Skip to content

Latest commit

 

History

History
64 lines (53 loc) · 1.56 KB

README.md

File metadata and controls

64 lines (53 loc) · 1.56 KB

Description

Title: Visual-Haptic-Kinesthetic Object Recognition with Multimodal Transformer

  • CRNN-SA CRNN-SA
  • CRNN-CA CRNN-CA

Requirements

  • python >= 3.7
  • scipy
  • tensorflow-gpu >= 2.5.0
  • Keras >= 2.3.1
  • PIL
  • pandas

Datasets

  1. Download and unzip the dataset from AU Dataset for Visuo-Haptic Object Recognition for Robots.
  2. Run picenhance.py to enhance the visual data.
  3. Run functions in Data_make.py to pre-process the data.
  4. You can request the pre-processed data from the author of this article (GitHub:Jokerr-12).

--Notes for getting started--

There is no complicated tuning of parameters for this work, and you can probably adjust the parameters of the network to achieve better results.

Train and Test

  • run CRNN_SA method
python runtrain.py --epochs 200 --batch_size 8 --model SA
  • run CRNN_CA method
python runtrain.py --epochs 200 --batch_size 8 --model CA
  • test CRNN_SA save_model
python runtest.py --model SA
  • test CRNN_CA save_model
python runtest.py --model CA

Citing this work

@InProceedings{10.1007/978-3-031-44195-0_20,

author="Zhou, Xinyuan and Lan, Shiyong and Wang, Wenwu and Li, Xinyang and Zhou, Siyuan and Yang, Hongyu",

title="Visual-Haptic-Kinesthetic Object Recognition with Multimodal Transformer",

booktitle="Artificial Neural Networks and Machine Learning -- ICANN 2023", year="2023",

publisher="Springer Nature Switzerland", address="Cham", pages="233--245", isbn="978-3-031-44195-0" }