forked from ylacombe/finetune-hf-vits
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_vits_finetuning.py
1491 lines (1284 loc) · 62.6 KB
/
run_vits_finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Fine-tuning Vits for TTS.
"""
import logging
import math
import os
import shutil
import sys
import tempfile
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union
import datasets
import numpy as np
import torch
import os
from accelerate import Accelerator, DistributedDataParallelKwargs
from accelerate.utils import ProjectConfiguration, is_wandb_available, set_seed
from datasets import DatasetDict, load_dataset
from monotonic_align import maximum_path
from tqdm.auto import tqdm
import transformers
from transformers import (
AutoTokenizer,
HfArgumentParser,
TrainingArguments,
)
from transformers.feature_extraction_utils import BatchFeature
from transformers.optimization import get_scheduler
from transformers.trainer_pt_utils import LengthGroupedSampler
from transformers.trainer_utils import get_last_checkpoint, is_main_process
from transformers.utils import send_example_telemetry
from utils import plot_alignment_to_numpy, plot_spectrogram_to_numpy, VitsDiscriminator, VitsModelForPreTraining, VitsFeatureExtractor, slice_segments, VitsConfig, uromanize
if is_wandb_available():
import wandb
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=False)
logger = logging.getLogger(__name__)
#### ARGUMENTS
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
feature_extractor_name: Optional[str] = field(
default=None, metadata={"help": "feature extractor name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
token: str = field(
default=None,
metadata={
"help": (
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
use_auth_token: bool = field(
default=None,
metadata={
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
},
)
trust_remote_code: bool = field(
default=False,
metadata={
"help": (
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option"
"should only be set to `True` for repositories you trust and in which you have read the code, as it will"
"execute code present on the Hub on your local machine."
)
},
)
override_speaker_embeddings: bool = field(
default=False,
metadata={
"help": (
"If `True` and if `speaker_id_column_name` is specified, it will replace current speaker embeddings with a new set of speaker embeddings."
"If the model from the checkpoint didn't have speaker embeddings, it will initialize speaker embeddings."
)
},
)
override_vocabulary_embeddings: bool = field(
default=False,
metadata={
"help": (
"If `True`, it will resize the token embeddings based on the vocabulary size of the tokenizer. In other words, use this when you use a different tokenizer than the one that was used during pretraining."
)
},
)
@dataclass
class VITSTrainingArguments(TrainingArguments):
do_step_schedule_per_epoch: bool = field(
default=True,
metadata={
"help": (
"Whether or not to perform scheduler steps per epoch or per steps. If `True`, the scheduler will be `ExponentialLR` parametrized with `lr_decay`."
)
},
)
lr_decay: float = field(
default=0.999875,
metadata={"help": "Learning rate decay, used with `ExponentialLR` when `do_step_schedule_per_epoch`."},
)
weight_duration: float = field(default=1.0, metadata={"help": "Duration loss weight."})
weight_kl: float = field(default=1.5, metadata={"help": "KL loss weight."})
weight_mel: float = field(default=35.0, metadata={"help": "Mel-spectrogram loss weight"})
weight_disc: float = field(default=3.0, metadata={"help": "Discriminator loss weight"})
weight_gen: float = field(default=1.0, metadata={"help": "Generator loss weight"})
weight_fmaps: float = field(default=1.0, metadata={"help": "Feature map loss weight"})
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
project_name: str = field(
default="vits_finetuning",
metadata={"help": "The project name associated to this run. Useful to track your experiment."},
)
dataset_name: str = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
audio_column_name: str = field(
default="audio",
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
)
text_column_name: str = field(
default="text",
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
)
speaker_id_column_name: str = field(
default=None,
metadata={
"help": """If set, corresponds to the name of the speaker id column containing the speaker ids.
If `override_speaker_embeddings=False`:
it assumes that speakers are indexed from 0 to `num_speakers-1`.
`num_speakers` and `speaker_embedding_size` have to be set in the model config.
If `override_speaker_embeddings=True`:
It will use this column to compute how many speakers there are.
Defaults to None, i.e it is not used by default."""
