forked from CleverRaven/Cataclysm-DDA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
calendar.cpp
810 lines (726 loc) · 30.8 KB
/
calendar.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
#include "calendar.h"
#include <algorithm>
#include <array>
#include <cmath>
#include <cstdlib>
#include <limits>
#include <string>
#include "cata_assert.h"
#include "cata_utility.h"
#include "debug.h"
#include "enum_conversions.h"
#include "line.h"
#include "optional.h"
#include "options.h"
#include "rng.h"
#include "string_formatter.h"
#include "translations.h"
#include "units.h"
#include "units_utility.h"
/** How much light moon provides per lit-up quarter (Full-moon light is four times this value) */
static constexpr double moonlight_per_quarter = 1.5;
// Divided by 100 to prevent overflowing when converted to moves
const int calendar::INDEFINITELY_LONG( std::numeric_limits<int>::max() / 100 );
const time_duration calendar::INDEFINITELY_LONG_DURATION(
time_duration::from_turns( std::numeric_limits<int>::max() ) );
static bool is_eternal_season = false;
static bool is_eternal_night = false;
static bool is_eternal_day = false;
static int cur_season_length = 1;
time_point calendar::start_of_cataclysm = calendar::turn_zero;
time_point calendar::start_of_game = calendar::turn_zero;
time_point calendar::turn = calendar::turn_zero;
season_type calendar::initial_season = SPRING;
// The solar altitudes at which light changes in various ways
static constexpr units::angle astronomical_dawn = -18_degrees;
static constexpr units::angle nautical_dawn = -12_degrees;
static constexpr units::angle civil_dawn = -6_degrees;
static constexpr units::angle sunrise_angle = -1_degrees;
double default_daylight_level()
{
return 100.0;
}
time_duration lunar_month()
{
return 29.530588853 * 1_days;
}
namespace io
{
// *INDENT-OFF*
template<>
std::string enum_to_string<moon_phase>( moon_phase phase_num )
{
switch( phase_num ) {
case moon_phase::MOON_NEW: return "MOON_NEW";
case moon_phase::MOON_WAXING_CRESCENT: return "MOON_WAXING_CRESCENT";
case moon_phase::MOON_HALF_MOON_WAXING: return "MOON_HALF_MOON_WAXING";
case moon_phase::MOON_WAXING_GIBBOUS: return "MOON_WAXING_GIBBOUS";
case moon_phase::MOON_FULL: return "MOON_FULL";
case moon_phase::MOON_WANING_CRESCENT: return "MOON_WANING_CRESCENT";
case moon_phase::MOON_HALF_MOON_WANING: return "MOON_HALF_MOON_WANING";
case moon_phase::MOON_WANING_GIBBOUS: return "MOON_WANING_GIBBOUS";
case moon_phase::MOON_PHASE_MAX: break;
}
cata_fatal( "Invalid moon_phase %d", phase_num );
}
// *INDENT-ON*
} // namespace io
moon_phase get_moon_phase( const time_point &p )
{
const time_duration moon_phase_duration = calendar::season_from_default_ratio() * lunar_month();
// Switch moon phase at noon so it stays the same all night
const int num_middays = to_days<int>( p - calendar::turn_zero + 1_days / 2 );
const time_duration nearest_midnight = num_middays * 1_days;
const double phase_change = nearest_midnight / moon_phase_duration;
const int current_phase = static_cast<int>( std::round( phase_change * MOON_PHASE_MAX ) ) %
static_cast<int>( MOON_PHASE_MAX );
return static_cast<moon_phase>( current_phase );
}
static constexpr time_duration angle_to_time( const units::angle a )
{
return a / 15.0_degrees * 1_hours;
}
season_effective_time::season_effective_time( const time_point &t_ )
: t( t_ )
{
if( calendar::eternal_season() ) {
const time_point start_midnight =
calendar::start_of_game - time_past_midnight( calendar::start_of_game );
t = start_midnight + time_past_midnight( t_ );
}
}
static std::pair<units::angle, units::angle> sun_ra_declination(
season_effective_time t, time_duration timezone )
{
// This derivation is mostly from
// https://en.wikipedia.org/wiki/Position_of_the_Sun
// https://en.wikipedia.org/wiki/Celestial_coordinate_system#Notes_on_conversion
// The computation is inspired by the derivation based on J2000 (Greenwich
// noon, 2000-01-01), but because we want to be capable of handling a
// different year length than the real Earth, we don't use the same exact
// values.
