-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfreia_funcs.py
528 lines (429 loc) · 18.6 KB
/
freia_funcs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
'''This Code is based on the FrEIA Framework, source: https://github.com/VLL-HD/FrEIA
It is a assembly of the necessary modules/functions from FrEIA that are needed for our purposes.'''
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from math import exp
from subnet import *
import numpy as np
import config as c
from utils import *
VERBOSE = False
from scipy import linalg as la
logabs = lambda x: torch.log(torch.abs(x))
class dummy_data:
def __init__(self, *dims):
self.dims = dims
@property
def shape(self):
return self.dims
class F_fully_connected(nn.Module):
'''Fully connected tranformation, not reversible, but used below.'''
def __init__(self, size_in, size, channels_hidden=None, dropout=0.0):
super(F_fully_connected, self).__init__()
if not channels_hidden:
channels_hidden = 2 * size
self.d1 = nn.Dropout(p=dropout)
self.d2 = nn.Dropout(p=dropout)
self.d2b = nn.Dropout(p=dropout)
self.fc1 = nn.Linear(size_in, channels_hidden)
self.fc2 = nn.Linear(channels_hidden, channels_hidden)
self.fc2b = nn.Linear(channels_hidden, channels_hidden)
self.fc3 = nn.Linear(channels_hidden * 2, size)
self.nl1 = nn.ReLU()
self.nl2 = nn.ReLU()
self.nl2b = nn.ReLU()
self.attention = Class_Attention(dim=size_in, num_heads=4)
# layer scale
self.gamma = nn.Parameter(torch.ones(channels_hidden), requires_grad=True)
# self.gamma = nn.Parameter(torch.zeros(channels_hidden),requires_grad=True)
self.bn = nn.BatchNorm1d(size_in)
def forward(self, x, x_spa):
out = self.nl1(self.d1(self.fc1(x)))
out = self.nl2(self.d2(self.fc2(out)))
out = self.nl2b(self.d2b(self.fc2b(out)))
# CAFF
x = torch.cat((x.unsqueeze(1), x_spa.flatten(2).transpose(1, 2)), dim=1)
out2 = self.attention(x).squeeze(1) * self.gamma
out = torch.cat((out, out2), dim=1)
out = self.fc3(out)
return out
class F_conv(nn.Module):
def __init__(self, in_channel, channel, channels_hidden=None,
kernel_size=1, subnet=None, batch_norm=False):
super(F_conv, self).__init__()
if not channels_hidden:
channels_hidden = channel
pad = kernel_size // 2
pad_mode = 'zeros'
self.subnet = subnet
self.conv1 = subnet(in_channel, channels_hidden, kernel_size, pad)
self.conv2 = subnet(channels_hidden, channel, kernel_size, pad)
self.relu = nn.LeakyReLU(0.1)
self.gamma = nn.Parameter(torch.ones(1))
def forward(self, x):
out = self.conv2(self.conv1(x))
out = out * self.gamma
return out
class permute_layer(nn.Module):
'''permutes input vector in a random but fixed way'''
def __init__(self, dims_in, seed):
super(permute_layer, self).__init__()
self.in_channels = dims_in[0][0]
np.random.seed(seed)
self.perm = np.random.permutation(self.in_channels)
np.random.seed()
self.perm_inv = np.zeros_like(self.perm)
for i, p in enumerate(self.perm):
self.perm_inv[p] = i
self.perm = torch.LongTensor(self.perm)
self.perm_inv = torch.LongTensor(self.perm_inv)
def forward(self, x, rev=False):
if not rev:
return [x[0][:, self.perm]]
else:
return [x[0][:, self.perm_inv]]
def jacobian(self, x, rev=False):
# TODO: use batch size, set as nn.Parameter so cuda() works
return 0.
def output_dims(self, input_dims):
assert len(input_dims) == 1, "Can only use 1 input"
return input_dims
class glow_coupling_layer(nn.Module):
def __init__(self, dims_in, F_class=F_fully_connected, F_args={},
clamp=3.):
super(glow_coupling_layer, self).__init__()
channels = dims_in[0][0]
self.ndims = len(dims_in[0])
self.split_len1 = channels // 2
self.split_len2 = channels - channels // 2
self.clamp = clamp
self.max_s = exp(clamp)
self.min_s = exp(-clamp)
self.s1 = F_class(self.split_len1, self.split_len2 * 2, **F_args)
self.s2 = F_class(self.split_len2, self.split_len1 * 2, **F_args)
def e(self, s):
return torch.exp(self.log_e(s))
def log_e(self, s):
return self.clamp * 0.636 * torch.atan(s / self.clamp)
def forward(self, x, rev=False):
x = x[0].transpose(1, 2)
x_sem = x[:, 0]
x_spa = x[:, 1:]
b, spa, channel = x_spa.shape
h = int(math.sqrt(spa))
x_spa = x_spa.transpose(1, 2).reshape(b, channel, h, h)
x1, x2 = (x_sem.narrow(1, 0, self.split_len1),
x_sem.narrow(1, self.split_len1, self.split_len2))
x1_spa, x2_spa = (x_spa.narrow(1, 0, self.split_len1),
x_spa.narrow(1, self.split_len1, self.split_len2))
if not rev:
r2 = self.s2(x2, x2_spa)
s2, t2 = r2[:, :self.split_len1], r2[:, self.split_len1:]
y1 = self.e(s2) * x1 + t2
r1 = self.s1(y1, x1_spa)
s1, t1 = r1[:, :self.split_len2], r1[:, self.split_len2:]
y2 = self.e(s1) * x2 + t1
else: # names of x and y are swapped!
r1 = self.s1(x1, x1_spa)
s1, t1 = r1[:, :self.split_len2], r1[:, self.split_len2:]
y2 = (x2 - t1) / self.e(s1)
r2 = self.s2(y2, x2_spa)
s2, t2 = r2[:, :self.split_len1], r2[:, self.split_len1:]
y1 = (x1 - t2) / self.e(s2)
y = torch.cat((y1, y2), 1)
y = torch.clamp(y, -1e6, 1e6)
# B,N,C ---- B,C,N
x_spa = x_spa.flatten(2).transpose(1, 2)
out = torch.cat((y.unsqueeze(1), x_spa), dim=1).transpose(1, 2)
return [out]
#
def jacobian(self, x, rev=False):
x = x[0].transpose(1, 2)
x_sem = x[:, 0]
x_spa = x[:, 1:]
b, spa, channel = x_spa.shape
h = int(math.sqrt(spa))
x_spa = x_spa.transpose(1, 2).reshape(b, channel, h, h)
x1, x2 = (x_sem.narrow(1, 0, self.split_len1),
x_sem.narrow(1, self.split_len1, self.split_len2))
x1_spa, x2_spa = (x_spa.narrow(1, 0, self.split_len1),
x_spa.narrow(1, self.split_len1, self.split_len2))
if not rev:
r2 = self.s2(x2, x2_spa)
s2, t2 = r2[:, :self.split_len1], r2[:, self.split_len1:]
y1 = self.e(s2) * x1 + t2
r1 = self.s1(y1, x1_spa)
s1, t1 = r1[:, :self.split_len2], r1[:, self.split_len2:]
else:
r1 = self.s1(x1, x1_spa)
s1, t1 = r1[:, :self.split_len2], r1[:, self.split_len2:]
y2 = (x2 - t1) / self.e(s1)
r2 = self.s2(y2, x2_spa)
s2, t2 = r2[:, :self.split_len1], r2[:, self.split_len1:]
if isinstance(self.s1, F_conv):
jac = (torch.sum(self.log_e(s1), dim=(1, 2, 3))
+ torch.sum(self.log_e(s2), dim=(1, 2, 3)))
else:
jac = (torch.sum(self.log_e(s1), dim=1)
+ torch.sum(self.log_e(s2), dim=1))
for i in range(self.ndims - 1):
jac = torch.sum(jac, dim=1)
return jac
def output_dims(self, input_dims):
assert len(input_dims) == 1, "Can only use 1 input"
return input_dims
class Node:
'''The Node class represents one transformation in the graph, with an
arbitrary number of in- and outputs.'''
def __init__(self, inputs, module_type, module_args, name=None):
self.inputs = inputs
self.outputs = []
self.module_type = module_type
self.module_args = module_args
self.input_dims, self.module = None, None
self.computed = None
self.computed_rev = None
self.id = None
if name:
self.name = name
else:
self.name = hex(id(self))[-6:]
for i in range(255):
exec('self.out{0} = (self, {0})'.format(i))
def build_modules(self, verbose=VERBOSE):
''' Returns a list with the dimension of each output of this node,
recursively calling build_modules of the nodes connected to the input.
