-
Notifications
You must be signed in to change notification settings - Fork 1
/
imagenet_main.py
777 lines (663 loc) · 27.9 KB
/
imagenet_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
# adapted from https://github.com/pytorch/examples/blob/main/imagenet/main.py
import os
import sys
import random
import shutil
import json
import time
import warnings
from enum import Enum
# import wandb
from copy import deepcopy
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch.optim.lr_scheduler import MultiStepLR
from torch.utils.data import Subset
from maestro_opts import parse_args
from maestro.layers.utils import bn_calibration_init, \
group_lasso_criterion, progressive_shrinking
from maestro.layers.decomposition import decompose_model
from maestro.samplers.utils import get_sampler
from maestro.models import resnets as models
from general_utils import create_experiment_dir, \
get_exp_run, add_weight_decay
best_acc1 = 0
def main():
args = parse_args(sys.argv, "imagenet")
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
cudnn.benchmark = False
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
if torch.cuda.is_available():
ngpus_per_node = torch.cuda.device_count()
else:
ngpus_per_node = 1
if args.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
args.world_size = ngpus_per_node * args.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(
main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
else:
# Simply call main_worker function
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
global best_acc1
args.gpu = gpu
# create experiment directory
experiment_dir = create_experiment_dir(args)
train_metrics_dir = os.path.join(
experiment_dir, 'full_metrics_train.json')
test_metrics_dir = os.path.join(
experiment_dir, 'full_metrics_test.json')
importances_dir = os.path.join(
experiment_dir, 'importances.json')
finished_dir = os.path.join(
experiment_dir, 'finished.json')
if os.path.exists(finished_dir):
print(f"{experiment_dir} already exists.")
return
os.makedirs(experiment_dir, exist_ok=True)
best_model_dir = os.path.join(
experiment_dir, 'best_model.pt')
last_model_dir = os.path.join(
experiment_dir, 'last_model.pt')
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
if args.distributed:
if args.dist_url == "env://" and args.rank == -1:
args.rank = int(os.environ["RANK"])
if args.multiprocessing_distributed:
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(
backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
# create model
if args.pretrained:
print("=> using pre-trained model '{}'".format(args.arch))
model = models.__dict__[args.arch](pretrained=True)
else:
print("=> creating model '{}'".format(args.arch))
model = models.__dict__[args.arch]()
model_decomposed = deepcopy(model)
# decompose the model if needed and test sampler
if args.decomposition:
decompose_model(
model=model_decomposed,
ignore_k_first_layers=args.ignore_k_first_layers,
ignore_last_layer=args.ignore_last_layer
)
# whether to use hierarchical pruning, default True
hierarchical_reg = True
print(f"Using hierarchical pruning: {hierarchical_reg}")
if not torch.cuda.is_available() and not torch.backends.mps.is_available():
print('using CPU, this will be slow')
elif args.distributed:
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if torch.cuda.is_available():
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model.cuda(args.gpu)
model_decomposed.cuda(args.gpu)
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of
# GPUs of the current node.
args.batch_size = int(args.batch_size / ngpus_per_node)
args.workers = int((args.workers + ngpus_per_node - 1) /
ngpus_per_node)
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.gpu])
model_decomposed = torch.nn.parallel.DistributedDataParallel(
model_decomposed, device_ids=[args.gpu])
else:
model.cuda()
model_decomposed.cuda()
# DistributedDataParallel will divide and allocate
# batch_size to all available GPUs if device_ids are not set
model = torch.nn.parallel.DistributedDataParallel(model)
model_decomposed = torch.nn.parallel.DistributedDataParallel(
model_decomposed)
elif args.gpu is not None and torch.cuda.is_available():
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
model_decomposed = model_decomposed.cuda(args.gpu)
elif torch.backends.mps.is_available():
device = torch.device("mps")
model = model.to(device)
model_decomposed = model_decomposed.to(device)
else:
# DataParallel will divide and allocate batch_size
# to all available GPUs
if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
model.features = torch.nn.DataParallel(model.features)
model.cuda()
model_decomposed.features = torch.nn.DataParallel(
model_decomposed.features)
model_decomposed.cuda()
else:
model = torch.nn.DataParallel(model).cuda()
model_decomposed = torch.nn.DataParallel(
model_decomposed).cuda()
if torch.cuda.is_available():
if args.gpu:
device = torch.device('cuda:{}'.format(args.gpu))
else:
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
# define loss function (criterion), optimizer, and learning rate scheduler
criterion = nn.CrossEntropyLoss().to(device)
parameters = add_weight_decay(model, args.weight_decay)
# weight decay applied above
optimizer = torch.optim.SGD(parameters, args.lr,
momentum=args.momentum,
weight_decay=0.)
