient accuracy in the desired steady-state is achieved to switch over to Newton's method and +gain a rapid convergence. This implementation specifically uses "switched evolution relaxation" SER method. For detail information about the time-stepping and algorithm, +please see the paper: [Coffey, Todd S. and Kelley, C. T. and Keyes, David E. (2003), Pseudotransient Continuation and Differential-Algebraic Equations, +SIAM Journal on Scientific Computing,25, 553-569.](https://doi.org/10.1137/S106482750241044X) + +### Keyword Arguments + +- `alpha_initial` : the initial pseudo time step. it defaults to 1e-3. If it is small, you are going to need more iterations to converge. + + + + +""" +@concrete struct PseudoTransient{CJ, AD} <: AbstractNewtonAlgorithm{CJ, AD} + ad::AD + linsolve + precs + alpha_initial +end + +#concrete_jac(::PseudoTransient{CJ}) where {CJ} = CJ +function set_ad(alg::PseudoTransient{CJ}, ad) where {CJ} + return PseudoTransient{CJ}(ad, alg.linsolve, alg.precs, alg.alpha_initial) +end + +function PseudoTransient(; concrete_jac = nothing, linsolve = nothing, + precs = DEFAULT_PRECS, alpha_initial = 1e-3, adkwargs...) + ad = default_adargs_to_adtype(; adkwargs...) + return PseudoTransient{_unwrap_val(concrete_jac)}(ad, linsolve, precs, alpha_initial) +end + +@concrete mutable struct PseudoTransientCache{iip} + f + alg + u + fu1 + fu2 + du + p + alpha + res_norm + uf + linsolve + J + jac_cache + force_stop + maxiters::Int + internalnorm + retcode::ReturnCode.T + abstol + prob + stats::NLStats +end + +isinplace(::PseudoTransientCache{iip}) where {iip} = iip + +function SciMLBase.__init(prob::NonlinearProblem{uType, iip}, alg_::PseudoTransient, + args...; + alias_u0 = false, maxiters = 1000, abstol = 1e-6, internalnorm = DEFAULT_NORM, + linsolve_kwargs = (;), + kwargs...) where {uType, iip} + alg = get_concrete_algorithm(alg_, prob) + + @unpack f, u0, p = prob + u = alias_u0 ? u0 : deepcopy(u0) + if iip + fu1 = f.resid_prototype === nothing ? zero(u) : f.resid_prototype + f(fu1, u, p) + else + fu1 = _mutable(f(u, p)) + end + uf, linsolve, J, fu2, jac_cache, du = jacobian_caches(alg, + f, + u, + p, + Val(iip); + linsolve_kwargs) + alpha = convert(eltype(u), alg.alpha_initial) + res_norm = internalnorm(fu1) + + return PseudoTransientCache{iip}(f, alg, u, fu1, fu2, du, p, alpha, res_norm, uf, + linsolve, J, + jac_cache, false, maxiters, internalnorm, ReturnCode.Default, abstol, prob, + NLStats(1, 0, 0, 0, 0)) +end + +function perform_step!(cache::PseudoTransientCache{true}) + @unpack u, fu1, f, p, alg, J, linsolve, du, alpha = cache + jacobian!!(J, cache) + J_new = J - (1 / alpha) * I + + # u = u - J \ fu + linres = dolinsolve(alg.precs, linsolve; A = J_new, b = _vec(fu1), linu = _vec(du), + p, reltol = cache.abstol) + cache.linsolve = linres.cache + @. u = u - du + f(fu1, u, p) + + new_norm = cache.internalnorm(fu1) + cache.alpha *= cache.res_norm / new_norm + cache.res_norm = new_norm + + new_norm < cache.abstol && (cache.force_stop = true) + cache.stats.nf += 1 + cache.stats.njacs += 1 + cache.stats.nsolve += 1 + cache.stats.nfactors += 1 + return nothing +end + +function perform_step!