-
Notifications
You must be signed in to change notification settings - Fork 49
/
main.py
359 lines (267 loc) · 14.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import warnings
warnings.filterwarnings("ignore")
import argparse
import os
import sys
import datetime
import time
import math
import json
from pathlib import Path
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
from datasets import load_dataset, datasets_utils
import utils
import vision_transformer as vits
from vision_transformer import CLSHead, RECHead
import torchvision
def get_args_parser():
parser = argparse.ArgumentParser('SiT', add_help=False)
# Reconstruction Parameters
parser.add_argument('--drop_perc', type=float, default=0.5, help='Drop X percentage of the input image')
parser.add_argument('--drop_replace', type=float, default=0.3, help='Drop X percentage of the input image')
parser.add_argument('--drop_align', type=int, default=1, help='Align drop with patches; Set to patch size to align corruption with patches')
parser.add_argument('--drop_type', type=str, default='zeros', help='Drop Type.')
parser.add_argument('--lmbda', type=int, default=1, help='Scaling factor for the reconstruction loss')
# SimCLR Parameters
parser.add_argument('--out_dim', default=256, type=int, help="Dimensionality of output features")
parser.add_argument('--simclr_temp', default=0.2, type=float, help="tempreture for SimCLR.")
parser.add_argument('--momentum_teacher', default=0.996, type=float, help="EMA parameter for teacher update.")
# Model parameters
parser.add_argument('--model', default='vit_small', type=str, choices=['vit_tiny', 'vit_small', 'vit_base'], help="Name of architecture")
parser.add_argument('--drop_path_rate', type=float, default=0.1, help="stochastic depth rate")
# Training/Optimization parameters
parser.add_argument('--use_fp16', type=utils.bool_flag, default=True)
parser.add_argument('--weight_decay', type=float, default=0.04)
parser.add_argument('--weight_decay_end', type=float, default=0.1)
parser.add_argument('--clip_grad', type=float, default=3.0)
parser.add_argument('--batch_size', default=32, type=int)
parser.add_argument('--epochs', default=800, type=int, help='Number of epochs of training.')
parser.add_argument("--lr", default=0.0005, type=float, help="Learning rate.")
parser.add_argument("--warmup_epochs", default=10, type=int, help="Number of epochs for the linear learning-rate warm up.")
parser.add_argument('--min_lr', type=float, default=1e-6, help="Target LR at the end of optimization.")
# Dataset
parser.add_argument('--data_set', default='Pets', type=str,
choices=['STL10', 'MNIST', 'CIFAR10', 'CIFAR100', 'Flowers', 'Aircraft',
'Cars', 'ImageNet5p', 'ImageNet', 'TinyImageNet', 'Pets', 'CUB',
'PASCALVOC', 'MSCOCO', 'VisualGenome500'],
help='Name of the dataset.')
parser.add_argument('--data_location', default='/path/to/dataset', type=str, help='Dataset location.')
parser.add_argument('--output_dir', default="checkpoints/vit_small/trial", type=str, help='Path to save logs and checkpoints.')
parser.add_argument('--saveckp_freq', default=20, type=int, help='Save checkpoint every x epochs.')
parser.add_argument('--seed', default=0, type=int, help='Random seed.')
parser.add_argument('--num_workers', default=10, type=int, help='Number of data loading workers per GPU.')
parser.add_argument("--dist_url", default="env://", type=str, help="set up distributed training")
parser.add_argument("--local_rank", default=0, type=int)
return parser
# replace from other images
class collate_batch(object):
def __init__(self, drop_replace=0., drop_align=1):
self.drop_replace = drop_replace
self.drop_align = drop_align
def __call__(self, batch):
batch = torch.utils.data.dataloader.default_collate(batch)
if self.drop_replace > 0:
batch[0][1][0], batch[0][2][0] = datasets_utils.GMML_replace_list(batch[0][0][0], batch[0][1][0], batch[0][2][0],
max_replace=self.drop_replace, align=self.drop_align)
batch[0][1][1], batch[0][2][1] = datasets_utils.GMML_replace_list(batch[0][0][1], batch[0][1][1], batch[0][2][1],
max_replace=self.drop_replace, align=self.drop_align)
return batch
def train_SiT(args):
utils.init_distributed_mode(args)
utils.fix_random_seeds(args.seed)
print("git:\n {}\n".format(utils.get_sha()))
cudnn.benchmark = True
# prepare dataset
transform = datasets_utils.DataAugmentationSiT(args)
if args.data_set == 'ImageNet':
dataset = torchvision.datasets.ImageFolder(args.data_location, transform=transform)
else:
dataset, _ = load_dataset.build_dataset(args, True, trnsfrm=transform, training_mode = 'SSL')
sampler = torch.utils.data.DistributedSampler(dataset, shuffle=True)
data_loader = torch.utils.data.DataLoader(dataset,
sampler=sampler, batch_size=args.batch_size,
num_workers=args.num_workers, pin_memory=True, drop_last=True,
collate_fn=collate_batch(args.drop_replace, args.drop_align))
print(f"Data loaded: there are {len(dataset)} images.")
