You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-33-9f97797a4d66> in <module>
----> 1 crosscheck_bins.build_emulators(hide_progress=False,fit_model="polynomial")
2 crosscheck.build_emulators(hide_progress=False,fit_model="linear")
/opt/anaconda3/lib/python3.7/site-packages/swiftemulator/sensitivity/cross_check_bins.py in build_emulators(self, kernel, fit_model, lasso_model_alpha, polynomial_degree, hide_progress)
119 fit_model=fit_model,
120 lasso_model_alpha=lasso_model_alpha,
--> 121 polynomial_degree=polynomial_degree,
122 )
123
/opt/anaconda3/lib/python3.7/site-packages/swiftemulator/emulators/gaussian_process_bins.py in fit_model(self, kernel, fit_model, lasso_model_alpha, polynomial_degree)
261 fun=negative_log_likelihood,
262 x0=gaussian_process.get_parameter_vector(),
--> 263 jac=grad_negative_log_likelihood,
264 )
265
/opt/anaconda3/lib/python3.7/site-packages/scipy/optimize/_minimize.py in minimize(fun, x0, args, method, jac, hess, hessp, bounds, constraints, tol, callback, options)
610 return _minimize_cg(fun, x0, args, jac, callback, **options)
611 elif meth == 'bfgs':
--> 612 return _minimize_bfgs(fun, x0, args, jac, callback, **options)
613 elif meth == 'newton-cg':
614 return _minimize_newtoncg(fun, x0, args, jac, hess, hessp, callback,
/opt/anaconda3/lib/python3.7/site-packages/scipy/optimize/optimize.py in _minimize_bfgs(fun, x0, args, jac, callback, gtol, norm, eps, maxiter, disp, return_all, finite_diff_rel_step, **unknown_options)
1134 alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \
1135 _line_search_wolfe12(f, myfprime, xk, pk, gfk,
-> 1136 old_fval, old_old_fval, amin=1e-100, amax=1e100)
1137 except _LineSearchError:
1138 # Line search failed to find a better solution.
/opt/anaconda3/lib/python3.7/site-packages/scipy/optimize/optimize.py in _line_search_wolfe12(f, fprime, xk, pk, gfk, old_fval, old_old_fval, **kwargs)
934 ret = line_search_wolfe1(f, fprime, xk, pk, gfk,
935 old_fval, old_old_fval,
--> 936 **kwargs)
937
938 if ret[0] is not None and extra_condition is not None:
/opt/anaconda3/lib/python3.7/site-packages/scipy/optimize/linesearch.py in line_search_wolfe1(f, fprime, xk, pk, gfk, old_fval, old_old_fval, args, c1, c2, amax, amin, xtol)
96 stp, fval, old_fval = scalar_search_wolfe1(
97 phi, derphi, old_fval, old_old_fval, derphi0,
---> 98 c1=c1, c2=c2, amax=amax, amin=amin, xtol=xtol)
99
100 return stp, fc[0], gc[0], fval, old_fval, gval[0]
/opt/anaconda3/lib/python3.7/site-packages/scipy/optimize/linesearch.py in scalar_search_wolfe1(phi, derphi, phi0, old_phi0, derphi0, c1, c2, amax, amin, xtol)
170 if task[:2] == b'FG':
171 alpha1 = stp
--> 172 phi1 = phi(stp)
173 derphi1 = derphi(stp)
174 else:
/opt/anaconda3/lib/python3.7/site-packages/scipy/optimize/linesearch.py in phi(s)
82 def phi(s):
83 fc[0] += 1
---> 84 return f(xk + s*pk, *args)
85
86 def derphi(s):
/opt/anaconda3/lib/python3.7/site-packages/scipy/optimize/_differentiable_functions.py in fun(self, x)
180 if not np.array_equal(x, self.x):
181 self._update_x_impl(x)
--> 182 self._update_fun()
183 return self.f
184
/opt/anaconda3/lib/python3.7/site-packages/scipy/optimize/_differentiable_functions.py in _update_fun(self)
164 def _update_fun(self):
165 if not self.f_updated:
--> 166 self._update_fun_impl()
167 self.f_updated = True
168
