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Introduction
Joint Communication And Sensing (JCAS)

I Demand on the systems with
communication and sensing capabilities

I Shared hardware, reduced cost, higher
spectral and energy efficiencies

I Mutual information sharing
I Challenge: different beamformer (BF)

requirements
I Communication – stable accurately pointed

beam
I Sensing – time-varying scanning beams

Figure: An example of a wireless network [LH21]
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Introduction
Our approach

I Multibeam [Zha+18]
I Beam with two or more main lobes
I One lobe for communication, another for

sensing
I Generated by single analog antenna array
I Can meet various requirements, such as

power level, side-lobe level, beamwidth
I Communication and sensing beams can be

combined to improve SNR at Rx −1 0 1
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System Model

I Uniform linear array (ULA) with M elements

a(θ) =
[
1, ejπ sin (θ), ..., ejπ(M−1) sin (θ)

]T
I L multipath paths with AoDs θt,l and AoAs θr,l

H =

L∑
l=1

blδ(t − τl)ej2πfD,lta(θt,l)aT(θr,l)

where bl ∈ C is the amplitude of l-th path, τl
is the propagation delay, and fD,l is the
associated Doppler frequency
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System Model

I The receive signal

y(t) = wT
r Hwts(t − τl) +wT

r z(t) =
L∑

l=1

blej2πfD,lt(wT
r a(θr,l))(aT(θt,l)wt)s(t − τl) +wT

r z(t)

where z(t) is the additive white Gaussian noise vector with zero mean and variance σ2
n

I Assuming the mean power of the transmit signal s(t) is σ2
s , we can write the receive

signal-to-noise ratio (SNR) as

γ =
|wT

r Hwt|2

||wr||2
· σ

2
s
σ2
n
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Beam Generation

I Specify the desired array response
v = [v1, ..., vM]T

v = Dvpv

where Dv ∈ RM×M and pv ∈ RM×1 are the
desired pattern magnitude and phase
respectively

I The optimization problem can be formulated as

pv,opt = arg min
pv

||(AA† − I)Dvpv||22

A = [a1, ..., aK ]
T, K - analyzed directions.
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Beam Generation and Simple Combination

I Two-step Iterative Least Squares (ILS)
algorithm [SF05] will provide a sub-optimal
solution for wt,c and wt,s

I wt =
√
ρwt,c +

√
1− ρwt,s, with energy

parameter 0 ≤ ρ ≤ 1
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Optimized Combination

I Simple Combination does not provide an optimal combination of communication beam and
sensing beam.

I The new expression for combining two subbeams is given as

wt =
√
ρwt,c +

√
1− ρejϕwt,s

where ejϕ is a phase shifting term.
I The optimization of the phase-shifting term is considered for two cases:

I When the full channel matrix H is known at the Rx,
I When only the AoD θt of the dominating path is known at the Rx.
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Optimized Combination
Known Channel Matrix

I The optimal ϕ, ϕopt, can be obtained through maximizing the receiver SNR.
I The optimization problem is represented as

ϕopt = argmax
ϕ

|wT
r Hwt(ϕ)|2

||wr||2||wt(ϕ)||2
.

I The maximal ratio combining (MRC) is used at the receiver side. Thus, the receive BF vector
becomes wr = (Hwt(ϕ))

∗.
I The problem is rewritten as

ϕopt = argmax
ϕ

wt(ϕ)
HHHHwt(ϕ)

||wt(ϕ)||2
.

I The objective function is 2π periodic.
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Optimized Combination
Known dominating AoD

I In practice, it is hard to obtain full knowledge of the channel matrix.
I The optimization problem is represented as

ϕ̃opt = argmax
ϕ

||aT(θt)w̃t(ϕ̂)||2

||w̃t(ϕ̂)||2
.

where θt is the AoD of the dominating path.
I The objective function is also 2π periodic.
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Quantization of Multibeam Beamforming Vector
One Phase Shifter

I Most of the BF vector wt cannot be realized in a practical analog array.
I It must be transformed into predefined discrete phase values.
I Each element of wt is of the form wi = |wi|ejψi , i = 1, ...,M, where ψi is the phase of wi.
I The phase of wi is matched into the quantized value

β̂(i) = argmin
β̂∈B

|mod2π(ψi − β̂)|,

where β̂ ∈ B =
{
0,4β , 24β , ..., (2

b − 1)4β

}
with quantization step 4β = 2π/2b, and b is the

number of quantization bits.
I Problem: the mismatch of the amplitudes
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Quantization of Multibeam Beamforming Vector
Constellations of Single Phase shifter

I All points have different phase, but same magnitude.
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Two Phase Shifters

I Two phase Shifters can solve the issue of the amplitude mismatch.
I Three methods for creating the phase shifting values:

I separate quantization of individual phase shifters,
I joint quantization using combined quantization codebooks,
I quantization with optimized scalling factor.
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Two Phase Shifters
Separate Quantization of Individual Phase Shifters

I The elements wi of BF vector w can be rewritten as

wi = |wi|ejψi = ejβ(i)
1 + ejβ(i)

2 ,

I The quantized phase shifts are then determined separately

β̂
(i)
1 = arg min

β̂1∈B1

|mod2π(β
(i)
1 − β̂1)|,

β̂
(i)
2 = arg min

β̂2∈B2

|mod2π(β
(i)
2 − β̂2)|.

where β̂1 ∈ B1 =
{
0,4β1 , 24β1 , ..., (2

b1 − 1)4β1

}
and

β̂2 ∈ B2 =
{
0,4β2

, 24β2
, ..., (2b2 − 1)4β2

}
are the sets of the quantized phase values.
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Two Phase Shifters
Joint Quantization Using Combined Quantization Codebooks

