-
Notifications
You must be signed in to change notification settings - Fork 370
/
Copy pathutils.py
1015 lines (831 loc) · 34.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy as np
import os
from omegaconf import DictConfig
import torch
import torch.nn.functional as nn
from rfdiffusion.diffusion import get_beta_schedule
from scipy.spatial.transform import Rotation as scipy_R
from rfdiffusion.util import rigid_from_3_points
from rfdiffusion.util_module import ComputeAllAtomCoords
from rfdiffusion import util
import random
import logging
from rfdiffusion.inference import model_runners
import glob
###########################################################
#### Functions which can be called outside of Denoiser ####
###########################################################
def get_next_frames(xt, px0, t, diffuser, so3_type, diffusion_mask, noise_scale=1.0):
"""
get_next_frames gets updated frames using IGSO(3) + score_based reverse diffusion.
based on self.so3_type use score based update.
Generate frames at t-1
Rather than generating random rotations (as occurs during forward process), calculate rotation between xt and px0
Args:
xt: noised coordinates of shape [L, 14, 3]
px0: prediction of coordinates at t=0, of shape [L, 14, 3]
t: integer time step
diffuser: Diffuser object for reverse igSO3 sampling
so3_type: The type of SO3 noising being used ('igso3')
diffusion_mask: of shape [L] of type bool, True means not to be
updated (e.g. mask is true for motif residues)
noise_scale: scale factor for the noise added (IGSO3 only)
Returns:
backbone coordinates for step x_t-1 of shape [L, 3, 3]
"""
N_0 = px0[None, :, 0, :]
Ca_0 = px0[None, :, 1, :]
C_0 = px0[None, :, 2, :]
R_0, Ca_0 = rigid_from_3_points(N_0, Ca_0, C_0)
N_t = xt[None, :, 0, :]
Ca_t = xt[None, :, 1, :]
C_t = xt[None, :, 2, :]
R_t, Ca_t = rigid_from_3_points(N_t, Ca_t, C_t)
# this must be to normalize them or something
R_0 = scipy_R.from_matrix(R_0.squeeze().numpy()).as_matrix()
R_t = scipy_R.from_matrix(R_t.squeeze().numpy()).as_matrix()
L = R_t.shape[0]
all_rot_transitions = np.broadcast_to(np.identity(3), (L, 3, 3)).copy()
# Sample next frame for each residue
if so3_type == "igso3":
# don't do calculations on masked positions since they end up as identity matrix
all_rot_transitions[
~diffusion_mask
] = diffuser.so3_diffuser.reverse_sample_vectorized(
R_t[~diffusion_mask],
R_0[~diffusion_mask],
t,
noise_level=noise_scale,
mask=None,
return_perturb=True,
)
else:
assert False, "so3 diffusion type %s not implemented" % so3_type
all_rot_transitions = all_rot_transitions[:, None, :, :]
# Apply the interpolated rotation matrices to the coordinates
next_crds = (
np.einsum(
"lrij,laj->lrai",
all_rot_transitions,
xt[:, :3, :] - Ca_t.squeeze()[:, None, ...].numpy(),
)
+ Ca_t.squeeze()[:, None, None, ...].numpy()
)
# (L,3,3) set of backbone coordinates with slight rotation
return next_crds.squeeze(1)
def get_mu_xt_x0(xt, px0, t, beta_schedule, alphabar_schedule, eps=1e-6):
"""
Given xt, predicted x0 and the timestep t, give mu of x(t-1)
Assumes t is 0 indexed
"""
# sigma is predefined from beta. Often referred to as beta tilde t
t_idx = t - 1
sigma = (
(1 - alphabar_schedule[t_idx - 1]) / (1 - alphabar_schedule[t_idx])
) * beta_schedule[t_idx]
xt_ca = xt[:, 1, :]
px0_ca = px0[:, 1, :]
a = (
(torch.sqrt(alphabar_schedule[t_idx - 1] + eps) * beta_schedule[t_idx])
/ (1 - alphabar_schedule[t_idx])
) * px0_ca
b = (
(
torch.sqrt(1 - beta_schedule[t_idx] + eps)
* (1 - alphabar_schedule[t_idx - 1])
)
/ (1 - alphabar_schedule[t_idx])
) * xt_ca
mu = a + b
return mu, sigma
def get_next_ca(
xt,
px0,
t,
diffusion_mask,
crd_scale,
beta_schedule,
alphabar_schedule,
noise_scale=1.0,
):
"""
Given full atom x0 prediction (xyz coordinates), diffuse to x(t-1)
Parameters:
xt (L, 14/27, 3) set of coordinates
px0 (L, 14/27, 3) set of coordinates