// Instead we use as our epoch a point that won't change arbitrarily with a
// different year length - Greenwich midnight on the vernal equinox
// (note that the vernal equinox happens to be Spring day 1 in the game
// calendar, which is convenient).
const double days_since_epoch = to_days<double>( t.t - calendar::turn_zero - timezone );
// The angle per day the Earth moves around the Sun
const units::angle angle_per_day = 360_degrees / to_days<int>( calendar::year_length() );
// It turns out that we want mean longitude to be zero at the vernal
// equinox, which simplifies the calculations.
const units::angle mean_long = angle_per_day * days_since_epoch;
// Roughly 77 degrees offset between mean longitude and mean anomaly at
// J2000, so use that as our offset too. The relative drift is slow, so we
// neglect it.
const units::angle mean_anomaly = 77_degrees + mean_long;
// The two arbitrary constants in the caclulation of ecliptic longitude
// relate to the non-circularity of the Earth's orbit.
const units::angle ecliptic_longitude =
mean_long + 1.915_degrees * sin( mean_anomaly ) + 0.020_degrees * sin( 2 * mean_anomaly );
// Obliquity does vary slightly, but for simplicity we'll keep it fixed at
// its J2000 value.
static constexpr units::angle obliquity = 23.439279_degrees;
// ecliptic rectangular coordinates
const rl_vec2d eclip( cos( ecliptic_longitude ), sin( ecliptic_longitude ) );
// rotate to equatorial coordinates
const rl_vec3d rot( eclip.x, eclip.y * cos( obliquity ), eclip.y * sin( obliquity ) );
const units::angle right_ascension = atan2( rot.xy() );
const units::angle declination = units::asin( rot.z );
return { right_ascension, declination };
}
static units::angle sidereal_time_at( season_effective_time t, units::angle longitude,
time_duration timezone )
{
// Repeat some calculations from sun_ra_declination
const double days_since_epoch = to_days<double>( t.t - calendar::turn_zero - timezone );
const units::angle angle_per_day = 360_degrees / to_days<int>( calendar::year_length() );
// Sidereal Time
//
// For the origin of sidereal time consider that at the epoch at Greenwich,
// it's midnight on the vernal equinox so sidereal time should be 180°.
// Timezone and longitude are both zero here, so L0 = 180°.
const units::angle L0 = 180_degrees;
// Sidereal time advances by 360° per day plus an additional 360° per year
const units::angle L1 = 360_degrees + angle_per_day;
return L0 + L1 * days_since_epoch + longitude;
}
std::pair<units::angle, units::angle> sun_azimuth_altitude(
time_point ti )
{
const season_effective_time t = season_effective_time( ti );
const lat_long location = location_boston;
units::angle right_ascension;
units::angle declination;
time_duration timezone = angle_to_time( location.longitude );
std::tie( right_ascension, declination ) = sun_ra_declination( t, timezone );
const units::angle sidereal_time = sidereal_time_at( t, location.longitude, timezone );
const units::angle hour_angle = sidereal_time - right_ascension;
// Use a two-step transformation to convert equatorial coordinates to
// horizontal.
