-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsetup.py
187 lines (149 loc) · 5.26 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
'''
@Description: Setup for contextlab project
@Author: Songyang Zhang
@Email: [email protected]
@Date: 2019-08-11 12:30:28
@LastEditors: Songyang Zhang
@LastEditTime: 2019-09-27 19:58:41
'''
import glob
import os
import subprocess
import time
import platform
import torch
from setuptools import find_packages
from setuptools import setup
from torch.utils.cpp_extension import CUDA_HOME
from torch.utils.cpp_extension import CppExtension
from torch.utils.cpp_extension import CUDAExtension
from setuptools import Extension, find_packages, setup
from Cython.Build import cythonize
from torch.utils.cpp_extension import BuildExtension, CUDAExtension
requirements = ['torch']
def readme():
with open('README.md', encoding='utf-8') as f:
content = f.read()
return content
version_file = 'contextlab/version.py'
if torch.cuda.is_available():
if 'LD_LIBRARY_PATH' not in os.environ:
raise Exception('LD_LIBRARY_PATH is not set.')
cuda_lib_path = os.environ['LD_LIBRARY_PATH'].split(':')
else:
raise Exception('This implementation is only avaliable for CUDA devices.')
MAJOR = 0
MINOR = 2
PATCH = 0
SUFFIX = ''
SHORT_VERSION = '{}.{}.{}{}'.format(MAJOR, MINOR, PATCH, SUFFIX)
def get_git_hash():
def _minimal_ext_cmd(cmd):
# construct minimal environment
env = {}
for k in ['SYSTEMROOT', 'PATH', 'HOME']:
v = os.environ.get(k)
if v is not None:
env[k] = v
# LANGUAGE is used on win 32
env['LANGUAGE'] = 'C'
env['LANG'] = 'C'
env['LC_ALL'] = 'C'
out = subprocess.Popen(
cmd, stdout=subprocess.PIPE, env=env).communicate()[0]
return out
try:
out = _minimal_ext_cmd(['git', 'rev-parse', 'HEAD'])
sha = out.strip().decode('ascii')
except OSError:
sha = 'unknown'
return sha
def get_hash():
if os.path.exists('.git'):
sha = get_git_hash()[:7]
elif os.path.exists(version_file):
try:
from pluscv.version import __version__
sha = __version__.split('+')[-1]
except ImportError:
raise ImportError('Unable to get git version')
else:
sha = 'unknown'
return sha
def write_version_py():
content = """# Generated Version File
# Time: {}
__version__ = '{}'
short_version = '{}'
"""
sha = get_hash()
VERSION = SHORT_VERSION + '+' + sha
with open(version_file, 'w') as f:
f.write(content.format(time.asctime(), VERSION, SHORT_VERSION))
def get_version():
with open(version_file, 'r') as f:
exec(compile(f.read(), version_file, 'exec'))
return locals()['__version__']
def make_cuda_ext(name, module, sources, include_dirs=[]):
return CUDAExtension(
name='{}.{}'.format(module, name),
sources=[os.path.join(*module.split('.'), p) for p in sources],
include_dirs=include_dirs,
library_dirs=cuda_lib_path,
extra_compile_args={
'cxx': ['-O3'],
'nvcc': [
'-O3',
# '-D__CUDA_NO_HALF_OPERATORS__',
# '-D__CUDA_NO_HALF_CONVERSIONS__',
# '-D__CUDA_NO_HALF2_OPERATORS__',
]
})
def tree_filter_files():
extensions_dir = 'contextlab/layers/tree_filter/src'
main_file = glob.glob(os.path.join(extensions_dir, "*.cpp"))
source_cpu = glob.glob(os.path.join(extensions_dir, "*", "*.cpp"))
source_cuda = glob.glob(os.path.join(extensions_dir, "*", "*.cu"))
sources = source_cpu + source_cuda + main_file
return extensions_dir, sources
if __name__ == "__main__":
write_version_py()
tree_extensions_dir, tree_sources = tree_filter_files()
setup(
name='contextlab',
version=get_version(),
author="Songyang Zhang",
url="https://github.com/SHTUPLUS/contextlab",
long_description=readme(),
description="Context Feature Augmentation Lab developed with PyTorch from ShanghaiTech PLUS Lab",
packages=find_packages(exclude=("src",)),
license='Apache License 2.0',
install_requires=requirements,
ext_modules=[
# make_cuda_ext(
# name='tree_filter_cuda',
# module='contextlab.layers.tree_filter',
# include_dirs=[tree_extensions_dir],
# sources=tree_sources),
CUDAExtension(
name='contextlab.layers.tree_filter.functions.tree_filter_cuda',
# module='contextlab.layers.tree_filter',
include_dirs=[tree_extensions_dir],
sources=tree_sources,
library_dirs=cuda_lib_path,
extra_compile_args={'cxx':['-O3'],
'nvcc':['-O3']}),
CUDAExtension(
name='contextlab.layers.cc_attention.rcca',
sources=['contextlab/layers/cc_attention/src/lib_cffi.cpp',
'contextlab/layers/cc_attention/src/ca.cu'],
extra_compile_args= ['-std=c++11'],
extra_cflags=["-O3"],
extra_cuda_cflags=["--expt-extended-lambda"],
)
],
cmdclass={
'build_ext': BuildExtension
},
zip_safe=False
)