t: time step. Note this is zero-index current time step, so are generating t-1
logits_aa (L x 20 ) amino acid probabilities at each position
seq_schedule (L): Tensor of bools, True is unmasked, False is masked. For this specific t
diffusion_mask (torch.tensor, required): Tensor of bools, True means NOT diffused at this residue, False means diffused
noise_scale: scale factor for the noise being added
"""
get_allatom = ComputeAllAtomCoords().to(device=xt.device)
L = len(xt)
# bring to origin after global alignment (when don't have a motif) or replace input motif and bring to origin, and then scale
px0 = px0 * crd_scale
xt = xt * crd_scale
# get mu(xt, x0)
mu, sigma = get_mu_xt_x0(
xt, px0, t, beta_schedule=beta_schedule, alphabar_schedule=alphabar_schedule
)
sampled_crds = torch.normal(mu, torch.sqrt(sigma * noise_scale))
delta = sampled_crds - xt[:, 1, :] # check sign of this is correct
if not diffusion_mask is None:
# Don't move motif
delta[diffusion_mask, ...] = 0
out_crds = xt + delta[:, None, :]
return out_crds / crd_scale, delta / crd_scale
def get_noise_schedule(T, noiseT, noise1, schedule_type):
"""
Function to create a schedule that varies the scale of noise given to the model over time
Parameters:
T: The total number of timesteps in the denoising trajectory
noiseT: The inital (t=T) noise scale
noise1: The final (t=1) noise scale
schedule_type: The type of function to use to interpolate between noiseT and noise1
Returns:
noise_schedule: A function which maps timestep to noise scale
"""
noise_schedules = {
"constant": lambda t: noiseT,
"linear": lambda t: ((t - 1) / (T - 1)) * (noiseT - noise1) + noise1,
}
assert (
schedule_type in noise_schedules
), f"noise_schedule must be one of {noise_schedules.keys()}. Received noise_schedule={schedule_type}. Exiting."
return noise_schedules[schedule_type]
class Denoise:
"""
Class for getting x(t-1) from predicted x0 and x(t)
Strategy:
Ca coordinates: Rediffuse to x(t-1) from predicted x0
Frames: Approximate update from rotation score
Torsions: 1/t of the way to the x0 prediction
"""
def __init__(
self,
T,
L,
diffuser,
b_0=0.001,
b_T=0.1,
min_b=1.0,
max_b=12.5,
min_sigma=0.05,
max_sigma=1.5,
noise_level=0.5,
schedule_type="linear",
so3_schedule_type="linear",
schedule_kwargs={},
so3_type="igso3",
noise_scale_ca=1.0,
final_noise_scale_ca=1,
ca_noise_schedule_type="constant",
noise_scale_frame=0.5,
final_noise_scale_frame=0.5,
frame_noise_schedule_type="constant",
crd_scale=1 / 15,
potential_manager=None,
partial_T=None,
):
"""
Parameters:
noise_level: scaling on the noise added (set to 0 to use no noise,
to 1 to have full noise)
"""
self.T = T
self.L = L
self.diffuser = diffuser
self.b_0 = b_0
self.b_T = b_T
self.noise_level = noise_level
self.schedule_type = schedule_type
self.so3_type = so3_type
self.crd_scale = crd_scale
self.noise_scale_ca = noise_scale_ca
self.final_noise_scale_ca = final_noise_scale_ca
self.ca_noise_schedule_type = ca_noise_schedule_type
self.noise_scale_frame = noise_scale_frame
self.final_noise_scale_frame = final_noise_scale_frame
self.frame_noise_schedule_type = frame_noise_schedule_type
self.potential_manager = potential_manager
self._log = logging.getLogger(__name__)
self.schedule, self.alpha_schedule, self.alphabar_schedule = get_beta_schedule(
self.T, self.b_0, self.b_T, self.schedule_type, inference=True
)
self.noise_schedule_ca = get_noise_schedule(
self.T,
self.noise_scale_ca,
self.final_noise_scale_ca,
self.ca_noise_schedule_type,
)
self.noise_schedule_frame = get_noise_schedule(
self.T,
self.noise_scale_frame,
self.final_noise_scale_frame,
self.frame_noise_schedule_type,
)
@property
def idx2steps(self):
return self.decode_scheduler.idx2steps.numpy()
def align_to_xt_motif(self, px0, xT, diffusion_mask, eps=1e-6):
"""
Need to align px0 to motif in xT. This is to permit the swapping of residue positions in the px0 motif for the true coordinates.