// https://en.wikipedia.org/wiki/Celestial_coordinate_system#Equatorial_%E2%86%94_horizontal
const rl_vec3d intermediate(
cos( hour_angle ) * cos( declination ),
sin( hour_angle ) * cos( declination ),
sin( declination ) );
const rl_vec3d horizontal(
-intermediate.x * sin( location.latitude ) +
intermediate.z * cos( location.latitude ),
intermediate.y,
intermediate.x * cos( location.latitude ) +
intermediate.z * sin( location.latitude )
);
// Azimuth is from the South, turning positive to the west
const units::angle azimuth = normalize( -atan2( horizontal.xy() ) + 180_degrees );
units::angle altitude = units::asin( horizontal.z );
if( calendar::eternal_day() ) {
altitude = 90_degrees;
}
if( calendar::eternal_night() ) {
altitude = astronomical_dawn - 10_degrees;
}
/*printf(
"\n"
"right_ascension = %f, declination = %f\n"
"sidereal_time = %f, hour_angle = %f\n"
"aziumth = %f, altitude = %f\n",
to_degrees( right_ascension ), to_degrees( declination ),
to_degrees( sidereal_time ), to_degrees( hour_angle ),
to_degrees( azimuth ), to_degrees( altitude ) );*/
return std::make_pair( azimuth, altitude );
}
static units::angle sun_altitude( time_point t )
{
return sun_azimuth_altitude( t ).second;
}
cata::optional<rl_vec2d> sunlight_angle( const time_point &t )
{
units::angle azimuth;
units::angle altitude;
std::tie( azimuth, altitude ) = sun_azimuth_altitude( t );
if( altitude <= sunrise_angle ) {
// Sun below horizon
return cata::nullopt;
}
rl_vec2d horizontal_direction( -sin( azimuth ), cos( azimuth ) );
rl_vec3d direction( horizontal_direction * cos( altitude ), sin( altitude ) );
direction /= -direction.z;
return direction.xy();
}
static time_point solar_noon_near( const time_point &t )
{
const time_point prior_midnight = t - time_past_midnight( t );
return prior_midnight + 12_hours;
// If we were using a timezone rather than local solar time this would be
// calculated as follows:
//constexpr time_duration longitude_hours = angle_to_time( location_boston.longitude );
//return prior_midnight + 12_hours - longitude_hours + timezone;
}
static units::angle offset_to_sun_altitude(
const units::angle altitude, const units::angle longitude,
const season_effective_time approx_time, const bool evening )
{
units::angle ra;
units::angle declination;
time_duration timezone = angle_to_time( longitude );
std::tie( ra, declination ) = sun_ra_declination( approx_time, timezone );
double cos_hour_angle =
( sin( altitude ) - sin( location_boston.latitude ) * sin( declination ) ) /
cos( location_boston.latitude ) / cos( declination );
if( std::abs( cos_hour_angle ) > 1 ) {
// It doesn't actually reach that angle, so we pretend that it does at
// its maximum possible angle
cos_hour_angle = cos_hour_angle > 0 ? 1 : -1;
}
units::angle hour_angle = units::acos( cos_hour_angle );
if( !evening ) {
hour_angle = -hour_angle;
}
const units::angle target_sidereal_time = hour_angle + ra;
const units::angle sidereal_time_at_approx_time =
sidereal_time_at( approx_time, location_boston.longitude, timezone );
return normalize( target_sidereal_time - sidereal_time_at_approx_time );
}
static time_point sun_at_altitude( const units::angle altitude, const units::angle longitude,
const time_point t, const bool evening )
{
const time_point solar_noon = solar_noon_near( t );
units::angle initial_offset =
offset_to_sun_altitude( altitude, longitude, season_effective_time( solar_noon ), evening );
if( !evening ) {
initial_offset -= 360_degrees;
}
const time_duration initial_offset_time = angle_to_time( initial_offset );
const time_point initial_approximation = solar_noon + initial_offset_time;
// Now we should have the correct time to within a few minutes; iterate to
// get a more precise estimate
units::angle correction_offset =
offset_to_sun_altitude( altitude, longitude, season_effective_time( initial_approximation ),
evening );
if( correction_offset > 180_degrees ) {
correction_offset -= 360_degrees;
}
const time_duration correction_offset_time = angle_to_time( correction_offset );
return initial_approximation + correction_offset_time;
}
time_point sunrise( const time_point &p )
{
return sun_at_altitude( sunrise_angle, location_boston.longitude, p, false );