},
)
filter_on_speaker_id: int = field(
default=None,
metadata={
"help": (
"If `speaker_id_column_name` and `filter_on_speaker_id` are set, will filter the dataset to keep a single speaker_id (`filter_on_speaker_id`) "
)
},
)
max_tokens_length: float = field(
default=450,
metadata={
"help": ("Truncate audio files with a transcription that are longer than `max_tokens_length` tokens")
},
)
max_duration_in_seconds: float = field(
default=20.0,
metadata={
"help": (
"Truncate audio files that are longer than `max_duration_in_seconds` seconds to"
" 'max_duration_in_seconds`"
)
},
)
min_duration_in_seconds: float = field(
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
)
preprocessing_only: bool = field(
default=False,
metadata={
"help": (
"Whether to only do data preprocessing and skip training. This is especially useful when data"
" preprocessing errors out in distributed training due to timeout. In this case, one should run the"
" preprocessing in a non-distributed setup with `preprocessing_only=True` so that the cached datasets"
" can consequently be loaded in distributed training"
)
},
)
train_split_name: str = field(
default="train",
metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
},
)
eval_split_name: str = field(
default="test",
metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
},
)
do_lower_case: bool = field(
default=False,
metadata={"help": "Whether the input text should be lower cased."},
)
do_normalize: bool = field(
default=False,
metadata={"help": "Whether the input waveform should be normalized."},
)
full_generation_sample_text: str = field(
default="This is a test, let's see what comes out of this.",
metadata={
"help": (
"Language for multilingual fine-tuning. This argument should be set for multilingual fine-tuning "
"only. For English speech recognition, it should be set to `None`."
)
},
)
uroman_path: str = field(
default=None,
metadata={
"help": (
"Absolute path to the uroman package. To use if your model requires `uroman`."
"An easy way to check it is to go on your model card and manually check `is_uroman` in the `tokenizer_config.json,"
"e.g the French checkpoint doesn't need it: https://huggingface.co/facebook/mms-tts-fra/blob/main/tokenizer_config.json#L4"
)
},
)
# DATA COLLATOR
@dataclass
class DataCollatorTTSWithPadding:
"""
Data collator that will dynamically pad the inputs received.
Args:
tokenizer ([`VitsTokenizer`])
The tokenizer used for processing the data.
feature_extractor ([`VitsFeatureExtractor`])
The tokenizer used for processing the data.
forward_attention_mask (`bool`)
Whether to return attention_mask.
"""
tokenizer: Any
feature_extractor: Any
forward_attention_mask: bool
def pad_waveform(self, raw_speech):
is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
if is_batched_numpy and len(raw_speech.shape) > 2:
raise ValueError(f"Only mono-channel audio is supported for input to {self}")
is_batched = is_batched_numpy or (
isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
)
if is_batched:
raw_speech = [np.asarray([speech], dtype=np.float32).T for speech in raw_speech]
elif not is_batched and not isinstance(raw_speech, np.ndarray):
raw_speech = np.asarray(raw_speech, dtype=np.float32)
elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
raw_speech = raw_speech.astype(np.float32)
# always return batch
if not is_batched:
raw_speech = [np.asarray([raw_speech]).T]
batched_speech = BatchFeature({"input_features": raw_speech})
# convert into correct format for padding
padded_inputs = self.feature_extractor.pad(
batched_speech,
padding=True,
return_attention_mask=False,
return_tensors="pt",
)["input_features"]
return padded_inputs
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
# split inputs and labels since they have to be of different lengths and need
# different padding methods
model_input_name = "input_ids"
input_ids = [{model_input_name: feature[model_input_name]} for feature in features]
# pad input tokens
batch = self.tokenizer.pad(input_ids, return_tensors="pt", return_attention_mask=self.forward_attention_mask)
# pad waveform
waveforms = [np.array(feature["waveform"]) for feature in features]
batch["waveform"] = self.pad_waveform(waveforms)
# pad spectrogram
label_features = [np.array(feature["labels"]) for feature in features]
labels_batch = self.feature_extractor.pad(
{"input_features": [i.T for i in label_features]}, return_tensors="pt", return_attention_mask=True
)
labels = labels_batch["input_features"].transpose(1, 2)
batch["labels"] = labels
batch["labels_attention_mask"] = labels_batch["attention_mask"]
# pad mel spectrogram
mel_scaled_input_features = {
"input_features": [np.array(feature["mel_scaled_input_features"]).squeeze().T for feature in features]
}
mel_scaled_input_features = self.feature_extractor.pad(
mel_scaled_input_features, return_tensors="pt", return_attention_mask=True
)["input_features"].transpose(1, 2)
batch["mel_scaled_input_features"] = mel_scaled_input_features
batch["speaker_id"] = (
torch.tensor([feature["speaker_id"] for feature in features]) if "speaker_id" in features[0] else None
)
return batch
