diff --git a/src/UQpy/sensitivity/cramer_von_mises.py b/src/UQpy/sensitivity/cramer_von_mises.py index 66421b44..b4e2bebd 100644 --- a/src/UQpy/sensitivity/cramer_von_mises.py +++ b/src/UQpy/sensitivity/cramer_von_mises.py @@ -15,14 +15,23 @@ """ import logging +from typing import Union import numpy as np +from beartype import beartype from UQpy.sensitivity.baseclass.sensitivity import Sensitivity from UQpy.sensitivity.baseclass.pickfreeze import generate_pick_freeze_samples from UQpy.sensitivity.sobol import compute_first_order as compute_first_order_sobol from UQpy.sensitivity.sobol import compute_total_order as compute_total_order_sobol from UQpy.utilities.UQpyLoggingFormatter import UQpyLoggingFormatter +from UQpy.utilities.ValidationTypes import ( + PositiveInteger, + PositiveFloat, + NumpyFloatArray, + NumpyIntArray, +) + # TODO: Sampling strategies @@ -85,13 +94,14 @@ def __init__( self.num_vars = None "Number of input random variables, :class:`int`" + @beartype def run( self, - n_samples=1_000, - estimate_sobol_indices=False, - num_bootstrap_samples=None, - confidence_level=0.95, - disable_CVM_indices=False, + n_samples: PositiveInteger = 1_000, + estimate_sobol_indices: bool = False, + num_bootstrap_samples: PositiveInteger = None, + confidence_level: PositiveFloat = 0.95, + disable_CVM_indices: bool = False, ): """ @@ -243,7 +253,8 @@ def run( return computed_indices @staticmethod - def indicator_function(Y, W): + @beartype + def indicator_function(Y: Union[NumpyFloatArray, NumpyIntArray], w: float): """ Vectorized version of the indicator function. @@ -253,22 +264,28 @@ def indicator_function(Y, W): **Inputs:** * **Y** (`ndarray`): - Vector of values of the random variable. + Array of values of the random variable. Shape: `(N, 1)` - * **W** (`ndarray`): - Vector of values of the random variable. - Shape: `(N, 1)` + * **w** (`float`): + Value to compare with the array. **Outputs:** * **indicator** (`ndarray`): + Array of integers with truth values. Shape: `(N, 1)` """ - return (Y <= W.T).astype(int) + return (Y <= w).astype(int) - def pick_and_freeze_estimator(self, A_model_evals, W_model_evals, C_i_model_evals): + @beartype + def pick_and_freeze_estimator( + self, + A_model_evals: Union[NumpyFloatArray, NumpyIntArray], + W_model_evals: Union[NumpyFloatArray, NumpyIntArray], + C_i_model_evals: Union[NumpyFloatArray, NumpyIntArray], + ): """ Compute the first order Cramér-von Mises indices