}
time_point sunset( const time_point &p )
{
return sun_at_altitude( sunrise_angle, location_boston.longitude, p, true );
}
time_point night_time( const time_point &p )
{
return sun_at_altitude( civil_dawn, location_boston.longitude, p, true );
}
time_point daylight_time( const time_point &p )
{
return sun_at_altitude( civil_dawn, location_boston.longitude, p, false );
}
bool is_night( const time_point &p )
{
return sun_altitude( p ) <= nautical_dawn;
}
bool is_day( const time_point &p )
{
return sun_altitude( p ) >= sunrise_angle;
}
static bool is_twilight( const time_point &p )
{
units::angle altitude = sun_altitude( p );
return altitude >= astronomical_dawn && altitude <= sunrise_angle;
}
bool is_dusk( const time_point &p )
{
const time_duration now = time_past_midnight( p );
return now > 12_hours && is_twilight( p );
}
bool is_dawn( const time_point &p )
{
const time_duration now = time_past_midnight( p );
return now < 12_hours && is_twilight( p );
}
static float moon_light_at( const time_point &p )
{
int current_phase = static_cast<int>( get_moon_phase( p ) );
if( current_phase > static_cast<int>( MOON_PHASE_MAX ) / 2 ) {
current_phase = static_cast<int>( MOON_PHASE_MAX ) - current_phase;
}
return 1. + moonlight_per_quarter * current_phase;
}
float sun_light_at( const time_point &p )
{
const units::angle solar_alt = sun_altitude( p );
if( solar_alt < astronomical_dawn ) {
return 0;
} else if( solar_alt <= nautical_dawn ) {
// Sunlight rises exponentially from 0 to 3.7f as sun rises from -18° to -12°
return 3.7f * ( std::exp2( to_degrees( solar_alt - astronomical_dawn ) / 6.f ) - 1 );
} else if( solar_alt <= civil_dawn ) {
// Sunlight rises exponentially from 3.7f to 5.0f as sun rises from -12° to -6°
return ( 5.0f - 3.7f ) * ( std::exp2( to_degrees( solar_alt - nautical_dawn ) / 6.f ) - 1 ) + 3.7f;
} else if( solar_alt <= sunrise_angle ) {
// Sunlight rises exponentially from 5.0f to 60 as sun rises from -6° to -1°
return ( 60 - 5.0f ) * ( std::exp2( to_degrees( solar_alt - civil_dawn ) / 5.f ) - 1 ) + 5.0f;
} else if( solar_alt <= 60_degrees ) {
// Linear increase from -1° to 60° degrees light increases from 60 to 125 brightness.
return ( 65.f / 61 ) * to_degrees( solar_alt ) + 65.f / 61 + 60;
} else {
return 125.f;
}
}
float sun_moon_light_at( const time_point &p )
{
return sun_light_at( p ) + moon_light_at( p );
}
double sun_moon_light_at_noon_near( const time_point &p )
{
const time_point solar_noon = solar_noon_near( p );
return sun_moon_light_at( solar_noon );
}
static std::string to_string_clipped( const int num, const clipped_unit type,
const clipped_align align )
{
switch( align ) {
default:
case clipped_align::none:
switch( type ) {
default:
case clipped_unit::forever:
return _( "forever" );
case clipped_unit::second:
return string_format( n_gettext( "%d second", "%d seconds", num ), num );
case clipped_unit::minute:
return string_format( n_gettext( "%d minute", "%d minutes", num ), num );
case clipped_unit::hour:
return string_format( n_gettext( "%d hour", "%d hours", num ), num );
case clipped_unit::day:
return string_format( n_gettext( "%d day", "%d days", num ), num );
case clipped_unit::week:
return string_format( n_gettext( "%d week", "%d weeks", num ), num );
case clipped_unit::season:
return string_format( n_gettext( "%d season", "%d seasons", num ), num );
case clipped_unit::year:
return string_format( n_gettext( "%d year", "%d years", num ), num );
}
case clipped_align::right:
switch( type ) {
default:
case clipped_unit::forever:
//~ Right-aligned time string. should right-align with other strings with this same comment
return _( " forever" );
case clipped_unit::second:
//~ Right-aligned time string. should right-align with other strings with this same comment
return string_format( n_gettext( "%3d second", "%3d seconds", num ), num );
case clipped_unit::minute:
//~ Right-aligned time string. should right-align with other strings with this same comment
return string_format( n_gettext( "%3d minute", "%3d minutes", num ), num );
case clipped_unit::hour:
//~ Right-aligned time string. should right-align with other strings with this same comment
