-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_latent_lpips.py
355 lines (291 loc) · 16 KB
/
train_latent_lpips.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import os
import argparse
import math
import logging
import numpy as np
from functools import partial
from tqdm.auto import tqdm
from PIL import Image
import torch
import torch.nn as nn
import diffusers
from accelerate import Accelerator
from accelerate.utils import ProjectConfiguration, set_seed
from accelerate.logging import get_logger
from datasets import load_from_disk
from elatentlpips import LatentLPIPS
from utils import load_vae, scale_vae_output
def parse_args():
parser = argparse.ArgumentParser(description="Train latent lpips model")
parser.add_argument("--eval_only", action="store_true", help="Whether to only evaluate the model")
parser.add_argument("--eval_model_path", type=str, default="checkpoints/latent_lpips_vgg16_gn_sd1/checkpoint-ep=9", help="path to the model checkpoint for evaluation")
parser.add_argument("--dataset_name", type=str, default="/root/data/dataset/vision_general/bapps/2afc/2afc_dataset_train", help="path to the training dataset")
parser.add_argument("--val_dataset_name", type=str, default="/root/data/dataset/vision_general/bapps/2afc/2afc_dataset_val", help="path to the validation dataset")
parser.add_argument("--vae_type", type=str, default="sd1", choices=["sd1", "sdxl", "sd3", "flux"], help="type of VAE to use")
parser.add_argument("--model_type", type=str, default="VGG16_Latent_GN", choices=["VGG16_Latent", "VGG16_Latent_BN", "VGG16_Latent_GN"], help="model type to use")
parser.add_argument("--pretrained_backbone_path", type=str, default="model.safetensors", help="path to the pretrained backbone model")
parser.add_argument("--batch_size", type=int, default=50, help="batch size for training (effective batch size will be batch_size * gradient_accumulation_steps * num_processes")
parser.add_argument("--lr", type=float, default=1e-4, help="learning rate")
parser.add_argument("--dataloader_num_workers", type=int, default=8, help="number of workers for the dataloader")
parser.add_argument("--num_epochs", type=int, default=10, help="number of epochs to train, last half of the epochs will be used with lr decay")
parser.add_argument("--output_dir", type=str, default="checkpoints/latent_lpips_vgg16_gn_sd1", help="Directory for model predictions and checkpoints")
parser.add_argument("--seed", type=int, default=4727, help="Random seed for reproducibility")
args = parser.parse_args()
return args
def preprocess(examples, resolution=(64, 64)):
ref_images = [np.array(Image.open(img).convert("RGB").resize(resolution, Image.BICUBIC)).transpose(2,0,1) for img in examples["ref"]]
p0_images = [np.array(Image.open(img).convert("RGB").resize(resolution, Image.BICUBIC)).transpose(2,0,1) for img in examples["p0"]]
p1_images = [np.array(Image.open(img).convert("RGB").resize(resolution, Image.BICUBIC)).transpose(2,0,1) for img in examples["p1"]]
judges = [np.load(judge).reshape((1, 1, 1,)) for judge in examples["judge"]]
examples["ref_tensors"] = 2 * (torch.tensor(np.stack(ref_images)) / 255) - 1
examples["p0_tensors"] = 2 * (torch.tensor(np.stack(p0_images)) / 255) - 1
examples["p1_tensors"] = 2 * (torch.tensor(np.stack(p1_images)) / 255) - 1
examples["judge_tensors"] = torch.tensor(np.stack(judges))
return examples
def collate_fn(examples):
ref_images = torch.stack([example["ref_tensors"] for example in examples])
