-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathmeasure.py
75 lines (57 loc) · 2.6 KB
/
measure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import torch
import numpy as np
from math import exp
import torch.nn.functional as F
from torch.autograd import Variable
def compute_measure(x, y, pred, data_range):
original_psnr = compute_PSNR(x, y, data_range)
original_ssim = compute_SSIM(x, y, data_range)
original_rmse = compute_RMSE(x, y)
pred_psnr = compute_PSNR(pred, y, data_range)
pred_ssim = compute_SSIM(pred, y, data_range)
pred_rmse = compute_RMSE(pred, y)
return (original_psnr, original_ssim, original_rmse), (pred_psnr, pred_ssim, pred_rmse)
def compute_MSE(img1, img2):
return ((img1 - img2) ** 2).mean()
def compute_RMSE(img1, img2):
if type(img1) == torch.Tensor:
return torch.sqrt(compute_MSE(img1, img2)).item()
else:
return np.sqrt(compute_MSE(img1, img2))
def compute_PSNR(img1, img2, data_range):
if type(img1) == torch.Tensor:
mse_ = compute_MSE(img1, img2)
return 10 * torch.log10((data_range ** 2) / mse_).item()
else:
mse_ = compute_MSE(img1, img2)
return 10 * np.log10((data_range ** 2) / mse_)
def compute_SSIM(img1, img2, data_range, window_size=11, channel=1, size_average=True):
# referred from https://github.com/Po-Hsun-Su/pytorch-ssim
if len(img1.size()) == 2:
shape_ = img1.shape[-1]
img1 = img1.view(1,1,shape_ ,shape_ )
img2 = img2.view(1,1,shape_ ,shape_ )
window = create_window(window_size, channel)
window = window.type_as(img1)
mu1 = F.conv2d(img1, window, padding=window_size//2)
mu2 = F.conv2d(img2, window, padding=window_size//2)
mu1_sq, mu2_sq = mu1.pow(2), mu2.pow(2)
mu1_mu2 = mu1*mu2
sigma1_sq = F.conv2d(img1*img1, window, padding=window_size//2) - mu1_sq
sigma2_sq = F.conv2d(img2*img2, window, padding=window_size//2) - mu2_sq
sigma12 = F.conv2d(img1*img2, window, padding=window_size//2) - mu1_mu2
C1, C2 = (0.01*data_range)**2, (0.03*data_range)**2
#C1, C2 = 0.01**2, 0.03**2
ssim_map = ((2*mu1_mu2+C1)*(2*sigma12+C2)) / ((mu1_sq+mu2_sq+C1)*(sigma1_sq+sigma2_sq+C2))
if size_average:
return ssim_map.mean().item()
else:
return ssim_map.mean(1).mean(1).mean(1).item()
def gaussian(window_size, sigma):
gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)])
return gauss / gauss.sum()
def create_window(window_size, channel):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
return window