return string_format( n_gettext( "%3d hour", "%3d hours", num ), num );
case clipped_unit::day:
//~ Right-aligned time string. should right-align with other strings with this same comment
return string_format( n_gettext( "%3d day", "%3d days", num ), num );
case clipped_unit::week:
//~ Right-aligned time string. should right-align with other strings with this same comment
return string_format( n_gettext( "%3d week", "%3d weeks", num ), num );
case clipped_unit::season:
//~ Right-aligned time string. should right-align with other strings with this same comment
return string_format( n_gettext( "%3d season", "%3d seasons", num ), num );
case clipped_unit::year:
//~ Right-aligned time string. should right-align with other strings with this same comment
return string_format( n_gettext( "%3d year", "%3d years", num ), num );
}
case clipped_align::compact:
switch( type ) {
default:
case clipped_unit::forever:
return _( "forever" );
case clipped_unit::second:
return string_format( n_gettext( "%d sec", "%d secs", num ), num );
case clipped_unit::minute:
return string_format( n_gettext( "%d min", "%d mins", num ), num );
case clipped_unit::hour:
return string_format( n_gettext( "%d hr", "%d hrs", num ), num );
case clipped_unit::day:
return string_format( n_gettext( "%d day", "%d days", num ), num );
case clipped_unit::week:
return string_format( n_gettext( "%d wk", "%d wks", num ), num );
case clipped_unit::season:
return string_format( n_gettext( "%d seas", "%d seas", num ), num );
case clipped_unit::year:
return string_format( n_gettext( "%d yr", "%d yrs", num ), num );
}
}
}
std::pair<int, clipped_unit> clipped_time( const time_duration &d )
{
if( d >= calendar::INDEFINITELY_LONG_DURATION ) {
return { 0, clipped_unit::forever };
}
if( d < 1_minutes ) {
const int sec = to_seconds<int>( d );
return { sec, clipped_unit::second };
} else if( d < 1_hours ) {
const int min = to_minutes<int>( d );
return { min, clipped_unit::minute };
} else if( d < 1_days ) {
const int hour = to_hours<int>( d );
return { hour, clipped_unit::hour };
} else if( d < 7_days ) {
const int day = to_days<int>( d );
return { day, clipped_unit::day };
} else if( d < calendar::season_length() || calendar::eternal_season() ) {
// eternal seasons means one season is indistinguishable from the next,
// therefore no way to count them
const int week = to_weeks<int>( d );
return { week, clipped_unit::week };
} else if( d < calendar::year_length() && !calendar::eternal_season() ) {
// TODO: consider a to_season function, but season length is variable, so
// this might be misleading
const int season = to_turns<int>( d ) / to_turns<int>( calendar::season_length() );
return { season, clipped_unit::season };
} else {
// TODO: consider a to_year function, but year length is variable, so
// this might be misleading
const int year = to_turns<int>( d ) / to_turns<int>( calendar::year_length() );
return { year, clipped_unit::year };
}
}
std::string to_string_clipped( const time_duration &d,
const clipped_align align )
{
const std::pair<int, clipped_unit> time = clipped_time( d );
return to_string_clipped( time.first, time.second, align );
}
std::string to_string( const time_duration &d, const bool compact )
{
if( d >= calendar::INDEFINITELY_LONG_DURATION ) {
return _( "forever" );
}
if( d <= 1_minutes ) {
return to_string_clipped( d );
}
time_duration divider = 0_turns;
if( d < 1_hours ) {
divider = 1_minutes;
} else if( d < 1_days ) {
divider = 1_hours;
} else if( d < 1_weeks ) {
divider = 1_days;
} else if( d < calendar::season_length() || calendar::eternal_season() ) {
divider = 1_weeks;
} else if( d < calendar::year_length() ) {
divider = calendar::season_length();
} else {
divider = calendar::year_length();
}
if( d % divider != 0_turns ) {
if( compact ) {
//~ %1$s - greater units of time (e.g. 3 hours), %2$s - lesser units of time (e.g. 11 minutes).
return string_format( pgettext( "time duration", "%1$s %2$s" ),
to_string_clipped( d, clipped_align::compact ),
to_string_clipped( d % divider, clipped_align::compact ) );
} else {
//~ %1$s - greater units of time (e.g. 3 hours), %2$s - lesser units of time (e.g. 11 minutes).
