-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
297 lines (237 loc) · 10.8 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import numpy as np
import copy
import logging
import torch
import os
import pandas as pd
import math
from data import make_masks
from utils import AccuracyCls, AccuracyRec, Loss, preds_embedding_cosine_similarity
def evaluate(epoch, data_iter, model_enc, model_dec,
model_cls, cls_criteria, seq2seq_criteria,
ent_criteria, params):
''' Evaluate performances over test/validation dataloader '''
device = params.device
model_cls.eval()
model_enc.eval()
model_dec.eval()
cls_running_loss = Loss()
rec_running_loss = Loss()
ent_running_loss = Loss()
rec_acc = AccuracyRec()
cls_acc = AccuracyCls()
with torch.no_grad():
for i, batch in enumerate(data_iter):
if params.TEST_MAX_BATCH_SIZE and i == params.TEST_MAX_BATCH_SIZE:
break
# Prepare batch
src, labels = batch.text, batch.label
src_mask, trg_mask = make_masks(src, src, device)
src = src.to(device)
src_mask = src_mask.to(device)
trg_mask = trg_mask.to(device)
labels = labels.to(device)
# Classifier loss
encode_out = model_enc(src, src_mask)
cls_preds = model_cls(encode_out)
cls_loss = cls_criteria(cls_preds, labels)
cls_running_loss.update(cls_loss)
# Rec loss
preds = model_dec(encode_out, labels, src_mask, src, trg_mask)
rec_loss = seq2seq_criteria(preds.contiguous().view(-1, preds.size(-1)),
src.contiguous().view(-1))
rec_running_loss.update(rec_loss)
# Entropy loss
ent_loss = ent_criteria(cls_preds)
ent_running_loss.update(ent_loss)
# Accuracy
preds = preds[:, 1:, :]
preds = preds.contiguous().view(-1, preds.size(-1))
src = src[:, :-1]
src = src.contiguous().view(-1)
rec_acc.update(preds, src)
cls_acc.update(cls_preds, labels)
logging.info("Eval-e-{}: loss cls: {:.3f}, loss rec: {:.3f}, loss ent: {:.3f}".format(epoch, cls_running_loss(),
rec_running_loss(),
ent_running_loss()))
logging.info("Eval-e-{}: acc cls: {:.3f}, acc rec: {:.3f}".format(epoch, cls_acc(), rec_acc()))
# TODO - Roy - what metric to report ?
return rec_acc
def greedy_decode_sent(preds, id2word, eos_id):
''' Nauve greedy decoding - just argmax over the vocabulary distribution '''
preds = torch.argmax(preds, -1)
decoded_sent = preds.squeeze(0).detach().cpu().numpy()
# print(" ".join([id2word[i] for i in decoded_sent]))
decoded_sent = sent2str(decoded_sent, id2word, eos_id)
return decoded_sent, preds
def sent2str(sent_as_np, id2word, eos_id=None):
''' Gets sentence as a list of ids and transfers to string
Input is np array of ids '''
if not (isinstance(sent_as_np, np.ndarray)):
raise ValueError('Invalid input type, expected np array')
if eos_id:
end_id = np.where(sent_as_np == eos_id)[0]
if len(end_id) > 1:
sent_as_np = sent_as_np[:int(end_id[0])]
elif len(end_id) == 1:
sent_as_np = sent_as_np[:int(end_id)]
return " ".join([id2word[i] for i in sent_as_np])
def test_random_samples(data_iter, TEXT, model_gen, model_cls, device, src_embed=None, decode_func=None, num_samples=2,
transfer_style=True, trans_cls=False, embed_preds=False):
''' Print some sample text to validate the model.
transfer_style - bool, if True apply style transfer '''
word2id = TEXT.vocab.stoi
eos_id = int(word2id['<eos>'])
id2word = {v: k for k, v in word2id.items()}
model_gen.eval()
with torch.no_grad():
for step, batch in enumerate(data_iter):
if num_samples == 0: break
# Prepare batch
src, labels = batch.text[0, ...], batch.label[0, ...]
src = src.unsqueeze(0)
labels = labels.unsqueeze(0)
src_mask, _ = make_masks(src, src, device)
src = src.to(device)
src_mask = src_mask.to(device)
labels = labels.to(device)
true_labels = copy.deepcopy(labels)
# Logical not on labels if transfer_style is set
if transfer_style:
labels = (~labels.bool()).long()
# print("Original label ", true_labels, " Transfer label ", labels)
if src_embed:
embeds = src_embed(src)
preds = model_gen(embeds, src_mask, labels)
else:
preds = model_gen(src, src_mask, labels)
sent_as_list = src.squeeze(0).detach().cpu().numpy()
src_sent = sent2str(sent_as_list, id2word, eos_id)
src_label = 'pos' if true_labels.detach().item() == 1 else 'neg'
logging.info('Original: text: {}'.format(src_sent))
logging.info('Original: class: {}'.format(src_label))
if embed_preds:
preds = preds_embedding_cosine_similarity(preds, model_gen.src_embed)
if decode_func:
dec_sent, decoded = decode_func(preds, id2word, eos_id)
if src_embed:
decoded = src_embed(decoded)
if trans_cls:
cls_preds = model_cls(decoded, src_mask)
else:
cls_preds = model_cls(decoded)
pred_label = 'pos' if torch.argmax(cls_preds) == 1 else 'neg'
if transfer_style:
logging.info('Style transfer output:')
logging.info('Predicted: text: {}'.format(dec_sent))
logging.info('Predicted: class: {}'.format(pred_label))
else:
logging.info('Predicted: class: {}'.format(pred_label))
logging.info('\n')
num_samples -= 1
def tensor2text(vocab, tensor):
tensor = tensor.cpu().detach().numpy()
text = []
index2word = vocab.itos
eos_idx = vocab.stoi['<eos>']
