-
Notifications
You must be signed in to change notification settings - Fork 6
/
registration.py
256 lines (219 loc) · 9.65 KB
/
registration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import os
import plot
from model import *
from losses import *
from matplotlib import pyplot as plt
from keras.preprocessing.image import ImageDataGenerator
import time
import h5py
import math
from keras.callbacks import ModelCheckpoint, EarlyStopping, TensorBoard
from keras.optimizers import Adam
import shutil
import cv2
import numpy as np
import os
import pystrum.pynd.ndutils as nd
def jacobian_determinant(disp):
"""
jacobian determinant of a displacement field.
NB: to compute the spatial gradients, we use np.gradient.
Parameters:
disp: 2D or 3D displacement field of size [*vol_shape, nb_dims],
where vol_shape is of len nb_dims
Returns:
jacobian determinant (scalar)
"""
# check inputs
volshape = disp.shape[:-1]
nb_dims = len(volshape)
assert len(volshape) in (2, 3), 'flow has to be 2D or 3D'
# compute grid
grid_lst = nd.volsize2ndgrid(volshape)
grid = np.stack(grid_lst, len(volshape))
# compute gradients
J = np.gradient(disp + grid)
# 3D glow
if nb_dims == 3:
dx = J[0]
dy = J[1]
dz = J[2]
# compute jacobian components
Jdet0 = dx[..., 0] * (dy[..., 1] * dz[..., 2] - dy[..., 2] * dz[..., 1])
Jdet1 = dx[..., 1] * (dy[..., 0] * dz[..., 2] - dy[..., 2] * dz[..., 0])
Jdet2 = dx[..., 2] * (dy[..., 0] * dz[..., 1] - dy[..., 1] * dz[..., 0])
return Jdet0 - Jdet1 + Jdet2
else: # must be 2
dfdx = J[0]
dfdy = J[1]
return dfdx[..., 0] * dfdy[..., 1] - dfdy[..., 0] * dfdx[..., 1]
def cal_patient(gt, predict, flow):
patient = 0
dice_PGDC = 0
recall_PGDC = 0
precision_PGDC = 0
patient_continue = 0
TP = 0
FP = 0
TN = 0
FN = 0
for i in range(len(gt)):
if gt[i].max() > 0:
TP += plot.cal_seg(gt[i], predict[i]).TP()
FP += plot.cal_seg(gt[i], predict[i]).FP()
TN += plot.cal_seg(gt[i], predict[i]).TN()
FN += plot.cal_seg(gt[i], predict[i]).FN()
if patient_continue != i-1 or i == len(gt):
dice_PGDC += 2*TP/(2*TP+FP+FN)
recall_PGDC += TP/(TP+FN)
precision_PGDC += TP/(TP+FP)
patient_continue = i
patient += 1
TP = 0
FP = 0
TN = 0
FN = 0
print(str(h5_name))
jac_list = jac_from_output(flow)
jac_mean = int(sum(jac_list)/len(jac_list))
jac_standard = int(np.std(jac_list))
file_name = '/home/siat/桌面/affine.txt'
with open(file_name, 'a') as file_obj:
file_obj.write('%-30s' % str(h5_name))
file_obj.write('DICE: %.5f' % (dice_PGDC / patient) + ' Recall: %.5f'%(recall_PGDC / patient)+' precision: %.5f'%(precision_PGDC / patient)+' jac: ' + str(
jac_mean) + '+'+str(jac_standard) + '\n\n')
print('DICE: ' + str(dice_PGDC / patient))
def jac_from_output(output):
a = []
for i in output:
jac = jacobian_determinant(i)
jac_negative = jac[jac < 0]
a.append(jac_negative.shape[0])
return a
def generator_train(src, tgt, batch_size=32):
gen_src = ImageDataGenerator(width_shift_range=0.1, height_shift_range=0.1, rotation_range=5, zoom_range=0.1,
featurewise_center=True, featurewise_std_normalization=True,
horizontal_flip=True, fill_mode='constant')
gen_tgt = ImageDataGenerator(width_shift_range=0.1, height_shift_range=0.1, rotation_range=5, zoom_range=0.1,
featurewise_center=True, featurewise_std_normalization=True,
horizontal_flip=True, fill_mode='constant')
train_src = gen_src.flow(src, batch_size=batch_size, shuffle=True, seed=1)
train_tgt = gen_tgt.flow(tgt, batch_size=batch_size, shuffle=True, seed=1)
while True:
next_src = next(train_src)
next_tgt = next(train_tgt)
yield [next_src, next_tgt, next_tgt], [next_tgt, next_tgt, next_tgt, next_tgt]
def generator_val(src, tgt, fl, dl, batch_size=32):
gen_src2 = ImageDataGenerator(featurewise_center=True, featurewise_std_normalization=True)
gen_tgt2 = ImageDataGenerator(featurewise_center=True, featurewise_std_normalization=True)
fl2 = ImageDataGenerator(featurewise_center=True, featurewise_std_normalization=True)
dl2 = ImageDataGenerator(featurewise_center=True, featurewise_std_normalization=True)
train_src = gen_src2.flow(src, batch_size=batch_size, shuffle=False)
train_tgt = gen_tgt2.flow(tgt, batch_size=batch_size, shuffle=False)
fl22 = fl2.flow(fl, batch_size=batch_size, shuffle=False)
dl22 = dl2.flow(dl, batch_size=batch_size, shuffle=False)
while True:
next_src = next(train_src)
next_tgt = next(train_tgt)
next_fl = next(fl22)
next_dl = next(dl22)
yield [next_src, next_tgt, next_fl], [next_tgt, next_tgt, next_tgt, next_dl]
def detection(output_path, path_h5_save, h5_name, load_weight=''):
if not os.path.exists(output_path+h5_name+'/'):
os.makedirs(output_path + 'gt_moving/')
os.makedirs(output_path + 'result_moving/')
os.makedirs(output_path + 'DWI/')
os.makedirs(output_path + 'Flair/')
os.makedirs(output_path + 'Field/')
if not os.path.exists('./reimplement/' + h5_name+'/'):
os.makedirs('./reimplement/' + h5_name+'/')
if load_weight != '':
model.load_weights(load_weight, by_name=True)
else:
load_weight = os.listdir(output_path+'model/')
load_weight.sort()
load_weight = load_weight[len(load_weight) - 1]
print('loading:', load_weight)
model.load_weights(output_path +'model/'+ load_weight, by_name=True)
h5 = h5py.File(path_h5_save + 'test')
val_F = h5['F']
val_DWI = h5['DWI']
label_flair = h5['label_flair']
label_dwi = h5['label_dwi']
print('load data done!')
