Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Strong and terminal linkage classes #963

Merged
merged 9 commits into from
Jul 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion src/Catalyst.jl
Original file line number Diff line number Diff line change
Expand Up @@ -127,7 +127,8 @@ export @reaction_network, @network_component, @reaction, @species
include("network_analysis.jl")
export reactioncomplexmap, reactioncomplexes, incidencemat
export complexstoichmat
export complexoutgoingmat, incidencematgraph, linkageclasses, deficiency, subnetworks
export complexoutgoingmat, incidencematgraph, linkageclasses, stronglinkageclasses,
terminallinkageclasses, deficiency, subnetworks
export linkagedeficiencies, isreversible, isweaklyreversible
export conservationlaws, conservedquantities, conservedequations, conservationlaw_constants

Expand Down
50 changes: 50 additions & 0 deletions src/network_analysis.jl
Original file line number Diff line number Diff line change
Expand Up @@ -348,6 +348,56 @@ end

linkageclasses(incidencegraph) = Graphs.connected_components(incidencegraph)

"""
stronglinkageclasses(rn::ReactionSystem)

Return the strongly connected components of a reaction network's incidence graph (i.e. sub-groups of reaction complexes such that every complex is reachable from every other one in the sub-group).
"""

function stronglinkageclasses(rn::ReactionSystem)
nps = get_networkproperties(rn)
if isempty(nps.stronglinkageclasses)
nps.stronglinkageclasses = stronglinkageclasses(incidencematgraph(rn))
end
nps.stronglinkageclasses
end

stronglinkageclasses(incidencegraph) = Graphs.strongly_connected_components(incidencegraph)

"""
terminallinkageclasses(rn::ReactionSystem)

Return the terminal strongly connected components of a reaction network's incidence graph (i.e. sub-groups of reaction complexes that are 1) strongly connected and 2) every outgoing reaction from a complex in the component produces a complex also in the component).
"""

function terminallinkageclasses(rn::ReactionSystem)
nps = get_networkproperties(rn)
if isempty(nps.terminallinkageclasses)
slcs = stronglinkageclasses(rn)
tslcs = filter(lc -> isterminal(lc, rn), slcs)
nps.terminallinkageclasses = tslcs
end
nps.terminallinkageclasses
end

# Helper function for terminallinkageclasses. Given a linkage class and a reaction network, say whether the linkage class is terminal,
# i.e. all outgoing reactions from complexes in the linkage class produce a complex also in the linkage class
function isterminal(lc::Vector, rn::ReactionSystem)
vyudu marked this conversation as resolved.
Show resolved Hide resolved
imat = incidencemat(rn)

for r in 1:size(imat, 2)
vyudu marked this conversation as resolved.
Show resolved Hide resolved
# Find the index of the reactant complex for a given reaction
s = findfirst(==(-1), @view imat[:, r])

# If the reactant complex is in the linkage class, check whether the product complex is also in the linkage class. If any of them are not, return false.
if s in Set(lc)
p = findfirst(==(1), @view imat[:, r])
p in Set(lc) ? continue : return false
end
end
true
end

@doc raw"""
deficiency(rn::ReactionSystem)

Expand Down
6 changes: 6 additions & 0 deletions src/reactionsystem.jl
Original file line number Diff line number Diff line change
Expand Up @@ -78,6 +78,7 @@ Base.@kwdef mutable struct NetworkProperties{I <: Integer, V <: BasicSymbolic{Re
isempty::Bool = true
netstoichmat::Union{Matrix{Int}, SparseMatrixCSC{Int, Int}} = Matrix{Int}(undef, 0, 0)
conservationmat::Matrix{I} = Matrix{I}(undef, 0, 0)
cyclemat::Matrix{I} = Matrix{I}(undef, 0, 0)
col_order::Vector{Int} = Int[]
rank::Int = 0
nullity::Int = 0
Expand All @@ -93,6 +94,8 @@ Base.@kwdef mutable struct NetworkProperties{I <: Integer, V <: BasicSymbolic{Re
complexoutgoingmat::Union{Matrix{Int}, SparseMatrixCSC{Int, Int}} = Matrix{Int}(undef, 0, 0)
incidencegraph::Graphs.SimpleDiGraph{Int} = Graphs.DiGraph()
linkageclasses::Vector{Vector{Int}} = Vector{Vector{Int}}(undef, 0)
stronglinkageclasses::Vector{Vector{Int}} = Vector{Vector{Int}}(undef, 0)
terminallinkageclasses::Vector{Vector{Int}} = Vector{Vector{Int}}(undef, 0)
vyudu marked this conversation as resolved.
Show resolved Hide resolved
deficiency::Int = 0
end
#! format: on
Expand All @@ -116,6 +119,7 @@ function reset!(nps::NetworkProperties{I, V}) where {I, V}
nps.isempty && return
nps.netstoichmat = Matrix{Int}(undef, 0, 0)
nps.conservationmat = Matrix{I}(undef, 0, 0)
nps.cyclemat = Matrix{Int}(undef, 0, 0)
empty!(nps.col_order)
nps.rank = 0
nps.nullity = 0
Expand All @@ -131,6 +135,8 @@ function reset!(nps::NetworkProperties{I, V}) where {I, V}
nps.complexoutgoingmat = Matrix{Int}(undef, 0, 0)
nps.incidencegraph = Graphs.DiGraph()
empty!(nps.linkageclasses)
empty!(nps.stronglinkageclasses)
empty!(nps.terminallinkageclasses)
nps.deficiency = 0

# this needs to be last due to setproperty! setting it to false
Expand Down
84 changes: 84 additions & 0 deletions test/network_analysis/network_properties.jl
Original file line number Diff line number Diff line change
Expand Up @@ -325,3 +325,87 @@ let
rates = Dict(zip(parameters(rn), k))
@test Catalyst.iscomplexbalanced(rn, rates) == true
end

### STRONG LINKAGE CLASS TESTS


# a) Checks that strong/terminal linkage classes are correctly found. Should identify the (A, B+C) linkage class as non-terminal, since B + C produces D
let
vyudu marked this conversation as resolved.
Show resolved Hide resolved
rn = @reaction_network begin
(k1, k2), A <--> B + C
k3, B + C --> D
k4, D --> E
(k5, k6), E <--> 2F
k7, 2F --> D
(k8, k9), D + E <--> G
end

rcs, D = reactioncomplexes(rn)
slcs = stronglinkageclasses(rn)
tslcs = terminallinkageclasses(rn)
@test length(slcs) == 3
@test length(tslcs) == 2
@test issubset([[1,2], [3,4,5], [6,7]], slcs)
@test issubset([[3,4,5], [6,7]], tslcs)
end

# b) Makes the D + E --> G reaction irreversible. Thus, (D+E) becomes a non-terminal linkage class. Checks whether correctly identifies both (A, B+C) and (D+E) as non-terminal
let
rn = @reaction_network begin
(k1, k2), A <--> B + C
k3, B + C --> D
k4, D --> E
(k5, k6), E <--> 2F
k7, 2F --> D
(k8, k9), D + E --> G
end

rcs, D = reactioncomplexes(rn)
slcs = stronglinkageclasses(rn)
tslcs = terminallinkageclasses(rn)
@test length(slcs) == 4
@test length(tslcs) == 2
@test issubset([[1,2], [3,4,5], [6], [7]], slcs)
@test issubset([[3,4,5], [7]], tslcs)
end

# From a), makes the B + C <--> D reaction reversible. Thus, the non-terminal (A, B+C) linkage class gets absorbed into the terminal (A, B+C, D, E, 2F) linkage class, and the terminal linkage classes and strong linkage classes coincide.
let
rn = @reaction_network begin
(k1, k2), A <--> B + C
(k3, k4), B + C <--> D
k5, D --> E
(k6, k7), E <--> 2F
k8, 2F --> D
(k9, k10), D + E <--> G
end

rcs, D = reactioncomplexes(rn)
slcs = stronglinkageclasses(rn)
tslcs = terminallinkageclasses(rn)
@test length(slcs) == 2
@test length(tslcs) == 2
@test issubset([[1,2,3,4,5], [6,7]], slcs)
@test issubset([[1,2,3,4,5], [6,7]], tslcs)
end

# Simple test for strong and terminal linkage classes
let
rn = @reaction_network begin
(k1, k2), A <--> 2B
k3, A --> C + D
(k4, k5), C + D <--> E
k6, 2B --> F
(k7, k8), F <--> 2G
(k9, k10), 2G <--> H
k11, H --> F
end

rcs, D = reactioncomplexes(rn)
slcs = stronglinkageclasses(rn)
tslcs = terminallinkageclasses(rn)
@test length(slcs) == 3
@test length(tslcs) == 2
@test issubset([[1,2], [3,4], [5,6,7]], slcs)
@test issubset([[3,4], [5,6,7]], tslcs)
end
Loading