-
Notifications
You must be signed in to change notification settings - Fork 9
/
plotting.py
398 lines (333 loc) · 13.1 KB
/
plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import numpy as np
import traceback
from importlib.util import find_spec
import itertools
from scipy.optimize import curve_fit
from scipy.special import erf
if find_spec("matplotlib") is None or find_spec("seaborn") is None:
raise RuntimeError(
"ROC estimation can only be done when matplotlib and seaborn are installed."
)
else:
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(context="talk", style="ticks")
class ScoreHistogramFdr:
def __init__(self):
self.fig = plt.figure(figsize=(5 * 2, 5))
self.hist_ax = self.fig.add_subplot(1, 2, 1)
self.fdr_ax = self.fig.add_subplot(1, 2, 2)
def draw_histogram(self, scores, nbins=30, return_bins=False):
y, x_hist, _ = self.hist_ax.hist(
scores, bins=nbins, histtype="step", color="grey"
)
self.hist_ax.set_xlabel(r"${LCC}_{max}$")
self.hist_ax.set_xlim(x_hist[0], x_hist[-1])
self.hist_ax.set_ylabel("Frequency")
if return_bins:
return y, x_hist
def draw_bimodal(self, x, y1, y2, ymax=None):
# plot bimodal model and the gaussian particle population
self.hist_ax.plot(
x, y1, lw=3.5, alpha=0.9, color="tab:blue"
) # , label='Bimodal model')
self.hist_ax.plot(
x, y2, lw=4, alpha=0.9, color="tab:orange"
) # , label='True positives')
# population = params[2:5]
if ymax is not None:
self.hist_ax.set_ylim(0, ymax)
# self.hist_ax.legend(loc='upper right')
def draw_score_threshold(self, x, ymax):
self.hist_ax.vlines(
x, 0, ymax, linestyle="dashed", label=f"Cutoff: {x:.2f}", color="black"
)
self.hist_ax.legend(loc="upper right")
def draw_fdr_recall(self, fdr, recall, optimal_id, ruc):
self.fdr_ax.scatter(fdr, recall, facecolors="none", edgecolors="gray", s=25)
# add optimal threshold in green
self.fdr_ax.scatter(
fdr[optimal_id],
recall[optimal_id],
s=25,
color="black",
label=f"RUC: {ruc:.2f}",
)
self.fdr_ax.plot([0, 1], [0, 1], ls="--", c=".3", lw=1)
self.fdr_ax.set_xlabel("FDR")
self.fdr_ax.set_ylabel("Recall")
self.fdr_ax.set_xlim(0, 1)
self.fdr_ax.set_xticks([0, 0.2, 0.4, 0.6, 0.8, 1])
self.fdr_ax.set_ylim(0, 1)
self.fdr_ax.set_yticks([0, 0.2, 0.4, 0.6, 0.8, 1])
self.fdr_ax.legend(loc="lower right")
def write(self, filename, quality=300, transparency=False, bbox="tight"):
plt.tight_layout()
plt.savefig(filename, dpi=quality, transparent=transparency, bbox_inches=bbox)
def display(self):
plt.tight_layout()
plt.show()
def check_square_fdr(fdr, recall, epsilon=1e-3):
"""
@param fdr: list of fdr values
@type fdr: L{list}
@param recall: list of recall values
@type recall: L{list}
@param epsilon: tolerance for closeness to 0 and 1
@type epsilon: L{float}
@return: boolean of whether the FDR is almost square within tolerance
@rtype: L{bool}
@author: Marten Chaillet
"""
# fdr and recall should contain values very close to 0 and 1, respectively
# if function is square
union = [
(f, r)
for f, r in zip(fdr, recall)
if ((np.abs(0.0 - f) < epsilon) and (np.abs(1.0 - r) < epsilon))
]
return bool(union)
def distance_to_diag(fdr, recall):
"""
@param fdr: list of fdr values
@type fdr: L{list}
@param recall: list of recall values
@type recall: L{list}
@return: list of distance of each fdr, recall combination to diagonal line
@rtype: L{list}
@author: Marten Chaillet
"""
# two point on the diagonal to find the distance to
lp1, lp2 = (0, 0), (1, 1)
# list to hold distances
distance = []
for f, r in zip(fdr, recall):
d = np.abs(
(lp2[0] - lp1[0]) * (lp1[1] - r) - (lp1[0] - f) * (lp2[1] - lp1[1])
) / np.sqrt((lp2[0] - lp1[0]) ** 2 + (lp2[1] - lp1[1]) ** 2)
distance.append(d)
return distance
def calculate_histogram(scores, num_steps):