# LOSSES
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
loss = 0
real_losses = 0
generated_losses = 0
for disc_real, disc_generated in zip(disc_real_outputs, disc_generated_outputs):
real_loss = torch.mean((1 - disc_real) ** 2)
generated_loss = torch.mean(disc_generated**2)
loss += real_loss + generated_loss
real_losses += real_loss
generated_losses += generated_loss
return loss, real_losses, generated_losses
def feature_loss(feature_maps_real, feature_maps_generated):
loss = 0
for feature_map_real, feature_map_generated in zip(feature_maps_real, feature_maps_generated):
for real, generated in zip(feature_map_real, feature_map_generated):
real = real.detach()
loss += torch.mean(torch.abs(real - generated))
return loss * 2
def generator_loss(disc_outputs):
total_loss = 0
gen_losses = []
for disc_output in disc_outputs:
disc_output = disc_output
loss = torch.mean((1 - disc_output) ** 2)
gen_losses.append(loss)
total_loss += loss
return total_loss, gen_losses
def kl_loss(prior_latents, posterior_log_variance, prior_means, prior_log_variance, labels_mask):
"""
z_p, logs_q: [b, h, t_t]
prior_means, prior_log_variance: [b, h, t_t]
"""
kl = prior_log_variance - posterior_log_variance - 0.5
kl += 0.5 * ((prior_latents - prior_means) ** 2) * torch.exp(-2.0 * prior_log_variance)
kl = torch.sum(kl * labels_mask)
loss = kl / torch.sum(labels_mask)
return loss
# LOGGING AND EVALUATION METHODS
def log_on_trackers(
trackers,
generated_audio,
generated_attn,
generated_spec,
target_spec,
full_generation_waveform,
epoch,
sampling_rate,
):
max_num_samples = min(len(generated_audio), 50)
generated_audio = generated_audio[:max_num_samples]
generated_attn = generated_attn[:max_num_samples]
generated_spec = generated_spec[:max_num_samples]
target_spec = target_spec[:max_num_samples]
for tracker in trackers:
if tracker.name == "tensorboard":
for cpt, audio in enumerate(generated_audio):
tracker.writer.add_audio(f"train_step_audio_{cpt}", audio[None, :], epoch, sample_rate=sampling_rate)
for cpt, audio in enumerate(full_generation_waveform):
tracker.writer.add_audio(
f"full_generation_sample{cpt}", audio[None, :], epoch, sample_rate=sampling_rate
)
tracker.writer.add_images("alignements", np.stack(generated_attn), dataformats="NHWC")
tracker.writer.add_images("spectrogram", np.stack(generated_spec), dataformats="NHWC")
tracker.writer.add_images("target spectrogram", np.stack(target_spec), dataformats="NHWC")
elif tracker.name == "wandb":
# wandb can only loads 100 audios per step
tracker.log(
{
"alignments": [wandb.Image(attn, caption=f"Audio epoch {epoch}") for attn in generated_attn],
"spectrogram": [wandb.Image(spec, caption=f"Audio epoch {epoch}") for spec in generated_spec],
"target spectrogram": [wandb.Image(spec, caption=f"Audio epoch {epoch}") for spec in target_spec],
"train generated audio": [
wandb.Audio(
audio[0],
caption=f"Audio during train step epoch {epoch}",
sample_rate=sampling_rate,
)
for audio in generated_audio
],
"full generations samples": [
wandb.Audio(w, caption=f"Full generation sample {epoch}", sample_rate=sampling_rate)
for w in full_generation_waveform
],
}
)
else:
logger.warn(f"audio logging not implemented for {tracker.name}")
def compute_val_metrics_and_losses(
val_losses,
accelerator,
model_outputs,
mel_scaled_generation,
mel_scaled_target,
batch_size,
compute_clap_similarity=False,
):
loss_mel = torch.nn.functional.l1_loss(mel_scaled_target, mel_scaled_generation)
loss_kl = kl_loss(
model_outputs.prior_latents,
model_outputs.posterior_log_variances,
model_outputs.prior_means,
model_outputs.prior_log_variances,
model_outputs.labels_padding_mask,
)
losses_mel_kl = loss_mel + loss_kl
losses = torch.stack([loss_mel, loss_kl, losses_mel_kl])
losses = accelerator.gather(losses.repeat(batch_size, 1)).mean(0)
for key, loss in zip(["val_loss_mel", "val_loss_kl", "val_loss_mel_kl"], losses):
val_losses[key] = val_losses.get(key, 0) + loss.item()
return val_losses
def main():
# 1. Parse input arguments
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, VITSTrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_vits_finetuning", model_args, data_args)
# 2. Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
logger.info("Training/evaluation parameters %s", training_args)
# 3. Detecting last checkpoint and eventually continue from last checkpoint
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
# 4. Load dataset
raw_datasets = DatasetDict()
if training_args.do_train:
raw_datasets["train"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=data_args.train_split_name,
cache_dir=model_args.cache_dir,
token=model_args.token,
)
if training_args.do_eval:
raw_datasets["eval"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=data_args.eval_split_name,
cache_dir=model_args.cache_dir,
token=model_args.token,
)
if data_args.audio_column_name not in next(iter(raw_datasets.values())).column_names:
raise ValueError(
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
"Make sure to set `--audio_column_name` to the correct audio column - one of "
f"{', '.join(next(iter(raw_datasets.values())).column_names)}."