p0_images = torch.stack([example["p0_tensors"] for example in examples])
p1_images = torch.stack([example["p1_tensors"] for example in examples])
judges = torch.stack([example["judge_tensors"] for example in examples])
return {"ref": ref_images, "p0": p0_images, "p1": p1_images, "judge": judges}
def compute_accuracy(d0,d1,judge):
d1_lt_d0 = (d1<d0).cpu().data.numpy().flatten()
judge_per = judge.cpu().numpy().flatten()
return d1_lt_d0*judge_per + (1-d1_lt_d0)*(1-judge_per)
class Dist2LogitLayer(nn.Module):
''' takes 2 distances, puts through fc layers, spits out value between [0,1] (if use_sigmoid is True) '''
def __init__(self, chn_mid=32, use_sigmoid=True):
super(Dist2LogitLayer, self).__init__()
layers = [nn.Conv2d(5, chn_mid, 1, stride=1, padding=0, bias=True),]
layers += [nn.LeakyReLU(0.2,True),]
layers += [nn.Conv2d(chn_mid, chn_mid, 1, stride=1, padding=0, bias=True),]
layers += [nn.LeakyReLU(0.2,True),]
layers += [nn.Conv2d(chn_mid, 1, 1, stride=1, padding=0, bias=True),]
if(use_sigmoid):
layers += [nn.Sigmoid(),]
self.model = nn.Sequential(*layers)
def forward(self,d0,d1,eps=0.1):
return self.model.forward(torch.cat((d0,d1,d0-d1,d0/(d1+eps),d1/(d0+eps)),dim=1))
class BCERankingLoss(nn.Module):
def __init__(self, chn_mid=32):
super(BCERankingLoss, self).__init__()
self.net = Dist2LogitLayer(chn_mid=chn_mid)
self.loss = torch.nn.BCELoss()
def forward(self, d0, d1, judge):
per = (judge+1.)/2. # again to [0,1]
self.logit = self.net.forward(d0,d1)
return self.loss(self.logit, per)
def main(args):
logger = get_logger(__name__, log_level="INFO")
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=os.path.join(args.output_dir, "logs"))
accelerator = Accelerator(
gradient_accumulation_steps=1,
mixed_precision="no",
log_with="wandb",
project_config=accelerator_project_config,
step_scheduler_with_optimizer=False
)
if accelerator.is_local_main_process:
diffusers.utils.logging.set_verbosity_info()
else:
diffusers.utils.logging.set_verbosity_error()
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if args.seed is not None:
set_seed(args.seed)
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
vae = load_vae(args.vae_type, device=accelerator.device, dtype=torch.float16, requires_grad=False)
lpips = LatentLPIPS(backbone_type=args.model_type, pretrained_backbone_path=args.pretrained_backbone_path, use_dropout=True, eval_mode=False)
rankLoss = BCERankingLoss()
trainable_params = list(lpips.parameters()) + list(rankLoss.parameters())
optimizer = torch.optim.Adam(trainable_params, lr=args.lr, betas=(0.5, 0.999))
train_dataset = load_from_disk(args.dataset_name)
valid_dataset = load_from_disk(args.val_dataset_name)
with accelerator.main_process_first():
train_dataset = train_dataset.with_transform(partial(preprocess, resolution=(512, 512)))
valid_dataset = valid_dataset.with_transform(partial(preprocess, resolution=(512, 512)))
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
shuffle=True,
collate_fn=collate_fn,
batch_size=args.batch_size,
num_workers=args.dataloader_num_workers,
)
valid_dataloader = torch.utils.data.DataLoader(
valid_dataset,
shuffle=False,
collate_fn=collate_fn,
batch_size=args.batch_size,
num_workers=args.dataloader_num_workers,
drop_last=True
)
lpips, rankLoss, optimizer, train_dataloader, valid_dataloader = accelerator.prepare(
lpips, rankLoss, optimizer, train_dataloader, valid_dataloader
)
if accelerator.is_main_process:
accelerator.init_trackers("E-Latent LPIPS", config=vars(args))