return string_format( _( "%1$s and %2$s" ),
to_string_clipped( d ),
to_string_clipped( d % divider ) );
}
}
return to_string_clipped( d );
}
std::string to_string_approx( const time_duration &dur, const bool verbose )
{
time_duration d = dur;
const auto make_result = [verbose]( const time_duration & d, const char *verbose_str,
const char *short_str ) {
return string_format( verbose ? verbose_str : short_str, to_string_clipped( d ) );
};
time_duration divider = 0_turns;
time_duration vicinity = 0_turns;
// Minutes and seconds can be estimated precisely.
if( d > 1_days ) {
divider = 1_days;
vicinity = 2_hours;
} else if( d > 1_hours ) {
divider = 1_hours;
vicinity = 5_minutes;
}
if( divider != 0_turns ) {
const time_duration remainder = d % divider;
if( remainder >= divider - vicinity ) {
d += divider;
} else if( remainder > vicinity ) {
if( remainder < divider / 2 ) {
//~ %s - time (e.g. 2 hours).
return make_result( d, _( "more than %s" ), ">%s" );
} else {
//~ %s - time (e.g. 2 hours).
return make_result( d + divider, _( "less than %s" ), "<%s" );
}
}
}
//~ %s - time (e.g. 2 hours).
return make_result( d, _( "about %s" ), "%s" );
}
std::string to_string_writable( const time_duration &dur )
{
if( dur % 1_days == 0_seconds ) {
return string_format( "%d d", static_cast<int>( dur / 1_days ) );
} else if( dur % 1_hours == 0_seconds ) {
return string_format( "%d h", static_cast<int>( dur / 1_hours ) );
} else if( dur % 1_minutes == 0_seconds ) {
return string_format( "%d m", static_cast<int>( dur / 1_minutes ) );
} else {
return string_format( "%d s", static_cast<int>( dur / 1_seconds ) );
}
}
std::string to_string_time_of_day( const time_point &p )
{
const int hour = hour_of_day<int>( p );
const int minute = minute_of_hour<int>( p );
const int second = to_seconds<int>( time_past_midnight( p ) ) % 60;
const std::string format_type = get_option<std::string>( "24_HOUR" );
if( format_type == "military" ) {
return string_format( "%02d%02d.%02d", hour, minute, second );
} else if( format_type == "24h" ) {
//~ hour:minute (24hr time display)
return string_format( _( "%02d:%02d:%02d" ), hour, minute, second );
} else {
int hour_param = hour % 12;
if( hour_param == 0 ) {
hour_param = 12;
}
// Padding is removed as necessary to prevent clipping with SAFE notification in wide sidebar mode
const std::string padding = hour_param < 10 ? " " : "";
if( hour < 12 ) {
return string_format( _( "%d:%02d:%02d%sAM" ), hour_param, minute, second, padding );
} else {
return string_format( _( "%d:%02d:%02d%sPM" ), hour_param, minute, second, padding );
}
}
}
weekdays day_of_week( const time_point &p )
{
/* Design rationale:
* <kevingranade> here's a question
* <kevingranade> what day of the week is day 0?
* <wito> Sunday
* <GlyphGryph> Why does it matter?
* <GlyphGryph> For like where people are and stuff?
* <wito> 7 is also Sunday
* <kevingranade> NOAA weather forecasts include day of week
* <GlyphGryph> Also by day0 do you mean the day people start day 0
* <GlyphGryph> Or actual day 0
* <kevingranade> good point, turn 0
* <GlyphGryph> So day 5
* <wito> Oh, I thought we were talking about week day numbering in general.
* <wito> Day 5 is a thursday, I think.
* <wito> Nah, Day 5 feels like a thursday. :P
* <wito> Which would put the apocalypse on a saturday?
* <Starfyre> must be a thursday. I was never able to get the hang of those.
