forked from pytorch/torchtune
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mini_full.yaml
105 lines (90 loc) · 3.09 KB
/
mini_full.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# Config for multi-device full finetuning in full_finetune_distributed.py
# using a Phi3 Mini 4K Instruct
#
# This config assumes that you've run the following command before launching
# this run:
# tune download microsoft/Phi-3-mini-4k-instruct --output-dir /tmp/Phi-3-mini-4k-instruct --hf-token <HF_TOKEN>
#
# Run this config on 4 GPUs using the following:
# tune run --nproc_per_node 4 full_finetune_distributed --config phi3/mini_full
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run --nproc_per_node 4 full_finetune_distributed --config phi3/mini_full checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works best when the model is being fine-tuned on 2+ GPUs.
# Single device full finetuning requires more memory optimizations. It's
# best to use mini_low_memory.yaml for those cases
output_dir: /tmp/torchtune/phi3_mini/full # /tmp may be deleted by your system. Change it to your preference.
# Model arguments
model:
_component_: torchtune.models.phi3.phi3_mini
# Tokenizer
tokenizer:
_component_: torchtune.models.phi3.phi3_mini_tokenizer
path: /tmp/Phi-3-mini-4k-instruct/tokenizer.model
max_seq_len: null
# Checkpointer
checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/Phi-3-mini-4k-instruct
checkpoint_files: [
model-00001-of-00002.safetensors,
model-00002-of-00002.safetensors
]
recipe_checkpoint: null
output_dir: ${output_dir}
model_type: PHI3_MINI
resume_from_checkpoint: False
# Dataset
dataset:
_component_: torchtune.datasets.alpaca_cleaned_dataset
packed: False # True increases speed
seed: null
shuffle: True
# Fine-tuning arguments
epochs: 1
max_steps_per_epoch: null
batch_size: 2
gradient_accumulation_steps: 8 # Use to increase effective batch size
optimizer:
_component_: torch.optim.AdamW
fused: True
lr: 5e-6
loss:
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss
compile: False # torch.compile the model + loss, True increases speed + decreases memory
optimizer_in_bwd: False # True saves memory. Requires gradient_accumulation_steps=1
# Training env
device: cuda
# Memory management
enable_activation_checkpointing: True # True reduces memory
enable_activation_offloading: False # True reduces memory
dtype: bf16
# Logging
metric_logger:
_component_: torchtune.training.metric_logging.DiskLogger
log_dir: ${output_dir}/logs
log_every_n_steps: 1
log_peak_memory_stats: True
# Profiler (disabled)
profiler:
_component_: torchtune.training.setup_torch_profiler
enabled: False
#Output directory of trace artifacts
output_dir: ${output_dir}/profiling_outputs
#`torch.profiler.ProfilerActivity` types to trace
cpu: True
cuda: True
#trace options passed to `torch.profiler.profile`
profile_memory: False
with_stack: False
record_shapes: True
with_flops: False
# `torch.profiler.schedule` options:
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat
wait_steps: 5
warmup_steps: 3
active_steps: 2
num_cycles: 1