Use this information to initialize the pytorch nn.Module of this node.
'''
if not self.input_dims: # Only do it if this hasn't been computed yet
self.input_dims = [n.build_modules(verbose=verbose)[c]
for n, c in self.inputs]
try:
self.module = self.module_type(self.input_dims,
**self.module_args)
except Exception as e:
print('Error in node %s' % (self.name))
raise e
if verbose:
print("Node %s has following input dimensions:" % (self.name))
for d, (n, c) in zip(self.input_dims, self.inputs):
print("\t Output #%i of node %s:" % (c, n.name), d)
print()
self.output_dims = self.module.output_dims(self.input_dims)
self.n_outputs = len(self.output_dims)
return self.output_dims
def run_forward(self, op_list):
'''Determine the order of operations needed to reach this node. Calls
run_forward of parent nodes recursively. Each operation is appended to
the global list op_list, in the form (node ID, input variable IDs,
output variable IDs)'''
if not self.computed:
# Compute all nodes which provide inputs, filter out the
# channels you need
self.input_vars = []
for i, (n, c) in enumerate(self.inputs):
self.input_vars.append(n.run_forward(op_list)[c])
# Register youself as an output in the input node
n.outputs.append((self, i))
# All outputs could now be computed
self.computed = [(self.id, i) for i in range(self.n_outputs)]
op_list.append((self.id, self.input_vars, self.computed))
# Return the variables you have computed (this happens mulitple times
# without recomputing if called repeatedly)
return self.computed
def run_backward(self, op_list):
'''See run_forward, this is the same, only for the reverse computation.
Need to call run_forward first, otherwise this function will not
work'''
assert len(self.outputs) > 0, "Call run_forward first"
if not self.computed_rev:
# These are the input variables that must be computed first
output_vars = [(self.id, i) for i in range(self.n_outputs)]
# Recursively compute these
for n, c in self.outputs:
n.run_backward(op_list)
# The variables that this node computes are the input variables
# from the forward pass
self.computed_rev = self.input_vars
op_list.append((self.id, output_vars, self.computed_rev))
return self.computed_rev
class InputNode(Node):
'''Special type of node that represents the input data of the whole net (or
ouput when running reverse)'''
def __init__(self, *dims, name='node'):
self.name = name
self.data = dummy_data(*dims)
self.outputs = []
self.module = None
self.computed_rev = None
self.n_outputs = 1
self.input_vars = []
self.out0 = (self, 0)
def build_modules(self, verbose=VERBOSE):
return [self.data.shape]
def run_forward(self, op_list):
return [(self.id, 0)]
class OutputNode(Node):
'''Special type of node that represents the output of the whole net (of the
input when running in reverse)'''
class dummy(nn.Module):
def __init__(self, *args):
super(OutputNode.dummy, self).__init__()
def __call__(*args):
return args
def output_dims(*args):
return args
def __init__(self, inputs, name='node'):
self.module_type, self.module_args = self.dummy, {}
self.output_dims = []
self.inputs = inputs
self.input_dims, self.module = None, None
self.computed = None
self.id = None
self.name = name
# 将自己绑定为上一个的输出
for c, inp in enumerate(self.inputs):
inp[0].outputs.append((self, c))
def run_backward(self, op_list):
return [(self.id, 0)]
class ReversibleGraphNet(nn.Module):
'''This class represents the invertible net itself. It is a subclass of
torch.nn.Module and supports the same methods. The forward method has an
additional option 'rev', whith which the net can be computed in reverse.'''
def __init__(self, node_list, ind_in=None, ind_out=None, verbose=False):
'''node_list should be a list of all nodes involved, and ind_in,
ind_out are the indexes of the special nodes InputNode and OutputNode
in this list.'''
super(ReversibleGraphNet, self).__init__()
# Gather lists of input and output nodes
if ind_in is not None:
if isinstance(ind_in, int):
self.ind_in = list([ind_in])
else:
self.ind_in = ind_in
else:
self.ind_in = [i for i in range(len(node_list))
if isinstance(node_list[i], InputNode)]
assert len(self.ind_in) > 0, "No input nodes specified."