First, get rotation matrix from px0 to xT for the motif residues.
Second, rotate px0 (whole structure) by that rotation matrix
Third, centre at origin
"""
def rmsd(V, W, eps=0):
# First sum down atoms, then sum down xyz
N = V.shape[-2]
return np.sqrt(np.sum((V - W) * (V - W), axis=(-2, -1)) / N + eps)
assert (
xT.shape[1] == px0.shape[1]
), f"xT has shape {xT.shape} and px0 has shape {px0.shape}"
L, n_atom, _ = xT.shape # A is number of atoms
atom_mask = ~torch.isnan(px0)
# convert to numpy arrays
px0 = px0.cpu().detach().numpy()
xT = xT.cpu().detach().numpy()
diffusion_mask = diffusion_mask.cpu().detach().numpy()
# 1 centre motifs at origin and get rotation matrix
px0_motif = px0[diffusion_mask, :3].reshape(-1, 3)
xT_motif = xT[diffusion_mask, :3].reshape(-1, 3)
px0_motif_mean = np.copy(px0_motif.mean(0)) # need later
xT_motif_mean = np.copy(xT_motif.mean(0))
# center at origin
px0_motif = px0_motif - px0_motif_mean
xT_motif = xT_motif - xT_motif_mean
# A = px0_motif
# B = xT_motif
A = xT_motif
B = px0_motif
C = np.matmul(A.T, B)
# compute optimal rotation matrix using SVD
U, S, Vt = np.linalg.svd(C)
# ensure right handed coordinate system
d = np.eye(3)
d[-1, -1] = np.sign(np.linalg.det(Vt.T @ U.T))
# construct rotation matrix
R = Vt.T @ d @ U.T
# get rotated coords
rB = B @ R
# calculate rmsd
rms = rmsd(A, rB)
self._log.info(f"Sampled motif RMSD: {rms:.2f}")
# 2 rotate whole px0 by rotation matrix
atom_mask = atom_mask.cpu()
px0[~atom_mask] = 0 # convert nans to 0
px0 = px0.reshape(-1, 3) - px0_motif_mean
px0_ = px0 @ R
# 3 put in same global position as xT
px0_ = px0_ + xT_motif_mean
px0_ = px0_.reshape([L, n_atom, 3])
px0_[~atom_mask] = float("nan")
return torch.Tensor(px0_)
def get_potential_gradients(self, xyz, diffusion_mask):
"""
This could be moved into potential manager if desired - NRB
Function to take a structure (x) and get per-atom gradients used to guide diffusion update
Inputs:
xyz (torch.tensor, required): [L,27,3] Coordinates at which the gradient will be computed
Outputs:
Ca_grads (torch.tensor): [L,3] The gradient at each Ca atom
"""
if self.potential_manager == None or self.potential_manager.is_empty():
return torch.zeros(xyz.shape[0], 3)
use_Cb = False
# seq.requires_grad = True
xyz.requires_grad = True
if not xyz.grad is None:
xyz.grad.zero_()
current_potential = self.potential_manager.compute_all_potentials(xyz)
current_potential.backward()
# Since we are not moving frames, Cb grads are same as Ca grads
# Need access to calculated Cb coordinates to be able to get Cb grads though
Ca_grads = xyz.grad[:, 1, :]
if not diffusion_mask == None:
Ca_grads[diffusion_mask, :] = 0
# check for NaN's
if torch.isnan(Ca_grads).any():
print("WARNING: NaN in potential gradients, replacing with zero grad.")
