-
Notifications
You must be signed in to change notification settings - Fork 3
/
demo.py
140 lines (118 loc) · 4.76 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os
import torch
import cv2
import numpy as np
import matplotlib.cm as cm
import matplotlib.colors
from src.loftr import default_cfg, LoFTR_RGBD, LoFTR_RGB
import matplotlib.pyplot as plt
def make_matching_figure(
img0, img1, mkpts0, mkpts1, color,
kpts0=None, kpts1=None, text=[], dpi=75, path=None):
# draw image pair
assert mkpts0.shape[0] == mkpts1.shape[0], f'mkpts0: {mkpts0.shape[0]} v.s. mkpts1: {mkpts1.shape[0]}'
fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi)
axes[0].imshow(img0)
axes[1].imshow(img1)
for i in range(2): # clear all frames
axes[i].get_yaxis().set_ticks([])
axes[i].get_xaxis().set_ticks([])
for spine in axes[i].spines.values():
spine.set_visible(False)
plt.tight_layout(pad=1)
if kpts0 is not None:
assert kpts1 is not None
axes[0].scatter(kpts0[:, 0], kpts0[:, 1], c='w', s=2)
axes[1].scatter(kpts1[:, 0], kpts1[:, 1], c='w', s=2)
# draw matches
if mkpts0.shape[0] != 0 and mkpts1.shape[0] != 0:
fig.canvas.draw()
transFigure = fig.transFigure.inverted()
fkpts0 = transFigure.transform(axes[0].transData.transform(mkpts0))
fkpts1 = transFigure.transform(axes[1].transData.transform(mkpts1))
fig.lines = [matplotlib.lines.Line2D((fkpts0[i, 0], fkpts1[i, 0]),
(fkpts0[i, 1], fkpts1[i, 1]),
transform=fig.transFigure, c='b', linewidth=0.5,alpha=0.3)
for i in range(len(mkpts0))]
axes[0].scatter(mkpts0[:, 0], mkpts0[:, 1], c=color, s=5)
axes[1].scatter(mkpts1[:, 0], mkpts1[:, 1], c=color, s=5)
# put txts
txt_color = 'k' if img0[:100, :200].mean() > 200 else 'w'
fig.text(
0.01, 0.99, '\n'.join(text), transform=fig.axes[0].transAxes,
fontsize=15, va='top', ha='left', color='k')
# save or return figure
if path:
plt.savefig(str(path), bbox_inches='tight', pad_inches=0)
print('saved', os.getcwd(), path)
plt.close()
else:
return fig
def pose_filter(mkpts0, mkpts1, K0, K1):
mkpts0 = (mkpts0 - K0[[0, 1], [2, 2]][None]) / K0[[0, 1], [0, 1]][None]
mkpts1 = (mkpts1 - K1[[0, 1], [2, 2]][None]) / K1[[0, 1], [0, 1]][None]
ransac_thr = 0.5 / np.mean([K0[0, 0], K1[1, 1], K0[0, 0], K1[1, 1]])
if len(mkpts0) < 6:
E = None
mask = None
else:
E, mask = cv2.findEssentialMat(
mkpts0, mkpts1, np.eye(3), threshold=ransac_thr, prob=0.99999, method=cv2.RANSAC)
return E, mask
root_dir = 'inference/'
pretrained_ckpt = "weights/indoor_student.ckpt"
matcher = LoFTR_RGB(config=default_cfg)
img0_pth, img1_pth = 'demo1.jpg','demo2.jpg'
img0_pth, img1_pth = root_dir + img0_pth, root_dir + img1_pth
sd = torch.load(pretrained_ckpt, map_location='cpu')['state_dict']
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in sd.items():
name = k[8:] # remove `matcher.`
new_state_dict[name] = v
matcher.load_state_dict(new_state_dict, strict=False)
matcher = matcher.eval().cuda()
img0_raw = cv2.imread(img0_pth, cv2.IMREAD_COLOR)
img1_raw = cv2.imread(img1_pth, cv2.IMREAD_COLOR)
img0_raw = cv2.resize(img0_raw, (640, 480))
img1_raw = cv2.resize(img1_raw, (640, 480))
img0 = cv2.cvtColor(img0_raw, cv2.COLOR_BGR2RGB)
img1 = cv2.cvtColor(img1_raw, cv2.COLOR_BGR2RGB)
img0 = np.ascontiguousarray(img0)
img1 = np.ascontiguousarray(img1)
mean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)
img0 = img0.astype(float)
img1 = img1.astype(float)
img0[:, :, 0] = (img0[:, :, 0] / 255. - mean[0]) / std[0]
img0[:, :, 1] = (img0[:, :, 1] / 255. - mean[1]) / std[1]
img0[:, :, 2] = (img0[:, :, 2] / 255. - mean[2]) / std[2]
img1[:, :, 0] = (img1[:, :, 0] / 255. - mean[0]) / std[0]
img1[:, :, 1] = (img1[:, :, 1] / 255. - mean[1]) / std[1]
img1[:, :, 2] = (img1[:, :, 2] / 255. - mean[2]) / std[2]
img0 = torch.from_numpy(img0).float()[None].cuda()
img1 = torch.from_numpy(img1).float()[None].cuda()
img0 = img0.permute(0, 3, 1, 2)
img1 = img1.permute(0, 3, 1, 2)
batch = {'image0': img0, 'image1': img1}
# Inference with LoFTR and get prediction
with torch.no_grad():
matcher(batch)
mkpts0 = batch['mkpts0_f'].cpu().numpy()
mkpts1 = batch['mkpts1_f'].cpu().numpy()
mconf = batch['mconf'].cpu().numpy()
#_, mask = pose_filter(mkpts0, mkpts1, K0, K1)
# ind_mask = np.where(mask == 1)
# mkpts0 = mkpts0[ind_mask[0], :]
# mkpts1 = mkpts1[ind_mask[0], :]
# mconf = mconf[ind_mask[0]]
# Draw
if mconf!=[]:
mconf=(mconf-mconf.min())/(mconf.max()-mconf.min())
color = cm.jet(mconf)
text = [
'3DG-STFM',
'Matches: {}'.format(len(mkpts0)),
]
fig = make_matching_figure(img0_raw, img1_raw, mkpts0, mkpts1, color, text=text,
path='demo.png')