-
Notifications
You must be signed in to change notification settings - Fork 3
/
test.py
248 lines (181 loc) · 7.94 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#!/usr/bin/env python
# coding: utf-8
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import os
from tqdm import tqdm
import random
from time import time
import shutil
import argparse
import configparser
from model.MHASTIGCN import make_model
from lib.dataloader import load_weighted_adjacency_matrix,load_weighted_adjacency_matrix2,load_PA
from lib.utils import load_graphdata_channel1, get_adjacency_matrix2, compute_val_loss_mstgcn, predict_and_save_results_mstgcn
from tensorboardX import SummaryWriter
def seed_torch(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed) # 为了禁止hash随机化,使得实验可复现
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.enabled = False
seed_torch(1)
parser = argparse.ArgumentParser()
parser.add_argument("--config", default='configurations/PEMS04.conf', type=str,
help="configuration file path")
args = parser.parse_args()
config = configparser.ConfigParser()
print('Read configuration file: %s' % (args.config))
config.read(args.config)
data_config = config['Data']
training_config = config['Training']
adj_filename = data_config['adj_filename']
graph_signal_matrix_filename = data_config['graph_signal_matrix_filename']
stig_filename = data_config['STIG_filename']
tsg_filename = data_config['TSG_filename']
if config.has_option('Data', 'id_filename'):
id_filename = data_config['id_filename']
else:
id_filename = None
num_of_vertices = int(data_config['num_of_vertices'])
points_per_hour = int(data_config['points_per_hour'])
num_for_predict = int(data_config['num_for_predict'])
len_input = int(data_config['len_input'])
dataset_name = data_config['dataset_name']
model_name = training_config['model_name']
graph_use = training_config['graph']
ctx = training_config['ctx']
os.environ["CUDA_VISIBLE_DEVICES"] = ctx
USE_CUDA = torch.cuda.is_available()
DEVICE = torch.device('cuda:0')
print("CUDA:", USE_CUDA, DEVICE)
learning_rate = float(training_config['learning_rate'])
epochs = int(training_config['epochs'])
start_epoch = int(training_config['start_epoch'])
batch_size = int(training_config['batch_size'])
num_of_weeks = int(training_config['num_of_weeks'])
num_of_days = int(training_config['num_of_days'])
num_of_hours = int(training_config['num_of_hours'])
time_strides = 1
d_model = int(training_config['d_model'])
nb_chev_filter = int(training_config['nb_chev_filter'])
nb_time_filter = int(training_config['nb_time_filter'])
in_channels = int(training_config['in_channels'])
num_of_d = in_channels
nb_block = int(training_config['nb_block'])
K = int(training_config['K'])
n_heads = int(training_config['n_heads'])
d_k = int(training_config['d_k'])
d_v = d_k
folder_dir = '%s_h%dd%dw%d_channel%d_%e' % (model_name, num_of_hours, num_of_days, num_of_weeks, in_channels, learning_rate)
print('folder_dir:', folder_dir)
params_path = os.path.join('myexperiments', dataset_name, folder_dir)
print('params_path:', params_path)
_, train_loader, train_target_tensor, _, val_loader, val_target_tensor, _, test_loader, test_target_tensor, _mean, _std = load_graphdata_channel1(
graph_signal_matrix_filename, num_of_hours,
num_of_days, num_of_weeks, DEVICE, batch_size)
if dataset_name == 'PEMS04' or 'PEMS08' or 'PEMS07' or 'PEMS03':
adj_mx = get_adjacency_matrix2(adj_filename, num_of_vertices, id_filename=id_filename)
else:
adj_mx = load_weighted_adjacency_matrix2(adj_filename, num_of_vertices)
adj_TMD = load_weighted_adjacency_matrix(stig_filename, num_of_vertices)
adj_pa = load_PA(tsg_filename)
if graph_use =='G':
adj_merge = adj_mx
else:
adj_merge = adj_TMD
net = make_model(DEVICE, num_of_d, nb_block, in_channels, K, nb_chev_filter, nb_time_filter, time_strides, adj_merge,
adj_pa, adj_TMD, num_for_predict, len_input, num_of_vertices, d_model, d_k, d_v, n_heads)
def train_main():
if (start_epoch == 0) and (not os.path.exists(params_path)):
os.makedirs(params_path)
print('create params directory %s' % (params_path))
elif (start_epoch == 0) and (os.path.exists(params_path)):
shutil.rmtree(params_path)
os.makedirs(params_path)
print('delete the old one and create params directory %s' % (params_path))
elif (start_epoch > 0) and (os.path.exists(params_path)):
print('train from params directory %s' % (params_path))
else:
raise SystemExit('Wrong type of model!')