strat = time.time()
predict = model.predict(x=[val_F, val_DWI, label_flair], verbose=1)
print('time==', str((time.time()-strat)/len(val_F)))
cal_patient(gt=label_dwi, predict=predict[3], flow=predict[0])
field_visualization(predict[0], path=output_path+'Field/')
for i in range(len(predict[0])):
if label_flair[i].max() > 0:
cv2.imwrite(output_path + 'result_moving/' + str(i) + '.png', predict[1][i, :, :, 0] * 255)
cv2.imwrite(output_path + 'gt_moving/'+str(i)+'.png', predict[3][i, :, :, 0] * 255)
cv2.imwrite(output_path + 'DWI/' + str(i) + '.png', val_DWI[i, :, :, 0] * 255)
cv2.imwrite(output_path + 'Flair/'+str(i)+'.png', val_F[i, :, :, 0] * 255)
cv2.imwrite('./reimplement/' + h5_name + '/' + str(i) + '.png', predict[3][i, :, :, 0] * 255)
def field_visualization(field, path=None):
tem = np.zeros((224, 224, 3), dtype='float')
for num in range(len(field)):
x = np.abs(copy.deepcopy(field[num, :, :, 0]))
y = np.abs(copy.deepcopy(field[num, :, :, 1]))
tem[:, :, 0] = 0
tem[:, :, 1] = y/5
tem[:, :, 2] = x/5
if path is not None:
cv2.imwrite(path + str(num) + '.png', tem * 255)
if __name__ == "__main__":
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
path_h5_save = './ori_data/deal/'
load_weight = './model/affine/epoch003-0.76.h5' #should load the affine weight
mode = 'train'
batch_size = 32
lr = 1e-2
w = 32
model = dual_net(w)
para_mi = 4 #'Alpha' mentioned in the paper
para_jl = 100 #'Beta'
para_rl = 100 #'Lambda_4'
output_path = './model/'
h5_name = 'dual_net'
print(h5_name)
subdir_savepic = h5_name
output_path += h5_name + '/'
if os.path.exists(output_path):
shutil.rmtree(output_path)
os.makedirs(output_path)
os.makedirs(output_path + 'model/')
model.compile(optimizer=Adam(lr=lr),
loss=[design_loss().smooth, design_loss(parameter_mi=para_mi, parameter=para_jl).mi_clipmse, residuce_loss, none_loss],
loss_weights=[1, 1, para_rl, 0], metrics={'stn4': dice_coef})
if load_weight != '':
print('loading:', load_weight)
model.load_weights(load_weight, by_name=True)
else:
print('no loading weight!')
time_start = time.time()
print(path_h5_save + 'train')
h5 = h5py.File(path_h5_save + 'train')
train_F = h5['F']
train_DWI = h5['DWI']
h5 = h5py.File(path_h5_save + 'test')
val_F = h5['F']
val_DWI = h5['DWI']
label_dwi = h5['label_dwi']
label_flair = h5['label_flair']
num_train_steps = math.floor(len(train_F) / batch_size)
num_val_steps = math.floor(len(val_F) / batch_size)
print('training data:' + str(len(train_F)) + ' validation data:' + str(len(val_F)))
print('used:', str(time.time() - time_start) + 's\n')
time_start = time.time()
train_data = generator_train(train_F, train_DWI, batch_size=batch_size)
val_data = generator_val(val_F, val_DWI, label_flair, label_dwi, batch_size=batch_size)
earlystop = EarlyStopping(monitor='val_loss', patience=20, verbose=1)
tensorboard = TensorBoard(log_dir='./tensorboard/' + h5_name + '/', batch_size=batch_size)
checkpointer = ModelCheckpoint(output_path + 'model/epoch{epoch:03d}-{val_stn4_dice_coef:.2f}.h5',
monitor='val_loss', mode='min', verbose=1, save_best_only=True)
model.fit_generator(train_data, epochs=100, initial_epoch=0, steps_per_epoch=num_train_steps, shuffle=True,
callbacks=[checkpointer, tensorboard, earlystop], validation_data=val_data,
validation_steps=num_val_steps, verbose=2)
detection(output_path=output_path, path_h5_save=path_h5_save, h5_name=h5_name)