-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
332 lines (261 loc) · 11.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import logging
import torch
import torch.nn as nn
from data import make_masks
from transformer_model import StyleTransformer
from classifier_model import TransformerClassifier
from utils import AccuracyCls, AccuracyRec, Loss
"""
Optimizers
"""
class NoamOpt:
"Optim wrapper that implements rate."
def __init__(self, model_size, factor, warmup, optimizer):
self.optimizer = optimizer
self._step = 0
self.warmup = warmup
self.factor = factor
self.model_size = model_size
self._rate = 0
def step(self):
"Update parameters and rate"
self._step += 1
rate = self.rate()
for p in self.optimizer.param_groups:
p['lr'] = rate
self._rate = rate
self.optimizer.step()
def rate(self, step=None):
"Implement `lrate` above"
if step is None:
step = self._step
return self.factor * \
(self.model_size ** (-0.5) *
min(step ** (-0.5), step * self.warmup ** (-1.5)))
def zero_grad(self):
self.optimizer.zero_grad()
def get_std_opt(model, h_dim, lr, warmup, eps=1e-9, factor=2, betas=(0.9, 0.98)):
return NoamOpt(h_dim, factor, warmup,
torch.optim.Adam(model.parameters(), lr=lr, betas=betas, eps=eps))
"""
Losses
"""
class MaskedCosineEmbeddingLoss(nn.Module):
"""
calculates mean of cosine embedding loss between masked Tensors
"""
def __init__(self, device, pad=1):
super().__init__()
self._loss = nn.CosineEmbeddingLoss()
self._pad = pad
self._device = device
def calc_sample_loss(self, src_embeds, preds, src):
pad_idx = (src == self._pad).nonzero()
if pad_idx.shape[0]:
pad_idx = pad_idx[0]
src_embeds = src_embeds[:pad_idx, :]
preds = preds[:pad_idx, :]
target = torch.ones(preds.shape[0]).to(self._device)
return self._loss(preds, src_embeds, target)
def forward(self, src_embeds, preds, src):
total_loss = 0.0
n_samples = src.shape[0]
for i in range(n_samples):
total_loss += self.calc_sample_loss(src_embeds[i, ...],
preds[i, ...],
src[i, ...])
return total_loss / n_samples
"""
Init Functions
"""
def load_pretrained_embedding_to_encoder(src_embed, embedding):
''' Helper function to modify encoder model embedding with pre-trained
embedding like Glove. '''
src_embed.lut.weight.data.copy_(embedding)
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def get_warmup_steps_from_params(train_set_size, train_batch_size, n_epochs,
dec_ratio, cls_ratio):
steps_per_epoch = train_set_size // train_batch_size
n_total_steps = n_epochs * steps_per_epoch
warmup_gen_steps = n_total_steps * dec_ratio
warmup_cls_steps = n_total_steps * cls_ratio
logging.info("total_steps {}, gen_warmup {}, cls_warmup {}".format(n_total_steps, warmup_gen_steps,
warmup_cls_steps))
return warmup_gen_steps, warmup_cls_steps
def init_models(vocab_size, params, word_embeddings=None):
model_gen = StyleTransformer(src_vocab=vocab_size, tgt_vocab=vocab_size,
N=params.N_LAYERS, d_model=params.H_DIM, d_ff=params.FC_DIM,
h=params.N_ATTN_HEAD, n_styles=params.N_STYLES, dropout=params.DO_RATE,
max_len=params.MAX_LEN)
model_cls = TransformerClassifier(output_size=params.N_STYLES, N=params.N_LAYERS_CLS, d_model=params.H_DIM,
d_ff=params.FC_DIM, h=params.N_ATTN_HEAD, dropout=params.DO_RATE_CLS,
input_size=vocab_size, max_len=params.MAX_LEN)
if word_embeddings is not None:
load_pretrained_embedding_to_encoder(model_gen.src_embed, word_embeddings)
load_pretrained_embedding_to_encoder(model_cls.src_embed, word_embeddings)
model_gen = model_gen.to(params.device)
model_cls = model_cls.to(params.device)
logging.info(f'model_cls has {count_parameters(model_cls):,} trainable parameters')
logging.info(f'model_gen has {count_parameters(model_gen):,} trainable parameters')
return model_gen, model_cls
def init_optimizers(model_gen, model_cls, train_iter_size, params):
if params.WARMUP_STEPS > 0:
gen_warmup = cls_warmup = params.WARMUP_STEPS
else:
gen_warmup, cls_warmup = get_warmup_steps_from_params(train_iter_size,
params.TRAIN_BATCH_SIZE,
params.N_EPOCHS,
params.GEN_WARMUP_RATIO,
params.CLS_WARMUP_RATIO)
opt_gen = get_std_opt(model_gen, h_dim=params.H_DIM, lr=params.GEN_LR, warmup=gen_warmup, factor=params.GEN_FACTOR)
opt_cls = get_std_opt(model_cls, h_dim=params.H_DIM, lr=params.CLS_LR, warmup=cls_warmup, factor=params.CLS_FACTOR)
return opt_gen, opt_cls
"""
Training Functions
"""
def train_cls_step(model_cls, cls_criteria,
opt_cls, src, src_mask, labels, cls_running_loss,
cls_acc, trans_cls=False):
# classifier loss
if trans_cls:
cls_preds = model_cls(src, src_mask, argmax=False)
else:
cls_preds = model_cls(src)
opt_cls.zero_grad()
cls_loss = cls_criteria(cls_preds, labels)
cls_acc.update(cls_preds, labels)
cls_running_loss.update(cls_loss)
cls_loss.backward()
opt_cls.step()
def train_gen_step(model_gen, seq2seq_criteria, model_cls, cls_criteria,
opt_gen, src, src_mask, labels, bt_running_loss, bt_acc, style_running_loss,
style_acc, trans_cls=False, bt_lambda=1.0, style_lambda=1.0):
model_gen.train()
# Negate labels for style transfer
target_labels = (~labels.bool()).long()
target_preds = model_gen(src, src_mask, target_labels, argmax=False)
if trans_cls:
style_preds = model_cls(target_preds, src_mask, argmax=True)
else:
style_preds = model_cls(target_preds)
bt_preds = model_gen(target_preds, src_mask, labels, argmax=True)
opt_gen.zero_grad()
# classifier
style_loss = cls_criteria(style_preds, target_labels)
style_acc.update(style_preds, target_labels)
style_running_loss.update(style_loss)
# bt loss
bt_preds = bt_preds.contiguous().view(-1, bt_preds.size(-1))
src = src.contiguous().view(-1)
bt_loss = seq2seq_criteria(bt_preds, src)
bt_running_loss.update(bt_loss)
bt_acc.update(bt_preds, src)
# optimize
loss = bt_lambda * bt_loss + style_lambda * style_loss
loss.backward()
opt_gen.step()
"""
Training loops
"""
def run_train_epoch(epoch, data_iter, model_gen, opt_gen,
model_cls, cls_criteria, seq2seq_criteria,
params):
verbose = params.VERBOSE
device = params.device
total_steps = len(data_iter.dataset) // params.TRAIN_BATCH_SIZE
period_steps = params.PERIOD_STEPS
logging.info('total epoch steps {}, period size {}'.format(total_steps,
period_steps))
style_running_loss = Loss()
bt_running_loss = Loss()
style_acc = AccuracyCls()
bt_acc = AccuracyRec()
model_cls.train()
model_gen.train()
curr_step = 0
for step, batch in enumerate(data_iter):
# prepare batch
src, labels = batch.text, batch.label
src_mask, _ = make_masks(src, src, device)
src = src.to(device)
src_mask = src_mask.to(device)
labels = labels.to(device)
train_gen_step(model_gen=model_gen, seq2seq_criteria=seq2seq_criteria, model_cls=model_cls,
cls_criteria=cls_criteria,
opt_gen=opt_gen, src=src, src_mask=src_mask, labels=labels, bt_running_loss=bt_running_loss,
bt_acc=bt_acc, style_running_loss=style_running_loss,
style_acc=style_acc, trans_cls=params.TRANS_CLS, bt_lambda=params.BT_LAMBDA,
style_lambda=params.STYLE_LAMBDA)
curr_step += 1
if curr_step == period_steps:
if verbose:
logging.info(
"e-{},s-{}: Training transformer on back-translation loss: style_loss {:.3f}, style_acc {:.3f},"
" bt_loss {:.3f}, bt_acc {:.3f}".format(
epoch,
step,
style_running_loss(),
style_acc(),
bt_running_loss(),
bt_acc()))
curr_step = 0
style_acc.reset()
bt_running_loss.reset()
style_running_loss.reset()
bt_acc.reset()
def train_gen_on_rec_loss(train_iter, model_gen, opt_gen, seq2seq_criteria, steps, params):
verbose = params.VERBOSE
device = params.device
rec_running_loss = Loss()
rec_acc = AccuracyRec()
model_gen.train()
for step, batch in enumerate(train_iter):
# prepare batch
src, labels = batch.text, batch.label
src_mask, _ = make_masks(src, src, device)
src = src.to(device)
src_mask = src_mask.to(device)
labels = labels.to(device)
preds = model_gen(src, src_mask, labels, argmax=False)
preds = preds.contiguous().view(-1, preds.size(-1))
src = src.contiguous().view(-1)
rec_loss = seq2seq_criteria(preds, src)
rec_running_loss.update(rec_loss)
rec_acc.update(preds, src)
# optimize decoder
loss = rec_loss
opt_gen.zero_grad()
loss.backward()
opt_gen.step()
if verbose and step % steps == steps - 1:
logging.info(
"s-{}: Training transformer on rec loss, rec_loss {}, rec_acc {}".format(step,
rec_running_loss(),
rec_acc()))
break
rec_running_loss.reset()
rec_acc.reset()
def train_cls(train_iter, model_cls, opt_cls, cls_criteria, params, epochs=1):
for epoch in range(epochs):
verbose = params.VERBOSE
device = params.device
cls_running_loss = Loss()
cls_acc = AccuracyCls()
model_cls.train()
for step, batch in enumerate(train_iter):
# prepare batch
src, labels = batch.text, batch.label
src_mask, _ = make_masks(src, src, device)
src = src.to(device)
src_mask = src_mask.to(device)
labels = labels.to(device)
train_cls_step(model_cls=model_cls, cls_criteria=cls_criteria, opt_cls=opt_cls, src=src, src_mask=src_mask,
labels=labels, cls_running_loss=cls_running_loss, cls_acc=cls_acc,
trans_cls=params.TRANS_CLS)
if verbose and step % 100 == 99:
logging.info(
"e-{},s-{}: Training cls loss {} acc {}".format(epoch, step, cls_running_loss(),
cls_acc()))
cls_running_loss.reset()
cls_acc.reset()