-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathBERT.py
414 lines (174 loc) · 9.78 KB
/
BERT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 26 20:44:19 2020
@author: yuanr
"""
import math
from copy import deepcopy as cp
import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorch_pretrained_bert.modeling import BertLayerNorm, BertSelfOutput, BertOutput, BertIntermediate, BertPooler
from pytorch_pretrained_bert.modeling import BertPreTrainedModel, BertLMPredictionHead
from scipy import signal
from torch.autograd import Variable
def clones(module, N):
return nn.ModuleList([cp(module) for _ in range(N)])
class BertEmbeddings(nn.Module):
def __init__(self, config):
super(BertEmbeddings, self).__init__()
self.word_embeddings = nn.Embedding(
config.vocab_size, config.hidden_size, padding_idx=0)
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(
config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids, position_ids=None, token_type_ids=None):
seq_length = input_ids.size(1)
if position_ids is None:
position_ids = torch.arange(
seq_length, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
words_embeddings = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = words_embeddings + position_embeddings + token_type_embeddings
# embeddings = words_embeddings + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class BertSelfAttention(nn.Module):
def __init__(self, config):
super(BertSelfAttention, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads))
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(
config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[
:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores/math.sqrt(self.attention_head_size)
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs_ = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs_)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[
:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer, attention_probs
class BertAttention(nn.Module):
def __init__(self, config):
super(BertAttention, self).__init__()
self.self = BertSelfAttention(config)
self.output = BertSelfOutput(config)
def forward(self, input_tensor, attention_mask):
self_output, attns = self.self(input_tensor, attention_mask)
attention_output = self.output(self_output, input_tensor)
return attention_output, attns
class BertLayer(nn.Module):
def __init__(self, config):
super(BertLayer, self).__init__()
self.attention = BertAttention(config)
self.intermediate = BertIntermediate(config)
self.output = BertOutput(config)
def forward(self, hidden_states, attention_mask):
attention_output, attns = self.attention(hidden_states, attention_mask)
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output, attns
class BertEncoder(nn.Module):
def __init__(self, config):
super(BertEncoder, self).__init__()
layer = BertLayer(config)
self.layer = clones(layer, config.num_hidden_layers)
def forward(self, hidden_states, attention_mask, output_all_encoded_layers=False):
outputs = []
attentions = []
for layer_module in self.layer:
hidden_states, attention = layer_module(hidden_states, attention_mask)
if output_all_encoded_layers:
outputs.append(hidden_states)
attentions.append(attention)
if not output_all_encoded_layers:
outputs.append(hidden_states)
attentions.append(attention)
return outputs, attentions
class BertModel(BertPreTrainedModel):
def __init__(self, config):
super(BertModel, self).__init__(config)
self.embeddings = BertEmbeddings(config)
self.encoder = BertEncoder(config)
self.pooler = BertPooler(config)
self.apply(self.init_bert_weights)
def forward(self, input_ids, position_ids, token_type_ids, attention_mask, output_all_encoded_layers=True):
extended_attention_mask = attention_mask.unsqueeze(1)
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
embedding_output = self.embeddings(
input_ids, position_ids, token_type_ids)
outputs, attentions = self.encoder(embedding_output,
extended_attention_mask,
output_all_encoded_layers=output_all_encoded_layers)
sequence_output = outputs[-1]
pooled_output = self.pooler(sequence_output)
return sequence_output, pooled_output, attentions
class Classifier(nn.Module):
def __init__(self, hidden_size):
super(Classifier, self).__init__()
self.linear1 = nn.Linear(hidden_size, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, x, mask_cls):
h = self.linear1(x).squeeze(-1)
# sent_scores = self.sigmoid(h) * mask_cls.float()
sent_scores = h * mask_cls.float()
return sent_scores
class ExtSummarizer_F(nn.Module):
def __init__(self):
super(ExtSummarizer_F, self).__init__()
self.bert = BertModel.from_pretrained('bert-base-uncased')
self.ext_layer = Classifier(768*2)
def forward(self, input_ids, position_ids, token_type_ids, attention_mask, clss, clsf, mask_clsf):
top_vec, _, attention = self.bert(input_ids, position_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
# fact level embedding
facts_vec = top_vec[torch.arange(top_vec.size(0)).unsqueeze(1), clsf]
# sentence level embedding
sents_vec = top_vec[torch.arange(top_vec.size(0)).unsqueeze(1), clss]
# document level embedding
# docus_vec = top_vec[torch.arange(top_vec.size(0)).unsqueeze(1), 0]
# docus_vec = docus_vec.expand(facts_vec.size()[0],facts_vec.size()[1],facts_vec.size()[2])
facts_vec= torch.cat((facts_vec,sents_vec),2)
# facts_vec= torch.cat((facts_vec,docus_vec),2)
# facts_vec= torch.cat((facts_vec,sents_vec,docus_vec),2)
facts_vec = facts_vec * mask_clsf[:, :, None].float()
sent_scores = self.ext_layer(facts_vec, mask_clsf).squeeze(-1)
return sent_scores, mask_clsf