if ind_out is not None:
if isinstance(ind_out, int):
self.ind_out = list([ind_out])
else:
self.ind_out = ind_out
else:
self.ind_out = [i for i in range(len(node_list))
if isinstance(node_list[i], OutputNode)]
assert len(self.ind_out) > 0, "No output nodes specified."
self.return_vars = []
self.input_vars = []
# Assign each node a unique ID
self.node_list = node_list
for i, n in enumerate(node_list):
n.id = i
# Recursively build the nodes nn.Modules and determine order of
# operations
ops = []
for i in self.ind_out:
node_list[i].build_modules(verbose=verbose)
node_list[i].run_forward(ops)
# create list of Pytorch variables that are used
variables = set()
for o in ops:
variables = variables.union(set(o[1] + o[2]))
self.variables_ind = list(variables)
self.indexed_ops = self.ops_to_indexed(ops)
self.module_list = nn.ModuleList([n.module for n in node_list])
self.variable_list = [Variable(requires_grad=True) for v in variables]
# Find out the order of operations for reverse calculations
ops_rev = []
for i in self.ind_in:
node_list[i].run_backward(ops_rev)
self.indexed_ops_rev = self.ops_to_indexed(ops_rev)
def ops_to_indexed(self, ops):
'''Helper function to translate the list of variables (origin ID, channel),
to variable IDs.'''
result = []
for o in ops:
try:
vars_in = [self.variables_ind.index(v) for v in o[1]]
except ValueError:
vars_in = -1
vars_out = [self.variables_ind.index(v) for v in o[2]]
# Collect input/output nodes in separate lists, but don't add to
# indexed ops
if o[0] in self.ind_out:
self.return_vars.append(self.variables_ind.index(o[1][0]))
continue
if o[0] in self.ind_in:
self.input_vars.append(self.variables_ind.index(o[1][0]))
continue
result.append((o[0], vars_in, vars_out))
# Sort input/output variables so they correspond to initial node list
# order
self.return_vars.sort(key=lambda i: self.variables_ind[i][0])
self.input_vars.sort(key=lambda i: self.variables_ind[i][0])
return result
def forward(self, x, rev=False):
'''Forward or backward computation of the whole net.'''
if rev:
use_list = self.indexed_ops_rev
input_vars, output_vars = self.return_vars, self.input_vars
else:
use_list = self.indexed_ops
input_vars, output_vars = self.input_vars, self.return_vars
if isinstance(x, (list, tuple)):
assert len(x) == len(input_vars), (
f"Got list of {len(x)} input tensors for "
f"{'inverse' if rev else 'forward'} pass, but expected "
f"{len(input_vars)}."
)
for i in range(len(input_vars)):
self.variable_list[input_vars[i]] = x[i]
else:
assert len(input_vars) == 1, (f"Got single input tensor for "
f"{'inverse' if rev else 'forward'} "
f"pass, but expected list of "
f"{len(input_vars)}.")
self.variable_list[input_vars[0]] = x
for o in use_list:
try:
results = self.module_list[o[0]]([self.variable_list[i]
for i in o[1]], rev=rev)
except TypeError:
raise RuntimeError("Are you sure all used Nodes are in the "
"Node list?")
for i, r in zip(o[2], results):
self.variable_list[i] = r
# self.variable_list[o[2][0]] = self.variable_list[o[1][0]]
out = [self.variable_list[output_vars[i]]
for i in range(len(output_vars))]
if len(out) == 1:
return out[0]
else:
return out
def jacobian(self, x=None, rev=False, run_forward=True):
'''Compute the jacobian determinant of the whole net.'''
jacobian = 0
if rev:
use_list = self.indexed_ops_rev
else:
use_list = self.indexed_ops
if run_forward:
if x is None:
raise RuntimeError("You need to provide an input if you want "
"to run a forward pass")
self.forward(x, rev=rev)
jacobian_list = list()
for o in use_list:
try:
node_jac = self.module_list[o[0]].jacobian(
[self.variable_list[i] for i in o[1]], rev=rev
)
jacobian += node_jac
jacobian_list.append(jacobian)
except TypeError:
raise RuntimeError("Are you sure all used Nodes are in the "
"Node list?")
return jacobian