# unk_idx = vocab.stoi['<unk>']
# stop_idxs = [vocab.stoi['!'], vocab.stoi['.'], vocab.stoi['?']]
for sample in tensor:
end_id = np.where(sample == eos_idx)[0]
if len(end_id) > 1:
sample = sample[:int(end_id[0])]
elif len(end_id) == 1:
sample = sample[:int(end_id)]
text.append(" ".join([index2word[i] for i in sample]))
return text
def generate_sentences(model_gen, data_iter, TEXT, params, limit=None):
device = params.device
vocab = TEXT.vocab
model_gen = model_gen.to(device)
model_gen.eval()
test_generated_sentences = []
test_original_sentences = []
test_original_labels = []
with torch.no_grad():
for i, batch in enumerate(data_iter):
# Prepare batch
src, labels = batch.text, batch.label
src_mask, _ = make_masks(src, src, device)
src = src.to(device)
src_mask = src_mask.to(device)
labels = labels.to(device)
# Negate labels
neg_labels = (~labels.bool()).long()
# Predict generated senteces
preds = model_gen(src, src_mask, neg_labels)
preds = torch.argmax(preds, dim=-1)
# From preds to text - greedy decode
test_generated_sentences += tensor2text(vocab, preds)
test_original_sentences += tensor2text(vocab, src)
test_original_labels += labels.detach().cpu().tolist()
if limit and i == (limit - 1):
break
return test_generated_sentences, test_original_sentences, test_original_labels
def print_generated_test_samples(model_gen, data_iter, TEXT, params, num_senteces=10):
num_batches = math.ceil(float(num_senteces) / data_iter.batch_size)
test_generated_sentences, test_original_sentences, _ = generate_sentences(model_gen, data_iter, TEXT, params, num_batches)
for gen, org in zip(test_generated_sentences[:num_senteces], test_original_sentences[:num_senteces]):
print('Original: ' + org)
print('Generated: ' + gen + '\n')
def generate_senteces_to_csv(model_gen, data_iter, TEXT, params, out_dir, file_name, limit=None):
test_generated_sentences, test_original_sentences, test_original_labels = generate_sentences(model_gen, data_iter, TEXT, params, limit)
if not os.path.exists(out_dir):
os.makedirs(out_dir)
data = np.array([test_generated_sentences, test_original_sentences, test_original_labels]).T
df = pd.DataFrame(data, columns=["generated_sentences", "original_sentences", "original_labels"])
df.to_csv(os.path.join(out_dir, file_name))
"""
TODO: fix
def test_user_string(sent, label, TEXT, model_gen, model_cls, device, decode_func=None,
transfer_style=True, trans_cls=False, embed_preds=False):
''' Print some sample text to validate the model.
transfer_style - bool, if True apply style transfer '''
word2id = TEXT.vocab.stoi
eos_id = int(word2id['<eos>'])
id2word = {v: k for k, v in word2id.items()}
# define tokenizer
en = English()
def id_tokenize(sentence):
return [word2id[tok.text] for tok in en.tokenizer(sentence)]
model_gen.eval()
with torch.no_grad():
# Prepare batch
token_ids = id_tokenize[sent]
src = torch.LongTensor(token_ids)
labels = torch.LongTensor(label).unsqueeze(0)
src_mask, _ = make_masks(src, src, device)
src = src.to(device)
src_mask = src_mask.to(device)
labels = labels.to(device)
true_labels = copy.deepcopy(labels)
# Logical not on labels if transfer_style is set
if transfer_style:
labels = (~labels.byte()).long()
print(labels, true_labels)
preds = model_gen(src, src_mask, labels)
src_label = 'pos' if true_labels.detach().item() == 1 else 'neg'
logging.info(f'Original: text: {src_sent}')
logging.info('Original: class: {}'.format(src_label))
if embed_preds:
preds = preds_embedding_cosine_similarity(preds, model_gen.src_embed)
if decode_func:
dec_sent, decoded = decode_func(preds, id2word, eos_id)
preds_for_cls = model_gen.src_embed(decoded)
if trans_cls:
cls_preds = model_cls(preds_for_cls, src_mask)
else:
cls_preds = model_cls(preds_for_cls)
pred_label = 'pos' if torch.argmax(cls_preds) == 1 else 'neg'
if transfer_style:
logging.info('Style transfer output:')
logging.info('Predicted: text: {}'.format(dec_sent))
logging.info('Predicted: class: {}'.format(pred_label))
else:
logging.info('Predicted: class: {}'.format(pred_label))
logging.info('\n')
"""