Ca_grads[:] = 0
return Ca_grads
def get_next_pose(
self,
xt,
px0,
t,
diffusion_mask,
fix_motif=True,
align_motif=True,
include_motif_sidechains=True,
):
"""
Wrapper function to take px0, xt and t, and to produce xt-1
First, aligns px0 to xt
Then gets coordinates, frames and torsion angles
Parameters:
xt (torch.tensor, required): Current coordinates at timestep t
px0 (torch.tensor, required): Prediction of x0
t (int, required): timestep t
diffusion_mask (torch.tensor, required): Mask for structure diffusion
fix_motif (bool): Fix the motif structure
align_motif (bool): Align the model's prediction of the motif to the input motif
include_motif_sidechains (bool): Provide sidechains of the fixed motif to the model
"""
get_allatom = ComputeAllAtomCoords().to(device=xt.device)
L, n_atom = xt.shape[:2]
assert (xt.shape[1] == 14) or (xt.shape[1] == 27)
assert (px0.shape[1] == 14) or (px0.shape[1] == 27)
###############################
### Align pX0 onto Xt motif ###
###############################
if align_motif and diffusion_mask.any():
px0 = self.align_to_xt_motif(px0, xt, diffusion_mask)
# xT_motif_aligned = self.align_to_xt_motif(px0, xt, diffusion_mask)
px0 = px0.to(xt.device)
# Now done with diffusion mask. if fix motif is False, just set diffusion mask to be all True, and all coordinates can diffuse
if not fix_motif:
diffusion_mask[:] = False
# get the next set of CA coordinates
noise_scale_ca = self.noise_schedule_ca(t)
_, ca_deltas = get_next_ca(
xt,
px0,
t,
diffusion_mask,
crd_scale=self.crd_scale,
beta_schedule=self.schedule,
alphabar_schedule=self.alphabar_schedule,
noise_scale=noise_scale_ca,
)
# get the next set of backbone frames (coordinates)
noise_scale_frame = self.noise_schedule_frame(t)
frames_next = get_next_frames(
xt,
px0,
t,
diffuser=self.diffuser,
so3_type=self.so3_type,
diffusion_mask=diffusion_mask,
noise_scale=noise_scale_frame,
)
# Apply gradient step from guiding potentials
# This can be moved to below where the full atom representation is calculated to allow for potentials involving sidechains
grad_ca = self.get_potential_gradients(
xt.clone(), diffusion_mask=diffusion_mask
)
ca_deltas += self.potential_manager.get_guide_scale(t) * grad_ca
# add the delta to the new frames
frames_next = torch.from_numpy(frames_next) + ca_deltas[:, None, :] # translate
fullatom_next = torch.full_like(xt, float("nan")).unsqueeze(0)
fullatom_next[:, :, :3] = frames_next[None]
# This is never used so just make it a fudged tensor - NRB
torsions_next = torch.zeros(1, 1)
if include_motif_sidechains:
fullatom_next[:, diffusion_mask, :14] = xt[None, diffusion_mask]
return fullatom_next.squeeze()[:, :14, :], px0
def sampler_selector(conf: DictConfig):
if conf.scaffoldguided.scaffoldguided:
sampler = model_runners.ScaffoldedSampler(conf)
else:
if conf.inference.model_runner == "default":
sampler = model_runners.Sampler(conf)
elif conf.inference.model_runner == "SelfConditioning":
sampler = model_runners.SelfConditioning(conf)
elif conf.inference.model_runner == "ScaffoldedSampler":
sampler = model_runners.ScaffoldedSampler(conf)
else:
raise ValueError(f"Unrecognized sampler {conf.model_runner}")
return sampler
def parse_pdb(filename, **kwargs):
"""extract xyz coords for all heavy atoms"""
with open(filename,"r") as f:
lines=f.readlines()
return parse_pdb_lines(lines, **kwargs)
def parse_pdb_lines(lines, parse_hetatom=False, ignore_het_h=True):
# indices of residues observed in the structure
res, pdb_idx = [],[]
for l in lines:
if l[:4] == "ATOM" and l[12:16].strip() == "CA":
res.append((l[22:26], l[17:20]))