# construct x and y array according to the given peak index
# preferably input is already sorted
scores.sort() # this is sorted from lowest to highest
min = scores[0]
max = scores[-1]
step = (max - min) / num_steps
x = []
for i in range(num_steps):
x.append(min + i * step)
x.append(max)
y = []
for i in range(num_steps):
lower = x[i]
upper = x[i + 1]
n = len([v for v in scores if lower <= v <= upper])
y.append(n)
return x, y
def evaluate_estimates(estimated_positions, ground_truth_positions, tolerance):
"""
Estimated_positions numpy array, ground truth positions numpy array
:param estimated_positions:
:type estimated_positions:
:param ground_truth_positions:
:type ground_truth_positions:
:param tolerance:
:type tolerance:
:return:
:rtype:
"""
from scipy.spatial.distance import cdist
n_estimates = estimated_positions.shape[0]
matrix = cdist(estimated_positions, ground_truth_positions, metric="euclidean")
correct = [0] * n_estimates
for i in range(n_estimates):
if matrix[i].min() < tolerance:
correct[i] = 1
return correct
def fdr_recall(correct_particles, scores):
assert all(i > j for i, j in itertools.pairwise(scores)), print(
"Scores list should be decreasing."
)
n_true_positives = sum(correct_particles)
true_positives, false_positives = 0, 0
fdr, recall = [], []
for correct, score in zip(correct_particles, scores):
if correct:
true_positives += 1
else:
false_positives += 1
if n_true_positives == 0:
recall.append(0)
else:
recall.append(true_positives / n_true_positives)
fdr.append(false_positives / (true_positives + false_positives))
return fdr, recall
def get_distance(line, point):
a1, b1 = line
x, y = point
a2 = -(1 / a1)
b2 = y - a2 * x
x_int = (b2 - b1) / (a1 - a2)
y_int = a2 * x_int + b2
return np.sqrt((x_int - x) ** 2 + (y_int - y) ** 2)
def distance_to_random(fdr, recall):
auc = [0] * len(fdr)
for i in range(len(fdr)):
d = get_distance((1, 0), (fdr[i], recall[i])) # AUC should be 1 at most not 1/2
if recall[i] > fdr[i]:
auc[i] = d
else:
auc[i] = -d
return max(auc), np.argmax(auc)
# ========== functions for fitting ==========
# define gaussian function with parameters to fit
def gauss(x, mu, sigma, amp):
return amp * np.exp(-((x - mu) ** 2) / (2 * sigma**2))
# integral of gaussian with certain sigma and A
def gauss_integral(sigma, amp):
# mu does not influence the integral
return amp * np.abs(sigma) * np.sqrt(2 * np.pi)
# define bimodal function of two gaussians to fit both populations
def bimodal(x, mu1, sigma1, amp1, mu2, sigma2, amp2):
return gauss(x, mu1, sigma1, amp1) + gauss(x, mu2, sigma2, amp2)
def plist_quality_gaussian_fit(
lcc_max_values,
score_volume,
particle_peak_index,
force_peak=False,
output_figure_name=None,
crop_hist=False,
num_bins=30,
n_tomograms=1,
):
# read out the scores
correlation_scores = np.array(sorted(lcc_max_values, reverse=True))
# draw the histogram
plot = ScoreHistogramFdr()
y, x_hist = plot.draw_histogram(
correlation_scores, nbins=num_bins, return_bins=True
)
try:
# ===== fit bimodal distribution =====
# adjust x to center of each bin so len(x)==len(y)
x = (x_hist[1:] + x_hist[:-1]) / 2
hist_step = x_hist[1] - x_hist[0]
# noise gaussian std
# noise_sigma = np.sqrt((score_volume.std() ** 2) * n_tomograms)
# if n_tomograms > 1 else score_volume.std()
noise_sigma = score_volume.std()
noise_mean = score_volume.mean()
noise_size = score_volume.size * n_tomograms
# noise gaussian A value
noise_a = ((noise_size) / (noise_sigma * np.sqrt(2 * np.pi))) * hist_step
# expected values
# left gaussian expectation:
# score volume is skewed gaussian, fit only sigma with upper limit
# (skewed because it only contains highest score at each position)
# right gaussian expectation:
# mu ~ x[half] and A ~ y[half]
expected = (noise_sigma, x[particle_peak_index], 0.1, y[particle_peak_index])
# force peak of particle population to be at peak index
if force_peak:
bounds = (
[noise_sigma, x[particle_peak_index] - 0.01, 0, 0],
[noise_sigma * 1.5, x[particle_peak_index] + 0.01, 0.1, y[1]],
)
else:
bounds = (
[noise_sigma, x[int(len(x) * 0.25)], 0, 0],
[noise_sigma * 1.5, x[-1], 0.1, y[1]],
)
# TODO use lambda expression to fix mu_1 and sigma_1
# params_names = ['mu_1', 'sigma_1', 'A_1', 'mu_2', 'sigma_2', 'A_2']
params_names = ["sigma_1", "mu_2", "sigma_2", "A_2"]
# skip first position as the noise peak there is likely incorrect
params, cov = curve_fit(
lambda x, p1, p2, p3, p4: bimodal(x, noise_mean, p1, noise_a, p2, p3, p4),
x[1:],
y[1:],
p0=expected,
bounds=bounds,
maxfev=2000,
) # max iterations argument: maxfev=2000)
# give sigma of fit for each parameter
sigma = np.sqrt(np.diag(cov))
# print information about fit of the model
print("\nfit of the bimodal model:")
print("\testimated\t\tsigma")
for n, p, s in zip(params_names, params, sigma):
print(f"{n}\t{p:.3f}\t\t{s:.3f}")
print("\n")
noise, population = ((noise_mean, params[0], noise_a), tuple(params[1:4]))
y_bimodal = bimodal(x, *noise, *population)
y_gauss = gauss(x, *population)
if crop_hist:
plot.draw_bimodal(x, y_bimodal, y_gauss, ymax=3 * population[2])
else:
plot.draw_bimodal(x, y_bimodal, y_gauss)
# ===== Generate a ROC curve =====
roc_steps = 50
x_roc = np.flip(np.linspace(x[0], x[-1], roc_steps))
# find ratio of hist step vs roc step
roc_step = (x[-1] - x[0]) / roc_steps
delta = (
hist_step / roc_step
) # can be used to divide true/false positives by per roc step
# variable for total number of tp and fp
n_false_positives = 0.0
# list for storing probability of true positives and false positives
# for each cutoff
recall = (
[]
) # recall = TP / (TP + FN); TP + FN is the full area under the Gaussian curve
fdr = [] # false discovery rate = FP / (TP + FP); == 1 - TP / (TP + FP)
# find integral of gaussian particle population;
# NEED TO DIVIDE BY HISTOGRAM BIN STEP
population_integral = gauss_integral(population[1], population[2]) / hist_step
print(
f" - estimation total number of true positives: {population_integral:.1f}"
)
# should use CDF (cumulative distribution function) of Gaussian,
# gives probability from -infinity to x
def cdf(x):
return 0.5 * (1 + erf((x - population[0]) / (np.sqrt(2) * population[1])))
def gauss_noise(x):
return gauss(x, *noise)
for x_i in x_roc:
# calculate probability of true positives x_i
# n_true_positives += gauss_pop(x_i) / delta
n_true_positives = (1 - cdf(x_i)) * population_integral
# determine false positives up to this point, could also use CDF
n_false_positives += gauss_noise(x_i) / delta
# add probability
recall.append(n_true_positives / population_integral)
fdr.append(n_false_positives / (n_true_positives + n_false_positives))
# find best classifier by calculating the rectangle under the curve
# for each roc point
recall = np.array(recall)
fdr = np.array(fdr)
rectangles = recall * (1 - fdr)
cutoff, ruc = rectangles.argmax(), rectangles.max()
# plot the threshold on the distribution plot for visual inspection
plot.draw_score_threshold(x_roc[cutoff], max(y))
print(f" - optimal correlation coefficient threshold is {x_roc[cutoff]:.3f}")
print(
(
" - this threshold approximately selects "
f"{(1 - cdf(x_roc[cutoff])) * population_integral:.1f} particles",
)
)
# plot the fdr curve
plot.draw_fdr_recall(fdr, recall, cutoff, ruc)
print("Rectangle Under Curve (RUC): ", ruc)
except (RuntimeError, ValueError):
# runtime error is because the model could not be fit,
# in that case print error and continue with execution
traceback.print_exc()
if output_figure_name is None:
plot.display()
else:
if output_figure_name.suffix not in [".svg", ".png"]:
output_figure_name = output_figure_name + ".png"
plot.write(output_figure_name)