)
if data_args.text_column_name not in next(iter(raw_datasets.values())).column_names:
raise ValueError(
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
"Make sure to set `--text_column_name` to the correct text column - one of "
f"{', '.join(next(iter(raw_datasets.values())).column_names)}."
)
if (
data_args.speaker_id_column_name is not None
and data_args.speaker_id_column_name not in next(iter(raw_datasets.values())).column_names
):
raise ValueError(
f"--speaker_id_column_name {data_args.speaker_id_column_name} not found in dataset '{data_args.speaker_id_column_name}'. "
"Make sure to set `--speaker_id_column_name` to the correct text column - one of "
f"{', '.join(next(iter(raw_datasets.values())).column_names)}."
)
# 5. Load config, tokenizer, and feature extractor
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
config = VitsConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
feature_extractor = VitsFeatureExtractor.from_pretrained(
model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
verbose=False,
)
# 6. Resample speech dataset if necessary
dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
if dataset_sampling_rate != feature_extractor.sampling_rate:
with training_args.main_process_first(desc="resample"):
raw_datasets = raw_datasets.cast_column(
data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
)
# 7. Preprocessing the datasets.
# We need to read the audio files as arrays and tokenize the targets.
max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
audio_column_name = data_args.audio_column_name
num_workers = data_args.preprocessing_num_workers
text_column_name = data_args.text_column_name
model_input_name = tokenizer.model_input_names[0]
do_lower_case = data_args.do_lower_case
speaker_id_column_name = data_args.speaker_id_column_name
filter_on_speaker_id = data_args.filter_on_speaker_id
do_normalize = data_args.do_normalize
is_uroman = tokenizer.is_uroman
if is_uroman:
uroman_path = data_args.uroman_path if data_args.uroman_path is not None else os.environ.get("UROMAN")
if uroman_path is None:
raise ValueError(
f"The checkpoint that you're using needs the uroman package, but this one is not specified."
"Make sure to clone the uroman package (`git clone https://github.com/isi-nlp/uroman.git`),"
"and to set `uroman_path=PATH_TO_UROMAN`."
)
num_speakers = config.num_speakers
# return attention_mask for Vits models
forward_attention_mask = True
with training_args.main_process_first(desc="select range of samples"):
if data_args.max_train_samples is not None:
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
if data_args.max_eval_samples is not None:
raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
speaker_id_dict = {}
if speaker_id_column_name is not None:
if training_args.do_train:
# if filter_on_speaker_id, filter so that we keep only the speaker id
if filter_on_speaker_id is not None:
with training_args.main_process_first(desc="filter speaker id"):
raw_datasets["train"] = raw_datasets["train"].filter(
lambda speaker_id: (speaker_id == filter_on_speaker_id),
num_proc=num_workers,
input_columns=[speaker_id_column_name],
)
with training_args.main_process_first(desc="get speaker id dict"):
speaker_id_dict = {
speaker_id: i for (i, speaker_id) in enumerate(set(raw_datasets["train"][speaker_id_column_name]))
}
new_num_speakers = len(speaker_id_dict)
def prepare_dataset(batch):
# process target audio
sample = batch[audio_column_name]
audio_inputs = feature_extractor(
sample["array"],
sampling_rate=sample["sampling_rate"],
return_attention_mask=False,
do_normalize=do_normalize,
)
batch["labels"] = audio_inputs.get("input_features")[0]
# process text inputs
input_str = batch[text_column_name].lower() if do_lower_case else batch[text_column_name]
if is_uroman:
input_str = uromanize(input_str, uroman_path=uroman_path)
string_inputs = tokenizer(input_str, return_attention_mask=forward_attention_mask)
batch[model_input_name] = string_inputs.get("input_ids")[: data_args.max_tokens_length + 1]
batch["waveform_input_length"] = len(sample["array"])
batch["tokens_input_length"] = len(batch[model_input_name])
batch["waveform"] = batch[audio_column_name]["array"]
batch["mel_scaled_input_features"] = audio_inputs.get("mel_scaled_input_features")[0]
if speaker_id_column_name is not None:
if new_num_speakers > 1:
# align speaker_id to [0, num_speaker_id-1].
batch["speaker_id"] = speaker_id_dict.get(batch[speaker_id_column_name], 0)
return batch
remove_columns = next(iter(raw_datasets.values())).column_names
if speaker_id_column_name is not None:
remove_columns = [col for col in remove_columns if col != speaker_id_column_name]
# filter data that is shorter than min_input_length or longer than
# max_input_length
def is_audio_in_length_range(length, text):
length_ = len(length["array"])
return (length_ > min_input_length and length_ < max_input_length) and text is not None
with training_args.main_process_first(desc="filter audio lengths"):
vectorized_datasets = raw_datasets.filter(
is_audio_in_length_range,
num_proc=num_workers,
input_columns=[audio_column_name, text_column_name],
)
with training_args.main_process_first(desc="dataset map pre-processing"):
# convert from np.float64 to np.float32
vectorized_datasets.set_format(type="numpy", columns=[audio_column_name])
vectorized_datasets = vectorized_datasets.map(
prepare_dataset,
remove_columns=remove_columns,
num_proc=data_args.preprocessing_num_workers,
desc="preprocess train dataset",
)
with training_args.main_process_first(desc="filter tokens lengths"):
vectorized_datasets = vectorized_datasets.filter(
lambda x: x < data_args.max_tokens_length,
num_proc=num_workers,
input_columns=["tokens_input_length"],
)
# for large datasets it is advised to run the preprocessing on a
# single machine first with `args.preprocessing_only` since there will mostly likely
# be a timeout when running the script in distributed mode.
# In a second step `args.preprocessing_only` can then be set to `False` to load the
# cached dataset
if data_args.preprocessing_only:
cache = {k: v.cache_files for k, v in vectorized_datasets.items()}
logger.info(f"Data preprocessing finished. Files cached at {cache}.")
return
# 8. Load pretrained model,
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
model = VitsModelForPreTraining.from_pretrained(
model_args.model_name_or_path,
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
with training_args.main_process_first(desc="apply_weight_norm"):
# apply weight norms
model.decoder.apply_weight_norm()
for flow in model.flow.flows:
torch.nn.utils.weight_norm(flow.conv_pre)
torch.nn.utils.weight_norm(flow.conv_post)
# override speaker embeddings if necessary
if model_args.override_speaker_embeddings and data_args.speaker_id_column_name is not None:
if new_num_speakers != num_speakers and new_num_speakers > 1:
speaker_embedding_size = config.speaker_embedding_size if config.speaker_embedding_size > 1 else 256
logger.info(
f"Resize speaker emeddings from {num_speakers} to {new_num_speakers} with embedding size {speaker_embedding_size}."
)
model.resize_speaker_embeddings(new_num_speakers, speaker_embedding_size)
elif new_num_speakers == 1:
logger.info("Only one speaker detected on the training set. Embeddings are not reinitialized.")
else:
logger.info(
"Same number of speakers on the new dataset than on the model. Embeddings are not reinitialized."
