-
Notifications
You must be signed in to change notification settings - Fork 4
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
feat: Added alpha parameter to RidgeRegression
#231
feat: Added alpha parameter to RidgeRegression
#231
Conversation
Co-authored-by: sibre28 <[email protected]>
🦙 MegaLinter status: ✅ SUCCESS
See detailed report in MegaLinter reports |
…-alpha-parameter-for-regularization-of-ridgeregression
Co-authored-by: sibre28 <[email protected]>
Codecov Report
@@ Coverage Diff @@
## main #231 +/- ##
=======================================
Coverage 99.22% 99.23%
=======================================
Files 44 44
Lines 1555 1561 +6
=======================================
+ Hits 1543 1549 +6
Misses 12 12
|
Co-authored-by: sibre28 <[email protected]>
…ession' of https://github.com/Safe-DS/Stdlib into 164-set-alpha-parameter-for-regularization-of-ridgeregression
…RidgeRegression` Co-authored-by: sibre28 <[email protected]>
#232 is now merged, please use this as the baseline and adjust your PR accordingly. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Change test names
## [0.12.0](v0.11.0...v0.12.0) (2023-05-11) ### Features * add `learning_rate` to AdaBoost classifier and regressor. ([#251](#251)) ([7f74440](7f74440)), closes [#167](#167) * add alpha parameter to `lasso_regression` ([#232](#232)) ([b5050b9](b5050b9)), closes [#163](#163) * add parameter `lasso_ratio` to `ElasticNetRegression` ([#237](#237)) ([4a1a736](4a1a736)), closes [#166](#166) * Add parameter `number_of_tree` to `RandomForest` classifier and regressor ([#230](#230)) ([414336a](414336a)), closes [#161](#161) * Added `Table.plot_boxplots` to plot a boxplot for each numerical column in the table ([#254](#254)) ([0203a0c](0203a0c)), closes [#156](#156) [#239](#239) * Added `Table.plot_histograms` to plot a histogram for each column in the table ([#252](#252)) ([e27d410](e27d410)), closes [#157](#157) * Added `Table.transform_table` method which returns the transformed Table ([#229](#229)) ([0a9ce72](0a9ce72)), closes [#110](#110) * Added alpha parameter to `RidgeRegression` ([#231](#231)) ([1ddc948](1ddc948)), closes [#164](#164) * Added Column#transform ([#270](#270)) ([40fb756](40fb756)), closes [#255](#255) * Added method `Table.inverse_transform_table` which returns the original table ([#227](#227)) ([846bf23](846bf23)), closes [#111](#111) * Added parameter `c` to `SupportVectorMachines` ([#267](#267)) ([a88eb8b](a88eb8b)), closes [#169](#169) * Added parameter `maximum_number_of_learner` and `learner` to `AdaBoost` ([#269](#269)) ([bb5a07e](bb5a07e)), closes [#171](#171) [#173](#173) * Added parameter `number_of_trees` to `GradientBoosting` ([#268](#268)) ([766f2ff](766f2ff)), closes [#170](#170) * Allow arguments of type pathlib.Path for file I/O methods ([#228](#228)) ([2b58c82](2b58c82)), closes [#146](#146) * convert `Schema` to `dict` and format it nicely in a notebook ([#244](#244)) ([ad1cac5](ad1cac5)), closes [#151](#151) * Convert between Excel file and `Table` ([#233](#233)) ([0d7a998](0d7a998)), closes [#138](#138) [#139](#139) * convert containers for tabular data to HTML ([#243](#243)) ([683c279](683c279)), closes [#140](#140) * make `Column` a subclass of `Sequence` ([#245](#245)) ([a35b943](a35b943)) * mark optional hyperparameters as keyword only ([#296](#296)) ([44a41eb](44a41eb)), closes [#278](#278) * move exceptions back to common package ([#295](#295)) ([a91172c](a91172c)), closes [#177](#177) [#262](#262) * precision metric for classification ([#272](#272)) ([5adadad](5adadad)), closes [#185](#185) * Raise error if an untagged table is used instead of a `TaggedTable` ([#234](#234)) ([8eea3dd](8eea3dd)), closes [#192](#192) * recall and F1-score metrics for classification ([#277](#277)) ([2cf93cc](2cf93cc)), closes [#187](#187) [#186](#186) * replace prefix `n` with `number_of` ([#250](#250)) ([f4f44a6](f4f44a6)), closes [#171](#171) * set `alpha` parameter for regularization of `ElasticNetRegression` ([#238](#238)) ([e642d1d](e642d1d)), closes [#165](#165) * Set `column_names` in `fit` methods of table transformers to be required ([#225](#225)) ([2856296](2856296)), closes [#179](#179) * set learning rate of Gradient Boosting models ([#253](#253)) ([9ffaf55](9ffaf55)), closes [#168](#168) * Support vector machine for regression and for classification ([#236](#236)) ([7f6c3bd](7f6c3bd)), closes [#154](#154) * usable constructor for `Table` ([#294](#294)) ([56a1fc4](56a1fc4)), closes [#266](#266) * usable constructor for `TaggedTable` ([#299](#299)) ([01c3ad9](01c3ad9)), closes [#293](#293) ### Bug Fixes * OneHotEncoder no longer creates duplicate column names ([#271](#271)) ([f604666](f604666)), closes [#201](#201) * selectively ignore one warning instead of all warnings ([#235](#235)) ([3aad07d](3aad07d))
🎉 This PR is included in version 0.12.0 🎉 The release is available on:
Your semantic-release bot 📦🚀 |
Closes #164 .
Summary of Changes
Added alpha parameter to
RidgeRegression
for regularization.