# chain letter, res num
pdb_idx.append((l[21:22].strip(), int(l[22:26].strip())))
seq = [util.aa2num[r[1]] if r[1] in util.aa2num.keys() else 20 for r in res]
pdb_idx = [
(l[21:22].strip(), int(l[22:26].strip()))
for l in lines
if l[:4] == "ATOM" and l[12:16].strip() == "CA"
] # chain letter, res num
# 4 BB + up to 10 SC atoms
xyz = np.full((len(res), 14, 3), np.nan, dtype=np.float32)
for l in lines:
if l[:4] != "ATOM":
continue
chain, resNo, atom, aa = (
l[21:22],
int(l[22:26]),
" " + l[12:16].strip().ljust(3),
l[17:20],
)
if (chain,resNo) in pdb_idx:
idx = pdb_idx.index((chain, resNo))
# for i_atm, tgtatm in enumerate(util.aa2long[util.aa2num[aa]]):
for i_atm, tgtatm in enumerate(
util.aa2long[util.aa2num[aa]][:14]
):
if (
tgtatm is not None and tgtatm.strip() == atom.strip()
): # ignore whitespace
xyz[idx, i_atm, :] = [float(l[30:38]), float(l[38:46]), float(l[46:54])]
break
# save atom mask
mask = np.logical_not(np.isnan(xyz[..., 0]))
xyz[np.isnan(xyz[..., 0])] = 0.0
# remove duplicated (chain, resi)
new_idx = []
i_unique = []
for i, idx in enumerate(pdb_idx):
if idx not in new_idx:
new_idx.append(idx)
i_unique.append(i)
pdb_idx = new_idx
xyz = xyz[i_unique]
mask = mask[i_unique]
seq = np.array(seq)[i_unique]
out = {
"xyz": xyz, # cartesian coordinates, [Lx14]
"mask": mask, # mask showing which atoms are present in the PDB file, [Lx14]
"idx": np.array(
[i[1] for i in pdb_idx]
), # residue numbers in the PDB file, [L]
"seq": np.array(seq), # amino acid sequence, [L]
"pdb_idx": pdb_idx, # list of (chain letter, residue number) in the pdb file, [L]
}
# heteroatoms (ligands, etc)
if parse_hetatom:
xyz_het, info_het = [], []
for l in lines:
if l[:6] == "HETATM" and not (ignore_het_h and l[77] == "H"):
info_het.append(
dict(
idx=int(l[7:11]),
atom_id=l[12:16],
atom_type=l[77],
name=l[16:20],
)
)
xyz_het.append([float(l[30:38]), float(l[38:46]), float(l[46:54])])
out["xyz_het"] = np.array(xyz_het)
out["info_het"] = info_het
return out
def process_target(pdb_path, parse_hetatom=False, center=True):
# Read target pdb and extract features.
target_struct = parse_pdb(pdb_path, parse_hetatom=parse_hetatom)
# Zero-center positions
ca_center = target_struct["xyz"][:, :1, :].mean(axis=0, keepdims=True)
if not center:
ca_center = 0
xyz = torch.from_numpy(target_struct["xyz"] - ca_center)
seq_orig = torch.from_numpy(target_struct["seq"])
atom_mask = torch.from_numpy(target_struct["mask"])
seq_len = len(xyz)
# Make 27 atom representation
xyz_27 = torch.full((seq_len, 27, 3), np.nan).float()
xyz_27[:, :14, :] = xyz[:, :14, :]
mask_27 = torch.full((seq_len, 27), False)
mask_27[:, :14] = atom_mask
out = {
"xyz_27": xyz_27,
"mask_27": mask_27,
"seq": seq_orig,
"pdb_idx": target_struct["pdb_idx"],
}
if parse_hetatom:
out["xyz_het"] = target_struct["xyz_het"]
out["info_het"] = target_struct["info_het"]
return out
def get_idx0_hotspots(mappings, ppi_conf, binderlen):
"""
Take pdb-indexed hotspot resudes and the length of the binder, and makes the 0-indexed tensor of hotspots
"""
hotspot_idx = None
if binderlen > 0:
if ppi_conf.hotspot_res is not None:
assert all(
[i[0].isalpha() for i in ppi_conf.hotspot_res]
), "Hotspot residues need to be provided in pdb-indexed form. E.g. A100,A103"
hotspots = [(i[0], int(i[1:])) for i in ppi_conf.hotspot_res]
hotspot_idx = []
for i, res in enumerate(mappings["receptor_con_ref_pdb_idx"]):
if res in hotspots:
hotspot_idx.append(mappings["receptor_con_hal_idx0"][i])
return hotspot_idx
class BlockAdjacency:
"""
Class for handling PPI design inference with ss/block_adj inputs.
