-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
264 lines (222 loc) · 8.78 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import os
import numpy as np
import torch
import torch.nn.functional as F
import random
from torch.utils.data.sampler import Sampler
import shutil
import torchvision.transforms as transforms
from torch.autograd import Variable
from evaluation_metric import PCC
class AvgrageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.avg = 0
self.sum = 0
self.cnt = 0
def update(self, val, n=1):
self.sum += val * n
self.cnt += n
self.avg = self.sum / self.cnt
def accuracy(output, target, topk=(1,)):
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class Cutout(object):
def __init__(self, length):
self.length = length
def __call__(self, img):
h, w = img.size(1), img.size(2)
mask = np.ones((h, w), np.float32)
y = np.random.randint(h)
x = np.random.randint(w)
y1 = np.clip(y - self.length // 2, 0, h)
y2 = np.clip(y + self.length // 2, 0, h)
x1 = np.clip(x - self.length // 2, 0, w)
x2 = np.clip(x + self.length // 2, 0, w)
mask[y1: y2, x1: x2] = 0.
mask = torch.from_numpy(mask)
mask = mask.expand_as(img)
img *= mask
return img
def _data_transforms_cifar10(args):
CIFAR_MEAN = [0.49139968, 0.48215827, 0.44653124]
CIFAR_STD = [0.24703233, 0.24348505, 0.26158768]
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(CIFAR_MEAN, CIFAR_STD),
])
if args.cutout:
train_transform.transforms.append(Cutout(args.cutout_length))
valid_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(CIFAR_MEAN, CIFAR_STD),
])
return train_transform, valid_transform
def count_parameters_in_MB(model):
return np.sum(np.prod(v.size()) for name, v in model.named_parameters() if "auxiliary" not in name) / 1e6
def save_checkpoint(state, is_best, save):
filename = os.path.join(save, 'checkpoint.pth.tar')
torch.save(state, filename)
if is_best:
best_filename = os.path.join(save, 'model_best.pth.tar')
shutil.copyfile(filename, best_filename)
def save(model, model_path, epoch, optimizer,optimizer_arch):
saveDict = {'state_dict': model.state_dict(), 'arch_parameters': model.arch_parameters(), 'epoch': epoch,
'optimizer_state_dict': optimizer.state_dict(),'optimizer_arch_state_dict': optimizer_arch.state_dict()}
torch.save(saveDict, model_path)
def load(model, model_path):
if 'state_dict' not in torch.load(model_path):
model.load_state_dict(torch.load(model_path))
else:
saveDict = torch.load(model_path)
model.load_state_dict(saveDict['state_dict'])
model._arch_parameters = saveDict['arch_parameters']
print('Has load arch_parameters')
def copy_state_dict(cur_state_dict, pre_state_dict, prefix = ''):
def _get_params(key):
key = prefix + key
if key in pre_state_dict:
return pre_state_dict[key]
return None
for k in cur_state_dict.keys():
v = _get_params(k)
try:
if v is None:
print('parameter {} not found'.format(k))
continue
cur_state_dict[k].copy_(v)
except:
print('copy param {} failed'.format(k))
continue
def drop_path(x, drop_prob):
if drop_prob > 0.:
keep_prob = 1. - drop_prob
mask = Variable(torch.cuda.FloatTensor(x.size(0), 1, 1, 1).bernoulli_(keep_prob))
x.div_(keep_prob)
x.mul_(mask)
return x
def create_exp_dir(path, scripts_to_save=None):
if not os.path.exists(path):
os.makedirs(path)
print('Experiment dir : {}'.format(path))
if scripts_to_save is not None:
os.mkdir(os.path.join(path, 'scripts'))
for script in scripts_to_save:
dst_file = os.path.join(path, 'scripts', os.path.basename(script))
shutil.copyfile(script, dst_file)
class PersonalRandomSampler(Sampler):
def __init__(self, data_source, batch_size):
self.data_source = data_source
self.batch_size = batch_size
# 把data_source给按纯净分到各自的类中,不纯净(交界处)的就不要了
split = [[[], []] for i in range(84)]
for i in range(len(data_source)):
clips_x_fl, clips_y_fl, clips_x_MFCC, clips_y_MFCC, XMean, YMean, CLASS, IDENTITY = data_source[i]
isOneClass = (CLASS[0] == CLASS[-1] and IDENTITY[0] == IDENTITY[-1])
if isOneClass:
split[CLASS[0]][IDENTITY[0]].append(i)
# 给各自的帧扩容到batch_size整除量
for C in range(84):
for I in range(2):
if len(split[C][I]) == 0:
continue
split[C][I] = self.expend(split[C][I])
# 将所有的样本都按顺序放好,并且同一类内部打乱
self.indexs = []
for C in range(84):
for I in range(2):
if len(split[C][I]) == 0:
continue
random.shuffle(split[C][I])
self.indexs.extend(split[C][I])
def expend(self, input_list):
n = (len(input_list) // self.batch_size + 1) * self.batch_size
mul = n // len(input_list)
rem = n % len(input_list)
out_list = []
for i in range(mul):
out_list.extend(input_list)
rem_list = input_list[:rem]
out_list.extend(rem_list)
return out_list
def __iter__(self):
return iter(self.indexs)
def __len__(self):
return len(self.indexs)
class inBatchSequentialBatchShuffle(Sampler):
def __init__(self, indices, batch_size):
self.indices = indices
self.batch_size = batch_size
#以bs为步长取出指针
self.pointers=[i for i in range(0,len(self.indices),self.batch_size)]
def __iter__(self):
random.shuffle(self.pointers)
result=[]
for i in self.pointers:
if i+self.batch_size>len(self.indices):
result = result + list(range(i, len(self.indices)))
else:
result = result+list(range(i,i+self.batch_size))
return (self.indices[i] for i in result)
def __len__(self):
return len(self.indices)
class Adaptive_MSELoss_PCC(torch.nn.Module):
def __init__(self):
super(Adaptive_MSELoss_PCC, self).__init__()
def forward(self,input, target):
input_cpu = input.detach().cpu()
target_cpu = target.detach().cpu()
len_input = input.shape[-1]
len_target = target.shape[-1]
assert len_target>=len_input
for index in range(len_target-len_input+1):
# loss = F.mse_loss(input,target[:,:,index:index+len_input])
pcc = PCC(input_cpu,target_cpu[:,:,index:index+len_input])
if index==0:
# min_index=0
# min_loss = loss
max_index = 0
max_pcc = pcc
else:
if pcc>max_pcc:
# min_index = index
# min_loss = loss
max_index = index
max_pcc = pcc
loss = F.mse_loss(input,target[:,:,max_index:max_index+len_input])
return loss,max_index
class Adaptive_MSELoss_MSE(torch.nn.Module):
def __init__(self):
super(Adaptive_MSELoss_MSE, self).__init__()
def forward(self,input, target):
# input_cpu = input.detach().cpu()
# target_cpu = target.detach().cpu()
len_input = input.shape[-1]
len_target = target.shape[-1]
assert len_target>=len_input
for index in range(len_target-len_input+1):
loss = F.mse_loss(input,target[:,:,index:index+len_input])
# pcc = PCC(input_cpu,target_cpu[:,:,index:index+len_input])
if index==0:
min_index=0
min_loss = loss
# max_index = 0
# max_pcc = pcc
else:
if loss<min_loss:
min_index = index
min_loss = loss
# max_index = index
# max_pcc = pcc
return min_loss,min_index