# building networks
student = vits.__dict__[args.model](drop_path_rate=args.drop_path_rate)
teacher = vits.__dict__[args.model]()
embed_dim = student.embed_dim
student = FullPipline(student, CLSHead(embed_dim, args.out_dim), RECHead(embed_dim))
teacher = FullPipline(teacher, CLSHead(embed_dim, args.out_dim), RECHead(embed_dim))
student, teacher = student.cuda(), teacher.cuda()
# synchronize batch norms
student = nn.SyncBatchNorm.convert_sync_batchnorm(student)
teacher = nn.SyncBatchNorm.convert_sync_batchnorm(teacher)
# we need DDP wrapper to have synchro batch norms working...
teacher = nn.parallel.DistributedDataParallel(teacher, device_ids=[args.gpu])
teacher_without_ddp = teacher.module
student = nn.parallel.DistributedDataParallel(student, device_ids=[args.gpu])
teacher_without_ddp.load_state_dict(student.module.state_dict())
for p in teacher.parameters():
p.requires_grad = False
print(f"Student and Teacher are built: they are both {args.model} network.")
# preparing SimCLR loss
simclr_loss = SimCLR(args.simclr_temp).cuda()
# preparing optimizer
optimizer = torch.optim.AdamW(utils.get_params_groups(student)) # to use with ViTs
# for mixed precision training
fp16_scaler = torch.cuda.amp.GradScaler() if args.use_fp16 else None
# init schedulers
lr_schedule = utils.cosine_scheduler(
args.lr * (args.batch_size * utils.get_world_size()) / 256.,
args.min_lr, args.epochs, len(data_loader), warmup_epochs=args.warmup_epochs)
wd_schedule = utils.cosine_scheduler( args.weight_decay,
args.weight_decay_end, args.epochs, len(data_loader))
# momentum parameter is increased to 1. during training with a cosine schedule
momentum_schedule = utils.cosine_scheduler(args.momentum_teacher, 1, args.epochs, len(data_loader))
# Resume training
to_restore = {"epoch": 0}
utils.restart_from_checkpoint(
os.path.join(args.output_dir, "checkpoint.pth"),
run_variables=to_restore,
student=student, teacher=teacher,
optimizer=optimizer, fp16_scaler=fp16_scaler)
start_epoch = to_restore["epoch"]
start_time = time.time()
print("Training ..")
for epoch in range(start_epoch, args.epochs):
data_loader.sampler.set_epoch(epoch)
# Training
train_stats = train_one_epoch(student, teacher, teacher_without_ddp, simclr_loss,
data_loader, optimizer, lr_schedule, wd_schedule, momentum_schedule, epoch, fp16_scaler, args)
# logs
save_dict = {
'student': student.state_dict(),
'teacher': teacher.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch + 1, 'args': args}
if fp16_scaler is not None:
save_dict['fp16_scaler'] = fp16_scaler.state_dict()
utils.save_on_master(save_dict, os.path.join(args.output_dir, 'checkpoint.pth'))
if args.saveckp_freq and epoch % args.saveckp_freq == 0:
utils.save_on_master(save_dict, os.path.join(args.output_dir, f'checkpoint{epoch:04}.pth'))
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch}
if utils.is_main_process():
with (Path(args.output_dir) / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
def train_one_epoch(student, teacher, teacher_without_ddp, simclr_loss, data_loader,
optimizer, lr_schedule, wd_schedule, momentum_schedule,epoch,
fp16_scaler, args):
save_recon = os.path.join(args.output_dir, 'reconstruction_samples')
Path(save_recon).mkdir(parents=True, exist_ok=True)
bz = args.batch_size
plot_ = True
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Epoch: [{}/{}]'.format(epoch, args.epochs)
for it, ((clean_crops, corrupted_crops, masks_crops), _) in enumerate(metric_logger.log_every(data_loader, 100, header)):
it = len(data_loader) * epoch + it # global training iteration
for i, param_group in enumerate(optimizer.param_groups):
param_group["lr"] = lr_schedule[it]
if i == 0:
param_group["weight_decay"] = wd_schedule[it]
# move images to gpu
clean_crops = [im.cuda(non_blocking=True) for im in clean_crops]
corrupted_crops = [im.cuda(non_blocking=True) for im in corrupted_crops]
masks_crops = [im.cuda(non_blocking=True) for im in masks_crops]
with torch.cuda.amp.autocast(fp16_scaler is not None):
t_cls, _ = teacher(torch.cat(clean_crops[0:]), recons=False)
s_cls, s_recons = student(torch.cat(corrupted_crops[0:]))
c_loss = simclr_loss(s_cls, t_cls, epoch)
#-------------------------------------------------
recloss = F.l1_loss(s_recons, torch.cat(clean_crops[0:]), reduction='none')
r_loss = recloss[torch.cat(masks_crops[0:2])==1].mean()
if plot_==True and utils.is_main_process():
plot_ = False
#validating: check the reconstructed images
print_out = save_recon + '/epoch_' + str(epoch).zfill(5) + '.jpg'
imagesToPrint = torch.cat([clean_crops[0][0: min(15, bz)].cpu(), corrupted_crops[0][0: min(15, bz)].cpu(),
s_recons[0: min(15, bz)].cpu(), masks_crops[0][0: min(15, bz)].cpu()], dim=0)
torchvision.utils.save_image(imagesToPrint, print_out, nrow=min(15, bz), normalize=True, range=(-1, 1))
loss = c_loss + args.lmbda * r_loss
if not math.isfinite(loss.item()):
print("Loss is {}, stopping training".format(loss.item()), force=True)
sys.exit(1)
# student update
optimizer.zero_grad()
param_norms = None
if fp16_scaler is None:
loss.backward()
if args.clip_grad:
param_norms = utils.clip_gradients(student, args.clip_grad)
optimizer.step()
else:
fp16_scaler.scale(loss).backward()
if args.clip_grad:
fp16_scaler.unscale_(optimizer)
param_norms = utils.clip_gradients(student, args.clip_grad)
fp16_scaler.step(optimizer)
fp16_scaler.update()
# EMA update for the teacher
with torch.no_grad():
m = momentum_schedule[it] # momentum parameter
for param_q, param_k in zip(student.module.parameters(), teacher_without_ddp.parameters()):
param_k.data.mul_(m).add_((1 - m) * param_q.detach().data)
# logging
torch.cuda.synchronize()
metric_logger.update(c_loss=c_loss.item())
metric_logger.update(r_loss=r_loss.item())
metric_logger.update(loss=loss.item())
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
metric_logger.update(wd=optimizer.param_groups[0]["weight_decay"])
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
class SimCLR(nn.Module):
def __init__(self, temp=0.2):
super().__init__()
self.temp = temp
def contrastive_loss(self, q, k):
# normalize
q = nn.functional.normalize(q, dim=1)
k = nn.functional.normalize(k, dim=1)
# gather all targets
k = concat_all_gather(k)
logits = torch.einsum('nc,mc->nm', [q, k]) / self.temp
N = logits.shape[0]
labels = (torch.arange(N, dtype=torch.long) + N * torch.distributed.get_rank()).cuda()
return nn.CrossEntropyLoss()(logits, labels) * (2 * self.temp)
def forward(self, student_output, teacher_output, epoch):
student_out = student_output
student_out = student_out.chunk(2)
teacher_out = teacher_output
teacher_out = teacher_out.detach().chunk(2)
return self.contrastive_loss(student_out[0], teacher_out[1]) + self.contrastive_loss(student_out[1], teacher_out[0])
@torch.no_grad()
def concat_all_gather(tensor):
tensors_gather = [torch.ones_like(tensor)
for _ in range(torch.distributed.get_world_size())]
torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
output = torch.cat(tensors_gather, dim=0)
return output
class FullPipline(nn.Module):
def __init__(self, backbone, head, head_recons):
super(FullPipline, self).__init__()
backbone.fc, backbone.head = nn.Identity(), nn.Identity()
self.backbone = backbone
self.head = head
self.head_recons = head_recons
def forward(self, x, recons=True):
_out = self.backbone(x)
if recons==True:
return self.head(_out[:, 0]), self.head_recons(_out[:, 1:])
else:
return self.head(_out[:, 0]), None
if __name__ == '__main__':
parser = argparse.ArgumentParser('SiT', parents=[get_args_parser()])
args = parser.parse_args()
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
train_SiT(args)