Basic idea is to provide a list of scaffolds, and to output ss and adjacency
matrices based off of these, while sampling additional lengths.
Inputs:
- scaffold_list: list of scaffolds (e.g. ['2kl8','1cif']). Can also be a .txt file.
- scaffold dir: directory where scaffold ss and adj are precalculated
- sampled_insertion: how many additional residues do you want to add to each loop segment? Randomly sampled 0-this number (or within given range)
- sampled_N: randomly sample up to this number of additional residues at N-term
- sampled_C: randomly sample up to this number of additional residues at C-term
- ss_mask: how many residues do you want to mask at either end of a ss (H or E) block. Fixed value
- num_designs: how many designs are you wanting to generate? Currently only used for bookkeeping
- systematic: do you want to systematically work through the list of scaffolds, or randomly sample (default)
- num_designs_per_input: Not really implemented yet. Maybe not necessary
Outputs:
- L: new length of chain to be diffused
- ss: all loops and insertions, and ends of ss blocks (up to ss_mask) set to mask token (3). Onehot encoded. (L,4)
- adj: block adjacency with equivalent masking as ss (L,L)
"""
def __init__(self, conf, num_designs):
"""
Parameters:
inputs:
conf.scaffold_list as conf
conf.inference.num_designs for sanity checking
"""
self.conf=conf
# either list or path to .txt file with list of scaffolds
if self.conf.scaffoldguided.scaffold_list is not None:
if type(self.conf.scaffoldguided.scaffold_list) == list:
self.scaffold_list = scaffold_list
elif self.conf.scaffoldguided.scaffold_list[-4:] == ".txt":
# txt file with list of ids
list_from_file = []
with open(self.conf.scaffoldguided.scaffold_list, "r") as f:
for line in f:
list_from_file.append(line.strip())
self.scaffold_list = list_from_file
else:
raise NotImplementedError
else:
self.scaffold_list = [
os.path.split(i)[1][:-6]
for i in glob.glob(f"{self.conf.scaffoldguided.scaffold_dir}/*_ss.pt")
]
self.scaffold_list.sort()
# path to directory with scaffolds, ss files and block_adjacency files
self.scaffold_dir = self.conf.scaffoldguided.scaffold_dir
# maximum sampled insertion in each loop segment
if "-" in str(self.conf.scaffoldguided.sampled_insertion):
self.sampled_insertion = [
int(str(self.conf.scaffoldguided.sampled_insertion).split("-")[0]),
int(str(self.conf.scaffoldguided.sampled_insertion).split("-")[1]),
]
else:
self.sampled_insertion = [0, int(self.conf.scaffoldguided.sampled_insertion)]
# maximum sampled insertion at N- and C-terminus
if "-" in str(self.conf.scaffoldguided.sampled_N):
self.sampled_N = [
int(str(self.conf.scaffoldguided.sampled_N).split("-")[0]),
int(str(self.conf.scaffoldguided.sampled_N).split("-")[1]),
]
else:
self.sampled_N = [0, int(self.conf.scaffoldguided.sampled_N)]
if "-" in str(self.conf.scaffoldguided.sampled_C):
self.sampled_C = [
int(str(self.conf.scaffoldguided.sampled_C).split("-")[0]),
int(str(self.conf.scaffoldguided.sampled_C).split("-")[1]),
]
else:
self.sampled_C = [0, int(self.conf.scaffoldguided.sampled_C)]
# number of residues to mask ss identity of in H/E regions (from junction)
# e.g. if ss_mask = 2, L,L,L,H,H,H,H,H,H,H,L,L,E,E,E,E,E,E,L,L,L,L,L,L would become\
# M,M,M,M,M,H,H,H,M,M,M,M,M,M,E,E,M,M,M,M,M,M,M,M where M is mask
self.ss_mask = self.conf.scaffoldguided.ss_mask
# whether or not to work systematically through the list
self.systematic = self.conf.scaffoldguided.systematic
self.num_designs = num_designs