num_update_steps_per_epoch = math.ceil(len(train_dataloader))
total_batch_size = args.batch_size * accelerator.num_processes
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_epochs}")
logger.info(f" Num Update steps per epoch = {num_update_steps_per_epoch}")
logger.info(f" Instantaneous batch size per device = {args.batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed) = {total_batch_size}")
logger.info(f" Total optimization steps = {num_update_steps_per_epoch * args.num_epochs}")
logger.info(f" Total trainable parameters = {sum(p.numel() for p in trainable_params if p.requires_grad)}")
first_epoch = 0
global_step = 0
for epoch in range(first_epoch, args.num_epochs):
progress_bar = tqdm(range(num_update_steps_per_epoch), disable=not accelerator.is_local_main_process, dynamic_ncols=True)
progress_bar.set_description(f"Epoch: {epoch}/{args.num_epochs}")
lpips.train()
for step, batch in enumerate(train_dataloader):
latents_ref = vae.encode(batch["ref"].to(vae.dtype)).latent_dist.sample()
latents_p0 = vae.encode(batch["p0"].to(vae.dtype)).latent_dist.sample()
latents_p1 = vae.encode(batch["p1"].to(vae.dtype)).latent_dist.sample()
latents_ref = scale_vae_output(args.vae_type, vae, latents_ref).float()
latents_p0 = scale_vae_output(args.vae_type, vae, latents_p0).float()
latents_p1 = scale_vae_output(args.vae_type, vae, latents_p1).float()
d0 = lpips(latents_ref, latents_p0)
d1 = lpips(latents_ref, latents_p1)
judge = batch["judge"].view(d0.shape)
loss = rankLoss(d0, d1, judge*2-1) # convert to -1 1
acc = compute_accuracy(d0,d1,judge)
accelerator.backward(loss.mean())
optimizer.step()
optimizer.zero_grad()
if accelerator.sync_gradients:
for module in lpips.modules():
if isinstance(module, nn.Conv2d) and module.kernel_size == (1, 1):
module.weight.data = torch.clamp(module.weight.data, min=0)
gathered_loss = accelerator.gather(loss.repeat(args.batch_size))
gathered_acc = accelerator.gather(torch.tensor(acc, device=accelerator.device))
gathered_d0, gathered_d1 = accelerator.gather(d0), accelerator.gather(d1)
abs_diff = torch.abs(gathered_d0 - gathered_d1)
accelerator.log({
"train_loss": gathered_loss.mean().item(),
"train_accuracy": gathered_acc.mean().item(),
"d0_d1_abs_diff": abs_diff.mean().item(),
"lr": optimizer.param_groups[0]["lr"]
}, step=global_step)
progress_bar.update(1)
global_step += 1
if epoch >= args.num_epochs // 2:
old_lr = optimizer.param_groups[0]["lr"]
next_lr = old_lr - (args.lr / (args.num_epochs // 2))
for param_group in optimizer.param_groups:
param_group["lr"] = next_lr
accelerator.wait_for_everyone()
# Validation
logger.info("Running validation")
lpips.eval()
d0s = []
d1s = []
gts = []
val_progress_bar = tqdm(total=len(valid_dataloader), disable=not accelerator.is_local_main_process, dynamic_ncols=True)
val_progress_bar.set_description(f"Validation Epoch: {epoch}/{args.num_epochs}")
for step, batch in enumerate(valid_dataloader):
latents_ref = vae.encode(batch["ref"].to(vae.dtype)).latent_dist.sample()
latents_p0 = vae.encode(batch["p0"].to(vae.dtype)).latent_dist.sample()
latents_p1 = vae.encode(batch["p1"].to(vae.dtype)).latent_dist.sample()
latents_ref = scale_vae_output(args.vae_type, vae, latents_ref).float()
latents_p0 = scale_vae_output(args.vae_type, vae, latents_p0).float()
latents_p1 = scale_vae_output(args.vae_type, vae, latents_p1).float()
with torch.no_grad():
d0 = lpips(latents_ref, latents_p0)
d1 = lpips(latents_ref, latents_p1)
