diff --git a/base/sparse/higherorderfns.jl b/base/sparse/higherorderfns.jl index 83f215b339fc88..d47b47fa06ba70 100644 --- a/base/sparse/higherorderfns.jl +++ b/base/sparse/higherorderfns.jl @@ -5,7 +5,7 @@ module HigherOrderFns # This module provides higher order functions specialized for sparse arrays, # particularly map[!]/broadcast[!] for SparseVectors and SparseMatrixCSCs at present. import Base: map, map!, broadcast, broadcast! -import Base.Broadcast: containertype, promote_containertype, +import Base.Broadcast: _containertype, promote_containertype, broadcast_indices, broadcast_c, broadcast_c! using Base: front, tail, to_shape @@ -83,7 +83,6 @@ function _noshapecheck_map{Tf,N}(f::Tf, A::SparseVecOrMat, Bs::Vararg{SparseVecO end # (3) broadcast[!] entry points broadcast{Tf}(f::Tf, A::SparseVecOrMat) = _noshapecheck_map(f, A) -broadcast!{Tf}(f::Tf, C::SparseVecOrMat, A::SparseVecOrMat) = map!(f, C, A) function broadcast!{Tf,N}(f::Tf, C::SparseVecOrMat, A::SparseVecOrMat, Bs::Vararg{SparseVecOrMat,N}) _aresameshape(C, A, Bs...) && return _noshapecheck_map!(f, C, A, Bs...) Base.Broadcast.check_broadcast_indices(indices(C), A, Bs...) @@ -843,7 +842,7 @@ end # broadcast shape promotion for combinations of sparse arrays and other types broadcast_indices(::Type{AbstractSparseArray}, A) = indices(A) # broadcast container type promotion for combinations of sparse arrays and other types -containertype{T<:SparseVecOrMat}(::Type{T}) = AbstractSparseArray +_containertype{T<:SparseVecOrMat}(::Type{T}) = AbstractSparseArray # combinations of sparse arrays with broadcast scalars should yield sparse arrays promote_containertype(::Type{Any}, ::Type{AbstractSparseArray}) = AbstractSparseArray promote_containertype(::Type{AbstractSparseArray}, ::Type{Any}) = AbstractSparseArray