(cache::PseudoTransientCache{false}) + @unpack u, fu1, f, p, alg, linsolve, alpha = cache + + cache.J = jacobian!!(cache.J, cache) + # u = u - J \ fu + if linsolve === nothing + cache.du = fu1 / (cache.J - (1 / alpha) * I) + else + linres = dolinsolve(alg.precs, linsolve; A = cache.J - (1 / alpha) * I, + b = _vec(fu1), + linu = _vec(cache.du), p, reltol = cache.abstol) + cache.linsolve = linres.cache + end + cache.u = @. u - cache.du # `u` might not support mutation + cache.fu1 = f(cache.u, p) + + new_norm = cache.internalnorm(fu1) + cache.alpha *= cache.res_norm / new_norm + cache.res_norm = new_norm + new_norm < cache.abstol && (cache.force_stop = true) + cache.stats.nf += 1 + cache.stats.njacs += 1 + cache.stats.nsolve += 1 + cache.stats.nfactors += 1 + return nothing +end + +function SciMLBase.solve!(cache::PseudoTransientCache) + while !cache.force_stop && cache.stats.nsteps < cache.maxiters + perform_step!(cache) + cache.stats.nsteps += 1 + end + + if cache.stats.nsteps == cache.maxiters + cache.retcode = ReturnCode.MaxIters + else + cache.retcode = ReturnCode.Success + end + + return SciMLBase.build_solution(cache.prob, cache.alg, cache.u, cache.fu1; + cache.retcode, cache.stats) +end + +function SciMLBase.reinit!(cache::PseudoTransientCache{iip}, u0 = cache.u; p = cache.p, + alpha_new, + abstol = cache.abstol, maxiters = cache.maxiters) where {iip} + cache.p = p + if iip + recursivecopy!(cache.u, u0) + cache.f(cache.fu1, cache.u, p) + else + # don't have alias_u0 but cache.u is never mutated for OOP problems so it doesn't matter + cache.u = u0 + cache.fu1 = cache.f(cache.u, p) + end + cache.alpha = convert(eltype(cache.u), alpha_new) + cache.res_norm = cache.internalnorm(cache.fu1) + cache.abstol = abstol + cache.maxiters = maxiters + cache.stats.nf = 1 + cache.stats.nsteps = 1 + cache.force_stop = false + cache.retcode = ReturnCode.Default + return cache +end diff --git a/test/basictests.jl b/test/basictests.jl index 06cfc103d..f20417785 100644 --- a/test/basictests.jl +++ b/test/basictests.jl @@ -543,3 +543,124 @@ end end end end + +# --- PseudoTransient tests --- + +@testset "PseudoTransient" begin + #these are tests for NewtonRaphson so we should set alpha_initial to be high so that we converge quickly + + function benchmark_nlsolve_oop(f, u0, p = 2.0; alpha_initial = 10.0) + prob = NonlinearProblem{false}(f, u0, p) + return solve(prob, PseudoTransient(; alpha_initial), abstol = 1e-9) + end + + function benchmark_nlsolve_iip(f, u0, p = 2.0; linsolve, precs, + alpha_initial = 10.0) + prob = NonlinearProblem{true}(f, u0, p) + return solve(prob, PseudoTransient(; linsolve, precs, alpha_initial), abstol = 1e-9) + end + + @testset "PT: alpha_initial = 10.0 PT AD: $(ad)" for ad in (AutoFiniteDiff(), + AutoZygote()) + u0s = VERSION ≥ v"1.9" ? ([1.0, 1.0], @SVector[1.0, 1.0], 1.0) : ([1.0, 1.0], 1.0) + + @testset "[OOP] u0: $(typeof(u0))" for u0 in u0s + sol = benchmark_nlsolve_oop(quadratic_f, u0) + @test SciMLBase.successful_retcode(sol) + @test all(abs.(sol.u .* sol.u .- 2) .< 1e-9) + + cache = init(NonlinearProblem{false}(quadratic_f, u0, 2.0), + PseudoTransient(alpha_initial = 10.0), + abstol = 1e-9) + @test (@ballocated solve!