-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loader_fact.py
158 lines (97 loc) · 4.37 KB
/
data_loader_fact.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import torch
import numpy as np
import pickle
import copy
import time
import glob
import fact_trans
stop_word=["i", "me", "my", "myself", "we", "our", "ours", "ourselves", "you", "your", "yours",
"yourself", "yourselves", "he", "him", "his", "himself", "she", "her", "hers", "herself",
"it", "its", "itself", "they", "them", "their", "theirs", "themselves", "what", "which",
"who", "whom", "this", "that", "these", "those", "am", "is", "are", "was", "were", "be",
"been", "being", "have", "has", "had", "having", "do", "does", "did", "doing", "a", "an",
"the", "and", "but", "if", "or", "because", "as", "until", "while", "of", "at", "by", "for",
"with", "about", "against", "between", "into", "through", "during", "before", "after", "above",
"below", "to", "from", "up", "down", "in", "out", "on", "off", "over", "under", "again",
"further", "then", "once", "here", "there", "when", "where", "why", "how", "all", "any",
"both", "each", "few", "more", "most", "other", "some", "such", "no", "nor", "not", "only",
"own", "same", "so", "than", "too", "very", "s", "t", "can", "will", "just", "don", "should",
"now","s","t","'","(",")",",",'"','us']
def pad_with_mask(data, pad_id, width=-1):
if (width == -1):
width = max(len(d) for d in data)
rtn_data = [d + [pad_id] * (width - len(d)) for d in data]
pad_mask = [[1] * len(d) + [0] * (width - len(d)) for d in data]
return rtn_data,pad_mask
def pad(data, pad_id, width=-1):
if (width == -1):
width = max(len(d) for d in data)
rtn_data = [d + [pad_id] * (width - len(d)) for d in data]
return rtn_data
def data_loader_train(article_no_res,abstract,tokenizer,arg,trans):
cls_id=101
seq_id=102
mask_id=103
pad_id=0
dec_start_id=1
end_id = 100
input_seq=[]
labels=[]
methods=[]
for i in range(len(article_no_res)):
raw_source=' '
for j in article_no_res[i]:
raw_source=raw_source+j+' '
raw_source=raw_source.strip()
raw_claim=abstract[i]
source,claim,one_label,method=trans.sample_tran(raw_source,raw_claim)
input_seq.append((source,claim))
labels.append(one_label)
methods.append(method)
#prepear src_d pos_d
pre_src_d=[]
pre_pos_d=[]
pre_seg_d=[]
doc_len=[]
for one in input_seq:
#first split for this example
one_pre_src_d=[]
one_pre_pos_d=[]
one_pre_seg_d=[]
source_encode=tokenizer.encode(one[0],add_special_tokens=False)
claim_encode=tokenizer.encode(one[1],add_special_tokens=False)
source_encode=source_encode[:200]
claim_encode=claim_encode[:60]
one_pre_src_d=one_pre_src_d+[cls_id]
one_pre_src_d=one_pre_src_d+source_encode+[seq_id]
one_pre_src_d=one_pre_src_d+claim_encode+[seq_id]
one_pre_pos_d=one_pre_pos_d+list(range(len(one_pre_src_d)))
one_pre_seg_d=one_pre_seg_d+[0]*(1+len(source_encode)+1)+[1]*(len(claim_encode)+1)
pre_src_d.append(one_pre_src_d)
pre_pos_d.append(one_pre_pos_d)
pre_seg_d.append(one_pre_seg_d)
doc_len.append(len(one_pre_seg_d))
src, pad_mask=torch.tensor(pad_with_mask(pre_src_d, 0))
pos, pad_mask=torch.tensor(pad_with_mask(pre_pos_d, 0))
seg, pad_mask=torch.tensor(pad_with_mask(pre_seg_d, 0))
labels=torch.tensor(labels)
#prepear attention mask
mask_d=[]
for one in range(len(input_seq)):
one_mask_d=np.zeros((len(src[0]), len(src[0])), dtype=np.float16)
for i in range(doc_len[one]):
one_mask_d[i][0:doc_len[one]]=1
mask_d.append(one_mask_d)
mask_d=torch.tensor(mask_d, dtype=torch.float)
clss=[]
for one in input_seq:
clss.append([0])
clss=torch.tensor(clss)
src=src.cuda()
pos=pos.cuda()
seg=seg.cuda()
mask_d=mask_d.cuda()
pad_mask=pad_mask.cuda()
labels=labels.cuda()
clss=clss.cuda()
return src,pos,seg,mask_d,pad_mask,labels,clss,methods