d0s.append(accelerator.gather(d0).cpu().numpy())
d1s.append(accelerator.gather(d1).cpu().numpy())
gts.append(accelerator.gather(batch["judge"]).cpu().numpy())
val_progress_bar.update(1)
val_progress_bar.close()
d0s = np.concatenate(d0s).flatten()
d1s = np.concatenate(d1s).flatten()
gts = np.concatenate(gts).flatten()
scores = (d0s < d1s) * (1. - gts) + (d1s < d0s) * gts + (d1s == d0s) * .5
mean_score = np.mean(scores)
if accelerator.is_main_process:
accelerator.log({"valid_2afc_score": mean_score}, step=global_step)
logger.info(f"EPOCH: {epoch}, Validation 2AFC Score: {mean_score:.4f}")
accelerator.save_state(os.path.join(args.output_dir, f"checkpoint-ep={epoch}"))
accelerator.wait_for_everyone()
accelerator.wait_for_everyone()
accelerator.end_training()
def eval_only(args):
logger = get_logger(__name__, log_level="INFO")
accelerator = Accelerator(
gradient_accumulation_steps=1,
mixed_precision="no",
even_batches=False, # To ensure exact number of val samples
)
if accelerator.is_local_main_process:
diffusers.utils.logging.set_verbosity_info()
else:
diffusers.utils.logging.set_verbosity_error()
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if args.seed is not None:
set_seed(args.seed)
vae = load_vae(args.vae_type, device=accelerator.device, dtype=torch.float16, requires_grad=False)
lpips = LatentLPIPS(backbone_type=args.model_type, backbone_in_channels=4 if args.vae_type in ["sd1", "sdxl"] else 16,
pretrained_full_model_path=args.eval_model_path)
valid_dataset = load_from_disk(args.val_dataset_name)
with accelerator.main_process_first():
valid_dataset = valid_dataset.with_transform(partial(preprocess, resolution=(512, 512)))
valid_dataloader = torch.utils.data.DataLoader(
valid_dataset,
shuffle=False,
collate_fn=collate_fn,
batch_size=args.batch_size,
num_workers=args.dataloader_num_workers,
)
lpips, valid_dataloader = accelerator.prepare(lpips, valid_dataloader)
logger.info("***** Running evaluation *****")
logger.info(f" Num examples = {len(valid_dataset)}")
logger.info(f" Batch size = {args.batch_size}")
lpips.eval()
d0s = []
d1s = []
gts = []
progress_bar = tqdm(total=len(valid_dataloader), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Evaluating")
for step, batch in enumerate(valid_dataloader):
latents_ref = vae.encode(batch["ref"].to(vae.dtype)).latent_dist.sample()
latents_p0 = vae.encode(batch["p0"].to(vae.dtype)).latent_dist.sample()
latents_p1 = vae.encode(batch["p1"].to(vae.dtype)).latent_dist.sample()
latents_ref = scale_vae_output(args.vae_type, vae, latents_ref).float()
latents_p0 = scale_vae_output(args.vae_type, vae, latents_p0).float()
latents_p1 = scale_vae_output(args.vae_type, vae, latents_p1).float()
with torch.no_grad():
d0 = lpips(latents_ref, latents_p0)
d1 = lpips(latents_ref, latents_p1)
d0s.append(accelerator.gather(d0).cpu().numpy())
d1s.append(accelerator.gather(d1).cpu().numpy())
gts.append(accelerator.gather(batch["judge"]).cpu().numpy())
progress_bar.update(1)
# Gather evaluation results from all processes
accelerator.wait_for_everyone()
d0s = np.concatenate(d0s).flatten()
d1s = np.concatenate(d1s).flatten()
gts = np.concatenate(gts).flatten()
scores = (d0s < d1s) * (1. - gts) + (d1s < d0s) * gts + (d1s == d0s) * .5
mean_score = np.mean(scores)
logger.info(f"Evaluation Results - 2AFC Score: {mean_score:.5f}, Total Samples: {len(gts)}")
accelerator.wait_for_everyone()
if __name__ == "__main__":
args = parse_args()
if args.eval_only:
eval_only(args)
else:
main(args)