"""Sets the learning rate to the initial
LR decayed by 10 in 30, 60, 80 epochs"""
scheduler = MultiStepLR(optimizer, milestones=[30, 60, 80], gamma=0.1)
train_dict = {
'epoch': [],
'train_loss': []
}
test_dict = {
'epoch': [],
'test_loss': [],
'test_acc': []
}
importances_dict = {}
i = 0
for m in model_decomposed.modules():
if hasattr(m, 'inner_dim'):
i += 1
importances_dict[f'{m._get_name()}_{i}'] = []
# Resume from a checkpoint if you already
# run part of the experiment
args.resume = last_model_dir
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
if args.gpu is None:
checkpoint = torch.load(args.resume)
elif torch.cuda.is_available():
# Map model to be loaded to specified single gpu.
loc = 'cuda:{}'.format(args.gpu)
checkpoint = torch.load(args.resume, map_location=loc)
args.start_epoch = checkpoint['epoch']
# switch to decomposition if already in that phase
if args.start_epoch > args.full_training_epochs:
# decompose model
od_sampler, optimizer, scheduler = \
switch_to_decomposition(
model, model_decomposed,
args, args.start_epoch, load_model=False)
model_decomposed.load_state_dict(checkpoint['state_dict'])
else:
od_sampler = None
model.load_state_dict(checkpoint['state_dict'])
best_acc1 = checkpoint['best_acc1']
if args.gpu is not None and isinstance(best_acc1, torch.Tensor):
# best_acc1 may be from a checkpoint from a different GPU
if isinstance(best_acc1, torch.Tensor):
best_acc1 = best_acc1.to(args.gpu)
# od_sampler = get_sampler(
# args.od_sampler, model, with_layer=False)
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
test_dict, train_dict, importances_dict, _, _ = get_exp_run(
args, load_models=False)
print(test_dict, train_dict)
else:
print("=> no checkpoint found at '{}'".format(args.resume))
my_lr = scheduler.optimizer.param_groups[0]['lr']
print(f"Loaded model at epoch {args.start_epoch}, lr {my_lr}")
# Data loading code
if args.dummy:
print("=> Dummy data is used!")
train_dataset = datasets.FakeData(
256, (3, 224, 224), 1000, transforms.ToTensor()) # 1281167
val_dataset = datasets.FakeData(
256, (3, 224, 224), 1000, transforms.ToTensor()) # 50000
else:
traindir = os.path.join(args.data, 'train')
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
val_dataset = datasets.ImageFolder(
valdir,
transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]))
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset)
val_sampler = torch.utils.data.distributed.DistributedSampler(
val_dataset, shuffle=False, drop_last=True)
else:
train_sampler = None
val_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(
train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True, sampler=val_sampler)
if args.evaluate:
validate(val_loader, model, criterion, args)
return
# wandb
# if not args.multiprocessing_distributed or \
# (args.multiprocessing_distributed and
# args.rank == 0):
# run_id = '_'.join(experiment_dir.split('/')[-2:])
# wandb.init(
# ...
# )
args_training = deepcopy(args)
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
if epoch < args.full_training_epochs:
# Full training params
args_training.no_full_pass = False
args_training.decomposition = False
args_training.progressive = False
args_training.gp = False
args_training.gp_lambda = 0
od_sampler = None
model_training = model
print("=> Full training...")
elif args.full_training_epochs == epoch:
print("Switching to factorized training...")