($cache)) < 200 + end + + precs = [NonlinearSolve.DEFAULT_PRECS, :Random] + + @testset "[IIP] u0: $(typeof(u0)) precs: $(_nameof(prec)) linsolve: $(_nameof(linsolve))" for u0 in ([ + 1.0, 1.0],), prec in precs, linsolve in (nothing, KrylovJL_GMRES()) + ad isa AutoZygote && continue + if prec === :Random + prec = (args...) -> (Diagonal(randn!(similar(u0))), nothing) + end + sol = benchmark_nlsolve_iip(quadratic_f!, u0; linsolve, precs = prec) + @test SciMLBase.successful_retcode(sol) + @test all(abs.(sol.u .* sol.u .- 2) .< 1e-9) + + cache = init(NonlinearProblem{true}(quadratic_f!, u0, 2.0), + PseudoTransient(; alpha_initial = 10.0, linsolve, precs = prec), + abstol = 1e-9) + @test (@ballocated solve!($cache)) ≤ 64 + end + end + + if VERSION ≥ v"1.9" + @testset "[OOP] [Immutable AD]" begin + for p in 1.0:0.1:100.0 + @test begin + res = benchmark_nlsolve_oop(quadratic_f, @SVector[1.0, 1.0], p) + res_true = sqrt(p) + all(res.u .≈ res_true) + end + @test ForwardDiff.derivative(p -> benchmark_nlsolve_oop(quadratic_f, + @SVector[1.0, 1.0], p).u[end], p) ≈ 1 / (2 * sqrt(p)) + end + end + end + + @testset "[OOP] [Scalar AD]" begin + for p in 1.0:0.1:100.0 + @test begin + res = benchmark_nlsolve_oop(quadratic_f, 1.0, p) + res_true = sqrt(p) + res.u ≈ res_true + end + @test ForwardDiff.derivative(p -> benchmark_nlsolve_oop(quadratic_f, 1.0, p).u, + p) ≈ + 1 / (2 * sqrt(p)) + end + end + + if VERSION ≥ v"1.9" + t = (p) -> [sqrt(p[2] / p[1])] + p = [0.9, 50.0] + @test benchmark_nlsolve_oop(quadratic_f2, 0.5, p).u ≈ sqrt(p[2] / p[1]) + @test ForwardDiff.jacobian(p -> [benchmark_nlsolve_oop(quadratic_f2, 0.5, p).u], + p) ≈ + ForwardDiff.jacobian(t, p) + end + + function nlprob_iterator_interface(f, p_range, ::Val{iip}) where {iip} + probN = NonlinearProblem{iip}(f, iip ? [0.5] : 0.5, p_range[begin]) + cache = init(probN, + PseudoTransient(alpha_initial = 10.0); + maxiters = 100, + abstol = 1e-10) + sols = zeros(length(p_range)) + for (i, p) in enumerate(p_range) + reinit!(cache, iip ? [cache.u[1]] : cache.u; p = p, alpha_new = 10.0) + sol = solve!(cache) + sols[i] = iip ? sol.u[1] : sol.u + end + return sols + end + p = range(0.01, 2, length = 200) + @test nlprob_iterator_interface(quadratic_f, p, Val(false)) ≈ sqrt.(p) + @test nlprob_iterator_interface(quadratic_f!, p, Val(true)) ≈ sqrt.(p) + + @testset "ADType: $(autodiff) u0: $(_nameof(u0))" for autodiff in (false, true, + AutoSparseForwardDiff(), AutoSparseFiniteDiff(), AutoZygote(), + AutoSparseZygote(), AutoSparseEnzyme()), u0 in (1.0, [1.0, 1.0]) + probN = NonlinearProblem(quadratic_f, u0, 2.0) + @test all(solve(probN, PseudoTransient(; alpha_initial = 10.0, autodiff)).u .≈ + sqrt(2.0)) + end + + @testset "NewtonRaphson Fails but PT passes" begin # Test that `PseudoTransient` passes a test that `NewtonRaphson` fails on. + p = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] + u0 = [-10.0, -1.0, 1.0, 2.0, 3.0, 4.0, 10.0] + probN = NonlinearProblem{false}(newton_fails, u0, p) + sol = solve(probN, PseudoTransient(alpha_initial = 1.0), abstol = 1e-10) + @test all(abs.(newton_fails(sol.u, p)) .< 1e-10) + end +end