I The codebook C with codes ĉk , which are generated by

ĉk = ejβ̂1 + ejβ̂2 ,

where ĉk is the k-th element of C.
I Two separate codebooks are defined as

β̂1 ∈ B1 =
{
0,4β1

, 24β1
, ..., (2b1 − 1)4β1

}
,

β̂2 ∈ B2 =
{
φ, φ+4β2

, ..., φ+ (2b2 − 1)4β2

}
,

where φ ∈ [0,4β2/2] is a constant.
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Two Phase Shifters
Joint Quantization Using Combined Quantization Codebooks

I The constellation points ĉk are normalized so that E[|ĉk|2] = 1/M, e.g., the normalization factor
for φ = 0 and φ = 4β2

/2 are

h1 =

√√√√ M
2b−1

2b−1∑
k=1

ĉ2k =
√
2 + 22−b

√
M,

h2 =

√√√√M
2b

2b∑
k=1

ĉ2k =
√
2M,

respectively.
I The BF weight wi can then be obtained by

ŵi = argmin
ĉk∈C

|wi − ĉk|2.
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Two Phase Shifters
Quantization with Optimized Scaling Factor

I In a joint quantization scheme, the normalization factors depend on the number of bits b and
the dimension of the array M.

I Instantaneous optimality for quantizing particular BF vectors guaranteed by IGSS-Q based on
the improved golden section search (IGSS) algorithm [Höpfinger ’1976]

I The IGSS-Q algorithm aims to find the optimal scaling factor υopt by iteratively solving

υopt = argmin
υ

||υwt − q̂(υ)||22,

where q̂(υ) is quantized BF vector.
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IGSS-Q

I Initial two different points x1 and x2 (x2 > x1).
I The searching interval is defined as

d = x2 − x1.

I Define two interior points a1 and a2 (a2 > a1 and a1, a2 ∈ [x1, x2]).
I Compute the errors at the four points in each iteration.
I The error is computed by using

e(υ) =
M∑
i=1

|υwi − q̂i|2.

where q̂i can be obtained by
q̂i = argmin

ĉk∈C
|υwi − ĉk|2.
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IGSS-Q

I Compare the errors of four points (x1 < a1 < a2 < x2).
I Update the searching interval:

I If the smallest error emin ∈ [e(x1), e(a1)], then

x2 = a2, a2 = a1, a1 = α(a2 − x1)

where α ∈ (0, 1).
I Otherwise, i.e., emin ∈ [e(a2), e(x2)]

x1 = a1, a1 = a2, a2 = α(a2 − x1)

I The searching interval becomes narrow after each interation.
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IGSS-Q

I When the interval d is smaller than a threshold, take either the upper bound x2 or the lower
bound x1 as υopt.

I Each elements q̂i of vector q̂ can obtained by

q̂i = argmin
ĉk∈C

|υoptwi − ĉk|2.

I The final quantized BF vector ŵt is given as

ŵt =
q̂

||q̂||
.
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Simulation Settings

I Analog uniform linear array with 16 omni-directional antennas for both communication and
sensing subbeams.

I There is an LOS path (0◦) for communication. All the other multipath components are
uniformly distributed within an angular range of 14◦ centered at the LOS direction.

I The mean power ratio between the LOS and NOLS signals is 10 dB.
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Beam Generation
Pattern optimization using two-step ILS
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I The optimized beam has lower side-lobe-level as the conventional ULA pattern

July 8, 2022 | TU Darmstadt | Communication Systems Group | Mengshuai Zhang, Rostyslav Olshevskyi | 28 NTS



Simple Combination
An optimized multibeam
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I A multibeam obtained via Simple Combination with ρ = 0.5
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Simple Combination
A set of optimized multibeams
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I A set of multibeams can be computed offline
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Simple Combination
Performance w.r.t. ρ
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I We expect that Optimized Combination will outperform Simple Combination
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Optimized Combination
Simple Combination vs. Optimized Combination
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I Optimized Combination outperforms Simple Combination.
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Optimized Combination
Signal Powers at the Receiver and at the Dominating AoD

I The communication subbeam is set pointing to the dominating AoD(0◦), while the sensing
subbeam is fixed at 10.8◦.
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Quantization
Single phase shifter
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Quantization
Joint quantization for two phase shifters

I Codebook C1 with φ = 0 and Codebook C2 with φ = 4β2
/2
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Quantization
Quantization with Optimized Scaling Factor
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Conclusion

I In this project, we reproduced Two-Step ILS algorithm to generate the beams and studied
Simple and Optimized Combination methods to combine them.

I The beams combination methods provide great flexibility for varying BF directions and enable
the constructive combination of two subbeams.

I We investigated the performances of single phase shifter and the two phase shifters.
I Our own contribution is the performance comparison of Simple and Optimized Combination

methods.
I Remaining questions:

I How will the optimization algorithms perform in the arrays different from ULA?
I How can we obtain the optimal communication and sensing beams?
I Is there a φ which can be used in creating an optimal codebook for quantization?
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Thank you for your attention!
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Constellations of Codebook 1 and 2
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Two-Step ILS Algorithm

Step 1 Given w0, n = 0

Step 2 I n = n+ 1
I pv,n = wH

n−1 · v · D−1
v

I Project all elements of pv to the closest values on the unit circle to produce a
new vector pv0,n

I wn = (v · vH)−1 · v · Dv · pv0,n
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