if len(self.scaffold_list) > self.num_designs:
print(
"WARNING: Scaffold set is bigger than num_designs, so not every scaffold type will be sampled"
)
# for tracking number of designs
self.num_completed = 0
if self.systematic:
self.item_n = 0
# whether to mask loops or not
if not self.conf.scaffoldguided.mask_loops:
assert self.conf.scaffoldguided.sampled_N == 0, "can't add length if not masking loops"
assert self.conf.scaffoldguided.sampled_C == 0, "can't add lemgth if not masking loops"
assert self.conf.scaffoldguided.sampled_insertion == 0, "can't add length if not masking loops"
self.mask_loops = False
else:
self.mask_loops = True
def get_ss_adj(self, item):
"""
Given at item, get the ss tensor and block adjacency matrix for that item
"""
ss = torch.load(os.path.join(self.scaffold_dir, f'{item.split(".")[0]}_ss.pt'))
adj = torch.load(
os.path.join(self.scaffold_dir, f'{item.split(".")[0]}_adj.pt')
)
return ss, adj
def mask_to_segments(self, mask):
"""
Takes a mask of True (loop) and False (non-loop), and outputs list of tuples (loop or not, length of element)
"""
segments = []
begin = -1
end = -1
for i in range(mask.shape[0]):
# Starting edge case
if i == 0:
begin = 0
continue
if not mask[i] == mask[i - 1]:
end = i
if mask[i - 1].item() is True:
segments.append(("loop", end - begin))
else:
segments.append(("ss", end - begin))
begin = i
# Ending edge case: last segment is length one
if not end == mask.shape[0]:
if mask[i].item() is True:
segments.append(("loop", mask.shape[0] - begin))
else:
segments.append(("ss", mask.shape[0] - begin))
return segments
def expand_mask(self, mask, segments):
"""
Function to generate a new mask with dilated loops and N and C terminal additions
"""
N_add = random.randint(self.sampled_N[0], self.sampled_N[1])
C_add = random.randint(self.sampled_C[0], self.sampled_C[1])
output = N_add * [False]
for ss, length in segments:
if ss == "ss":
output.extend(length * [True])
else:
# randomly sample insertion length
ins = random.randint(
self.sampled_insertion[0], self.sampled_insertion[1]
)
output.extend((length + ins) * [False])
output.extend(C_add * [False])
assert torch.sum(torch.tensor(output)) == torch.sum(~mask)
return torch.tensor(output)
def expand_ss(self, ss, adj, mask, expanded_mask):
"""
Given an expanded mask, populate a new ss and adj based on this
"""
ss_out = torch.ones(expanded_mask.shape[0]) * 3 # set to mask token
adj_out = torch.full((expanded_mask.shape[0], expanded_mask.shape[0]), 0.0)
ss_out[expanded_mask] = ss[~mask]
expanded_mask_2d = torch.full(adj_out.shape, True)
# mask out loops/insertions, which is ~expanded_mask
expanded_mask_2d[~expanded_mask, :] = False
expanded_mask_2d[:, ~expanded_mask] = False
mask_2d = torch.full(adj.shape, True)
# mask out loops. This mask is True=loop
mask_2d[mask, :] = False
mask_2d[:, mask] = False
adj_out[expanded_mask_2d] = adj[mask_2d]
adj_out = adj_out.reshape((expanded_mask.shape[0], expanded_mask.shape[0]))
return ss_out, adj_out
def mask_ss_adj(self, ss, adj, expanded_mask):
"""
Given an expanded ss and adj, mask some number of residues at either end of non-loop ss
"""
original_mask = torch.clone(expanded_mask)
if self.ss_mask > 0:
for i in range(1, self.ss_mask + 1):
expanded_mask[i:] *= original_mask[:-i]
expanded_mask[:-i] *= original_mask[i:]
if self.mask_loops:
ss[~expanded_mask] = 3
adj[~expanded_mask, :] = 0
adj[:, ~expanded_mask] = 0
# mask adjacency
adj[~expanded_mask] = 2
adj[:, ~expanded_mask] = 2
return ss, adj
def get_scaffold(self):
"""