)
# override token embeddings if necessary
if model_args.override_vocabulary_embeddings:
new_num_tokens = len(tokenizer)
model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of=2)
# 9. Save configs
# make sure all processes wait until data is saved
with training_args.main_process_first():
# only the main process saves them
if is_main_process(training_args.local_rank):
# save feature extractor, tokenizer and config
feature_extractor.save_pretrained(training_args.output_dir)
tokenizer.save_pretrained(training_args.output_dir)
config.save_pretrained(training_args.output_dir)
# 10. Define data collator
data_collator = DataCollatorTTSWithPadding(
tokenizer=tokenizer,
feature_extractor=feature_extractor,
forward_attention_mask=forward_attention_mask,
)
with training_args.main_process_first():
input_str = data_args.full_generation_sample_text
if is_uroman:
input_str = uromanize(input_str, uroman_path=uroman_path)
full_generation_sample = tokenizer(input_str, return_tensors="pt")
# 11. Set up accelerate
project_name = data_args.project_name
train_dataset = vectorized_datasets["train"]
eval_dataset = vectorized_datasets.get("eval", None)
# inspired from https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py
# and https://github.com/huggingface/community-events/blob/main/huggan/pytorch/cyclegan/train.py
logging_dir = os.path.join(training_args.output_dir, training_args.logging_dir)
accelerator_project_config = ProjectConfiguration(project_dir=training_args.output_dir, logging_dir=logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=training_args.gradient_accumulation_steps,
log_with=training_args.report_to,
project_config=accelerator_project_config,
kwargs_handlers=[ddp_kwargs],
)
per_device_train_batch_size = (
training_args.per_device_train_batch_size if training_args.per_device_train_batch_size else 1
)
total_batch_size = (
per_device_train_batch_size * accelerator.num_processes * training_args.gradient_accumulation_steps
)
num_speakers = model.config.num_speakers
if training_args.gradient_checkpointing:
model.gradient_checkpointing_enable()
# 12. Define train_dataloader and eval_dataloader if relevant
train_dataloader = None
if training_args.do_train:
sampler = (
LengthGroupedSampler(
batch_size=per_device_train_batch_size,
dataset=train_dataset,
lengths=train_dataset["tokens_input_length"],
)
if training_args.group_by_length
else None
)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
shuffle=not training_args.group_by_length,
collate_fn=data_collator,
batch_size=training_args.per_device_train_batch_size,
num_workers=training_args.dataloader_num_workers,
sampler=sampler,
)
eval_dataloader = None
if training_args.do_eval:
eval_sampler = (
LengthGroupedSampler(
batch_size=training_args.per_device_eval_batch_size,
dataset=eval_dataset,
lengths=eval_dataset["tokens_input_length"],
)
if training_args.group_by_length
else None
)
eval_dataloader = torch.utils.data.DataLoader(
eval_dataset,
shuffle=False,
collate_fn=data_collator,
batch_size=training_args.per_device_eval_batch_size,
num_workers=training_args.dataloader_num_workers,
sampler=eval_sampler,
)
model_segment_size = model.segment_size
config_segment_size = model.config.segment_size
sampling_rate = model.config.sampling_rate
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / training_args.gradient_accumulation_steps)
if training_args.max_steps == -1:
training_args.max_steps = training_args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / training_args.gradient_accumulation_steps)
if overrode_max_train_steps:
training_args.max_steps = int(training_args.num_train_epochs * num_update_steps_per_epoch)
# Afterwards we recalculate our number of training epochs
training_args.num_train_epochs = math.ceil(training_args.max_steps / num_update_steps_per_epoch)
# hack to be able to train on multiple device
with tempfile.TemporaryDirectory() as tmpdirname:
model.discriminator.save_pretrained(tmpdirname)
discriminator = VitsDiscriminator.from_pretrained(tmpdirname)
for disc in discriminator.discriminators:
disc.apply_weight_norm()
del model.discriminator
# init gen_optimizer, gen_lr_scheduler, disc_optimizer, dics_lr_scheduler
gen_optimizer = torch.optim.AdamW(
model.parameters(),
training_args.learning_rate,
betas=[training_args.adam_beta1, training_args.adam_beta2],
eps=training_args.adam_epsilon,
)
disc_optimizer = torch.optim.AdamW(
discriminator.parameters(),
training_args.learning_rate,
betas=[training_args.adam_beta1, training_args.adam_beta2],
eps=training_args.adam_epsilon,
)
num_warmups_steps = (
training_args.get_warmup_steps(training_args.num_train_epochs * accelerator.num_processes)
if training_args.do_step_schedule_per_epoch
else training_args.get_warmup_steps(training_args.max_steps * accelerator.num_processes)
)
num_training_steps = (
training_args.num_train_epochs * accelerator.num_processes
if training_args.do_step_schedule_per_epoch
else training_args.max_steps * accelerator.num_processes
)
if training_args.do_step_schedule_per_epoch:
gen_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
gen_optimizer, gamma=training_args.lr_decay, last_epoch=-1
)
disc_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
disc_optimizer, gamma=training_args.lr_decay, last_epoch=-1
)
else:
gen_lr_scheduler = get_scheduler(
training_args.lr_scheduler_type,
optimizer=gen_optimizer,
num_warmup_steps=num_warmups_steps if num_warmups_steps > 0 else None,
num_training_steps=num_training_steps,
)
disc_lr_scheduler = get_scheduler(
training_args.lr_scheduler_type,
optimizer=disc_optimizer,