print('param list:')
print('CUDA\t', DEVICE)
print('in_channels\t', in_channels)
print('nb_block\t', nb_block)
print('nb_chev_filter\t', nb_chev_filter)
print('nb_time_filter\t', nb_time_filter)
print('time_strides\t', time_strides)
print('batch_size\t', batch_size)
print('graph_signal_matrix_filename\t', graph_signal_matrix_filename)
print('start_epoch\t', start_epoch)
print('epochs\t', epochs)
criterion = nn.SmoothL1Loss().to(DEVICE)
optimizer = optim.Adam(net.parameters(), lr=learning_rate)
# scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,milestones=[20, 40], gamma=0.9)
sw = SummaryWriter(logdir=params_path, flush_secs=5)
# print(net)
global_step = 0
best_epoch = 0
best_val_loss = np.inf
start_time = time()
if start_epoch > 0:
params_filename = os.path.join(params_path, 'epoch_%s.params' % start_epoch)
net.load_state_dict(torch.load(params_filename))
print('start epoch:', start_epoch)
print('load weight from: ', params_filename)
# train model
for epoch in range(start_epoch, epochs):
print('current epoch: ', epoch)
params_filename = os.path.join(params_path, 'epoch_%s.params' % epoch)
val_loss = compute_val_loss_mstgcn(net, val_loader, criterion, sw, epoch)
print('val loss', val_loss)
if val_loss < best_val_loss:
best_val_loss = val_loss
best_epoch = epoch
torch.save(net.state_dict(), params_filename)
print('best epoch: ', best_epoch)
print('best val loss: ', best_val_loss)
print('save parameters to file: %s' % params_filename)
net.train() # ensure dropout layers are in train mode
loop = tqdm(enumerate(train_loader), total= len(train_loader))
t3 = time()
for batch_index, batch_data in loop:
encoder_inputs, labels = batch_data
optimizer.zero_grad()
outputs = net(encoder_inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
training_loss = loss.item()
global_step += 1
sw.add_scalar('training_loss', training_loss, global_step)
if global_step % 1000 == 0:
print('global step: %s, training loss: %.2f, time: %.2fs' % (global_step, training_loss, time() - start_time))
t4=time()
print('total finished in', t4 - t3, 'seconds.')
print('best epoch:', best_epoch)
# apply the best model on the test set
predict_main(best_epoch, test_loader, test_target_tensor, _mean, _std, 'test')
def predict_main(global_step, data_loader, data_target_tensor, _mean, _std, type):
'''
:param global_step: int
:param data_loader: torch.utils.data.utils.DataLoader
:param data_target_tensor: tensor
:param mean: (1, 1, 3, 1)
:param std: (1, 1, 3, 1)
:param type: string
:return:
'''
params_filename = os.path.join(params_path, 'epoch_%s.params' % global_step)
print('load weight from:', params_filename)
net.load_state_dict(torch.load(params_filename))
predict_and_save_results_mstgcn(net, data_loader, data_target_tensor, global_step, _mean, _std, params_path, type)
if __name__ == "__main__":
# train_main()
predict_main(36, test_loader, test_target_tensor, _mean, _std, 'test')