Wrapper method for pulling an item from the list, and preparing ss and block adj features
"""
# Handle determinism. Useful for integration tests
if self.conf.inference.deterministic:
torch.manual_seed(self.num_completed)
np.random.seed(self.num_completed)
random.seed(self.num_completed)
if self.systematic:
# reset if num designs > num_scaffolds
if self.item_n >= len(self.scaffold_list):
self.item_n = 0
item = self.scaffold_list[self.item_n]
self.item_n += 1
else:
item = random.choice(self.scaffold_list)
print("Scaffold constrained based on file: ", item)
# load files
ss, adj = self.get_ss_adj(item)
adj_orig = torch.clone(adj)
# separate into segments (loop or not)
mask = torch.where(ss == 2, 1, 0).bool()
segments = self.mask_to_segments(mask)
# insert into loops to generate new mask
expanded_mask = self.expand_mask(mask, segments)
# expand ss and adj
ss, adj = self.expand_ss(ss, adj, mask, expanded_mask)
# finally, mask some proportion of the ss at either end of the non-loop ss blocks
ss, adj = self.mask_ss_adj(ss, adj, expanded_mask)
# and then update num_completed
self.num_completed += 1
return ss.shape[0], torch.nn.functional.one_hot(ss.long(), num_classes=4), adj
class Target:
"""
Class to handle targets (fixed chains).
Inputs:
- path to pdb file
- hotspot residues, in the form B10,B12,B60 etc
- whether or not to crop, and with which method
Outputs:
- Dictionary of xyz coordinates, indices, pdb_indices, pdb mask
"""
def __init__(self, conf: DictConfig, hotspots=None):
self.pdb = parse_pdb(conf.target_path)
if hotspots is not None:
self.hotspots = hotspots
else:
self.hotspots = []
self.pdb["hotspots"] = np.array(
[
True if f"{i[0]}{i[1]}" in self.hotspots else False
for i in self.pdb["pdb_idx"]
]
)
if conf.contig_crop:
self.contig_crop(conf.contig_crop)
def parse_contig(self, contig_crop):
"""
Takes contig input and parses
"""
contig_list = []
for contig in contig_crop[0].split(" "):
subcon = []
for crop in contig.split("/"):
if crop[0].isalpha():
subcon.extend(
[
(crop[0], p)
for p in np.arange(
int(crop.split("-")[0][1:]), int(crop.split("-")[1]) + 1
)
]
)
contig_list.append(subcon)
return contig_list
def contig_crop(self, contig_crop, residue_offset=200) -> None:
"""
Method to take a contig string referring to the receptor and output a pdb dictionary with just this crop
NB there are two ways to provide inputs:
- 1) e.g. B1-30,0 B50-60,0. This will add a residue offset between each chunk
- 2) e.g. B1-30,B50-60,B80-100. This will keep the original indexing of the pdb file.
Can handle the target being on multiple chains
"""
# add residue offset between chains if multiple chains in receptor file
for idx, val in enumerate(self.pdb["pdb_idx"]):
if idx != 0 and val != self.pdb["pdb_idx"][idx - 1]:
self.pdb["idx"][idx:] += residue_offset + idx
# convert contig to mask
contig_list = self.parse_contig(contig_crop)
# add residue offset to different parts of contig_list
for contig in contig_list[1:]:
start = int(contig[0][1])
self.pdb["idx"][start:] += residue_offset
# flatten list
contig_list = [i for j in contig_list for i in j]
mask = np.array(
[True if i in contig_list else False for i in self.pdb["pdb_idx"]]
)
# sanity check
assert np.sum(self.pdb["hotspots"]) == np.sum(
self.pdb["hotspots"][mask]
), "Supplied hotspot residues are missing from the target contig!"
# crop pdb
for key, val in self.pdb.items():
try:
self.pdb[key] = val[mask]
except:
self.pdb[key] = [i for idx, i in enumerate(val) if mask[idx]]
self.pdb["crop_mask"] = mask