* <ZChris13> wito: seems about right to me
* <wito> kevingranade: add four for thursday. ;)
* <kevingranade> sounds like consensus to me
* <kevingranade> Thursday it is */
const int day_since_cataclysm = to_days<int>( p - calendar::turn_zero );
static const weekdays start_day = weekdays::THURSDAY;
const int result = day_since_cataclysm + static_cast<int>( start_day );
return static_cast<weekdays>( result % 7 );
}
bool calendar::eternal_season()
{
return is_eternal_season;
}
bool calendar::eternal_night()
{
return is_eternal_night;
}
bool calendar::eternal_day()
{
return is_eternal_day;
}
time_duration calendar::year_length()
{
return season_length() * 4;
}
time_duration calendar::season_length()
{
return time_duration::from_days( std::max( cur_season_length, 1 ) );
}
void calendar::set_eternal_season( bool is_eternal )
{
is_eternal_season = is_eternal;
}
void calendar::set_eternal_night( bool is_eternal )
{
is_eternal_night = is_eternal;
}
void calendar::set_eternal_day( bool is_eternal )
{
is_eternal_day = is_eternal;
}
void calendar::set_season_length( const int dur )
{
cur_season_length = dur;
}
static constexpr int real_world_season_length = 91;
static constexpr int default_season_length = real_world_season_length;
float calendar::season_ratio()
{
return to_days<float>( season_length() ) / real_world_season_length;
}
float calendar::season_from_default_ratio()
{
return to_days<float>( season_length() ) / default_season_length;
}
bool calendar::once_every( const time_duration &event_frequency )
{
return ( calendar::turn - calendar::turn_zero ) % event_frequency == 0_turns;
}
std::string calendar::name_season( season_type s )
{
static const std::array<std::string, 5> season_names_untranslated = {{
//~First letter is supposed to be uppercase
std::string( translate_marker( "Spring" ) ),
//~First letter is supposed to be uppercase
std::string( translate_marker( "Summer" ) ),
//~First letter is supposed to be uppercase
std::string( translate_marker( "Autumn" ) ),
//~First letter is supposed to be uppercase
std::string( translate_marker( "Winter" ) ),
std::string( translate_marker( "End times" ) )
}
};
if( s >= SPRING && s <= WINTER ) {
return _( season_names_untranslated[ s ] );
}
return _( season_names_untranslated[ 4 ] );
}
time_duration rng( time_duration lo, time_duration hi )
{
return time_duration( rng( lo.turns_, hi.turns_ ) );
}
bool x_in_y( const time_duration &a, const time_duration &b )
{
return ::x_in_y( to_turns<int>( a ), to_turns<int>( b ) );
}
const std::vector<std::pair<std::string, time_duration>> time_duration::units = { {
{ "turns", 1_turns },
{ "turn", 1_turns },
{ "t", 1_turns },
{ "seconds", 1_seconds },
{ "second", 1_seconds },
{ "s", 1_seconds },
{ "minutes", 1_minutes },
{ "minute", 1_minutes },
{ "m", 1_minutes },
{ "hours", 1_hours },
{ "hour", 1_hours },
{ "h", 1_hours },
{ "days", 1_days },
{ "day", 1_days },
{ "d", 1_days },
// TODO: maybe add seasons?
// TODO: maybe add years? Those two things depend on season length!
}
};
season_type season_of_year( const time_point &p )
{
static time_point prev_turn = calendar::before_time_starts;
static season_type prev_season = calendar::initial_season;
if( p != prev_turn ) {
prev_turn = p;
if( calendar::eternal_season() ) {
// If we use calendar::start to determine the initial season, and the user shortens the season length
// mid-game, the result could be the wrong season!
return prev_season = calendar::initial_season;
}
return prev_season = static_cast<season_type>(
to_turn<int>( p ) / to_turns<int>( calendar::season_length() ) % 4
);
}
return prev_season;
}
std::string to_string( const time_point &p )
{
const int year = to_turns<int>( p - calendar::turn_zero ) / to_turns<int>
( calendar::year_length() ) + 1;
const std::string time = to_string_time_of_day( p );
if( calendar::eternal_season() ) {
const int day = to_days<int>( time_past_new_year( p ) );
//~ 1 is the year, 2 is the day (of the *year*), 3 is the time of the day in its usual format
return string_format( _( "Year %1$d, day %2$d %3$s" ), year, day, time );
} else {
const int day = day_of_season<int>( p ) + 1;
//~ 1 is the year, 2 is the season name, 3 is the day (of the season), 4 is the time of the day in its usual format
return string_format( _( "Year %1$d, %2$s, day %3$d %4$s" ), year,
calendar::name_season( season_of_year( p ) ), day, time );
}
}
time_point::time_point()
{
turn_ = 0;
}