# back to original params
args_training = deepcopy(args)
# decompose model
od_sampler, optimizer, scheduler = switch_to_decomposition(
model, model_decomposed, args, epoch)
model_training = model_decomposed
# check that OD sampler works correctly
if args.decomposition:
dummy_sampler = get_sampler(
args.od_sampler, model, with_layer=True)
images, _ = next(iter(train_loader))
images = images.to(device)
print("=> Testing OD sampler...")
model(images, dummy_sampler)
print("=> OD sampler works correctly!")
else:
model_training = model_decomposed
# train for one epoch
print("Training the model...")
train_loss = train(
train_loader, model_training, criterion, optimizer, epoch, device,
args_training, od_sampler, hierarchical_reg)
train_dict['epoch'].append(epoch)
train_dict['train_loss'].append(train_loss)
print("Computing importances...")
with torch.no_grad():
i = 0
for m in model_decomposed.modules():
if hasattr(m, 'inner_dim'):
i += 1
importances_dict[f'{m._get_name()}_{i}'].append(
m.importance(hierarchical_reg).cpu().numpy().tolist())
scheduler.step()
# validation_sampler, only for pufferfish in decomposition stage,
# we use sampler to sample the rank
if args.od_sampler == 'pufferfish' and args_training.decomposition:
val_od_sampler = get_sampler(
args.od_sampler, model_decomposed, with_layer=False)
print("Pufferfish sampler is used for validation.")
else:
val_od_sampler = None
# progressively shrink the network
if args_training.progressive:
print("Progressively shrinking the network...")
progressive_shrinking(
model_decomposed, args.importance_threshold,
hierarchical=hierarchical_reg)
# adapt to new ranks
if od_sampler is not None:
od_sampler.prepare_sampler()
# recompute batch norm statistics
if args_training.decomposition:
print("Recomputing batch norm statistics...")
# check there is batch norm layer in the model
if any(isinstance(m, nn.BatchNorm2d)
for m in model_decomposed.modules()):
for m in model_decomposed.modules():
bn_calibration_init(m)
# recompute batch norm statistics
model_decomposed.train()
total_batches = 0
for images, _ in train_loader:
images = images.to(device, non_blocking=True)
model_decomposed(images)
total_batches += images.shape[0]
if total_batches >= 128000:
break
# evaluate on validation set
print("Evaluating the model...")
test_acc1, test_loss = validate(
val_loader, model_training, criterion, args,
val_od_sampler=val_od_sampler)
test_dict['epoch'].append(epoch)
test_dict['test_loss'].append(test_loss)
test_dict['test_acc'].append(test_acc1)
# remember best acc@1 and save checkpoint
is_best = test_acc1 > best_acc1
best_acc1 = max(test_acc1, best_acc1)
if not args.multiprocessing_distributed or \
(args.multiprocessing_distributed and
args.rank % ngpus_per_node == 0):
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model_training.state_dict(),
'best_acc1': best_acc1,
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict()
}, is_best, last_model_dir, best_model_dir)
with open(train_metrics_dir, 'w') as f:
json.dump(train_dict, f, indent=4)
with open(test_metrics_dir, 'w') as f:
json.dump(test_dict, f, indent=4)
with open(importances_dir, 'w') as f:
json.dump(importances_dict, f, indent=4)
# wandb
# if not args.multiprocessing_distributed or \
# (args.multiprocessing_distributed and
# args.rank == 0):
# print("Logging to wandb...")
# wandb.log(
# {
# "train_loss": train_loss,
# "test_loss": test_loss,
# "test_acc": test_acc1,
# },
# step=epoch
# )
# label the experiment as finished
if not args.multiprocessing_distributed or \
(args.multiprocessing_distributed and
args.rank % ngpus_per_node == 0):
with open(finished_dir, 'w') as f:
json.dump({}, f, indent=4)
def switch_to_decomposition(model, model_decomposed, args, current_epoch,
load_model=True):
if load_model:
# decompose model
if args.decomposition:
decompose_model(
model=model,
ignore_k_first_layers=args.ignore_k_first_layers,
ignore_last_layer=args.ignore_last_layer)
model_decomposed.load_state_dict(model.state_dict())
od_sampler = get_sampler(
args.od_sampler, model_decomposed, with_layer=False)
# reset optimizer and scheduler
parameters = add_weight_decay(model_decomposed, args.weight_decay)
# weight decay applied above
optimizer = torch.optim.SGD(parameters, args.lr,
momentum=args.momentum,
weight_decay=0.)
"""Sets the learning rate to the initial
LR decayed by 10 in 30, 60, 80 epochs"""
scheduler = MultiStepLR(optimizer, milestones=[30, 60, 80], gamma=0.1)
for _ in range(current_epoch):
scheduler.step()
return od_sampler, optimizer, scheduler
def train(train_loader, model, criterion, optimizer, epoch, device, args,
od_sampler, hierarchical_reg):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(train_loader),
[batch_time, data_time, losses, top1, top5],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
for i, (images, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
optimizer.zero_grad()
# move data to the same device as model
images = images.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
# compute loss
if args.no_full_pass:
loss_full = 0
target_partial = target
else:
output_full = model(images)
loss_full = criterion(output_full, target)
loss_full.backward()
# do KD for sampled network
target_partial = output_full.detach().softmax(dim=1)
loss_partial = 0
if args.decomposition:
output_partial = model(images, sampler=od_sampler)
loss_partial = criterion(output_partial, target_partial)
loss_partial.backward()
group_lasso_loss = 0
if args.gp:
group_lasso_loss = args.gp_lambda * group_lasso_criterion(
model, hierarchical=hierarchical_reg)
group_lasso_loss.backward()
optimizer.step()
loss = loss_full + loss_partial + group_lasso_loss
if args.no_full_pass:
if args.decomposition:
output = output_partial
else:
raise ValueError("No full pass and no decomposition!")
else:
output = output_full
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# compute gradient and do SGD step
# optimizer.zero_grad()
# loss.backward()
# optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i + 1)
return losses.avg
def validate(val_loader, model, criterion, args, val_od_sampler):
def run_validate(loader, base_progress=0):
with torch.no_grad():
end = time.time()
for i, (images, target) in enumerate(loader):
i = base_progress + i
if args.gpu is not None and torch.cuda.is_available():
images = images.cuda(args.gpu, non_blocking=True)
if torch.backends.mps.is_available():
images = images.to('mps')
target = target.to('mps')
if torch.cuda.is_available():
target = target.cuda(args.gpu, non_blocking=True)
# compute output
output = model(images, val_od_sampler)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i + 1)
batch_time = AverageMeter('Time', ':6.3f', Summary.NONE)
losses = AverageMeter('Loss', ':.4e', Summary.NONE)
top1 = AverageMeter('Acc@1', ':6.2f', Summary.AVERAGE)
top5 = AverageMeter('Acc@5', ':6.2f', Summary.AVERAGE)
progress = ProgressMeter(
len(val_loader) + (args.distributed and (
len(val_loader.sampler) * args.world_size < len(
val_loader.dataset))),
[batch_time, losses, top1, top5],
prefix='Test: ')
# switch to evaluate mode
model.eval()
run_validate(val_loader)
if args.distributed:
top1.all_reduce()
top5.all_reduce()
if args.distributed and (len(
val_loader.sampler) * args.world_size < len(val_loader.dataset)):
aux_val_dataset = Subset(
val_loader.dataset,
range(len(val_loader.sampler) * args.world_size,
len(val_loader.dataset)))
aux_val_loader = torch.utils.data.DataLoader(
aux_val_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
run_validate(aux_val_loader, len(val_loader))
progress.display_summary()
top1_avg = top1.avg.item() if isinstance(
top1.avg, torch.Tensor) else top1.avg
losses_avg = losses.avg.item() if isinstance(
losses.avg, torch.Tensor) else losses.avg
return top1_avg, losses_avg
def save_checkpoint(state, is_best, last_filename, best_filename):
torch.save(state, last_filename)
if is_best:
shutil.copyfile(last_filename, best_filename)
class Summary(Enum):
NONE = 0
AVERAGE = 1
SUM = 2
COUNT = 3
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f', summary_type=Summary.AVERAGE):
self.name = name
self.fmt = fmt
self.summary_type = summary_type
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def all_reduce(self):
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
total = torch.tensor([self.sum, self.count],
dtype=torch.float32, device=device)
dist.all_reduce(total, dist.ReduceOp.SUM, async_op=False)
self.sum, self.count = total.tolist()
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
def summary(self):
fmtstr = ''
if self.summary_type is Summary.NONE:
fmtstr = ''
elif self.summary_type is Summary.AVERAGE:
fmtstr = '{name} {avg:.3f}'
elif self.summary_type is Summary.SUM:
fmtstr = '{name} {sum:.3f}'
elif self.summary_type is Summary.COUNT:
fmtstr = '{name} {count:.3f}'
else:
raise ValueError('invalid summary type %r' % self.summary_type)
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def display_summary(self):
entries = [" *"]
entries += [meter.summary() for meter in self.meters]
print(' '.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions
for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()