/opt/anaconda3/lib/python3.7/site-packages/scipy/optimize/_differentiable_functions.py in update_fun()
71
72 def update_fun():
---> 73 self.f = fun_wrapped(self.x)
74
75 self._update_fun_impl = update_fun
/opt/anaconda3/lib/python3.7/site-packages/scipy/optimize/_differentiable_functions.py in fun_wrapped(x)
68 def fun_wrapped(x):
69 self.nfev += 1
---> 70 return fun(x, *args)
71
72 def update_fun():
/opt/anaconda3/lib/python3.7/site-packages/swiftemulator/emulators/gaussian_process_bins.py in negative_log_likelihood(p)
251 def negative_log_likelihood(p):
252 gaussian_process.set_parameter_vector(p)
--> 253 return -gaussian_process.log_likelihood(dependent_variables)
254
255 def grad_negative_log_likelihood(p):
/opt/anaconda3/lib/python3.7/site-packages/george/gp.py in log_likelihood(self, y, quiet)
358
359 """
--> 360 if not self.recompute(quiet=quiet):
361 return -np.inf
362 try:
/opt/anaconda3/lib/python3.7/site-packages/george/gp.py in recompute(self, quiet, **kwargs)
330 # Update the model making sure that we store the original
331 # ordering of the points.
--> 332 self.compute(self._x, np.sqrt(self._yerr2), **kwargs)
333 except (ValueError, LinAlgError):
334 if quiet:
/opt/anaconda3/lib/python3.7/site-packages/george/gp.py in compute(self, x, yerr, **kwargs)
307 # Include the white noise term.
308 yerr = np.sqrt(self._yerr2 + np.exp(self._call_white_noise(self._x)))
--> 309 self.solver.compute(self._x, yerr, **kwargs)
310
311 self._const = -0.5 * (len(self._x) * np.log(2 * np.pi) +
/opt/anaconda3/lib/python3.7/site-packages/george/solvers/basic.py in compute(self, x, yerr)
66
67 # Factor the matrix and compute the log-determinant.
---> 68 self._factor = (cholesky(K, overwrite_a=True, lower=False), False)
69 self.log_determinant = 2 * np.sum(np.log(np.diag(self._factor[0])))
70 self.computed = True
/opt/anaconda3/lib/python3.7/site-packages/scipy/linalg/decomp_cholesky.py in cholesky(a, lower, overwrite_a, check_finite)
87 """
88 c, lower = _cholesky(a, lower=lower, overwrite_a=overwrite_a, clean=True,
---> 89 check_finite=check_finite)
90 return c
91
/opt/anaconda3/lib/python3.7/site-packages/scipy/linalg/decomp_cholesky.py in _cholesky(a, lower, overwrite_a, clean, check_finite)
15 """Common code for cholesky() and cho_factor()."""
16
---> 17 a1 = asarray_chkfinite(a) if check_finite else asarray(a)
18 a1 = atleast_2d(a1)
19
/opt/anaconda3/lib/python3.7/site-packages/numpy/lib/function_base.py in asarray_chkfinite(a, dtype, order)
484 if a.dtype.char in typecodes['AllFloat'] and not np.isfinite(a).all():
485 raise ValueError(
--> 486 "array must not contain infs or NaNs")
487 return a
488
ValueError: array must not contain infs or NaNs
This usually happens on the first iteration of the cross check loop. When excluding the first simulation it sometimes get's a bit farther but it always get stuck at some point. This is true for both the binned and non-binned case.
The text was updated successfully, but these errors were encountered:
When using the new new cross check analysis tool with a mean model:
This leads to the following error:
This usually happens on the first iteration of the cross check loop. When excluding the first simulation it sometimes get's a bit farther but it always get stuck at some point. This is true for both the binned and non-binned case.
The text was updated successfully, but these errors were encountered: