From bba6992283de63faba6ff727bb4bc68327a5356c Mon Sep 17 00:00:00 2001 From: Jue Wang Date: Mon, 21 Nov 2022 09:25:31 -0800 Subject: [PATCH] added compile_metrics.py --- scripts/compile_metrics.py | 175 +++++++++++++++++++++++++++++++++++++ 1 file changed, 175 insertions(+) create mode 100755 scripts/compile_metrics.py diff --git a/scripts/compile_metrics.py b/scripts/compile_metrics.py new file mode 100755 index 00000000..c3d0ca7e --- /dev/null +++ b/scripts/compile_metrics.py @@ -0,0 +1,175 @@ +#!/usr/bin/env python +# +# Parses and compiles metrics previously computed by calc_metrics.sh. +# +# Usage: ./compile_metrics.py FOLDER +# +# FOLDER should contain subfolders like lddt, trr_score, etc. This will output +# a file, combined_metrics.csv, in FOLDER. +# +import pandas as pd +import numpy as np +import os, glob, argparse, sys +from collections import OrderedDict + +p = argparse.ArgumentParser() +p.add_argument('folder', help='Folder of outputs to process') +p.add_argument('--out', help='Output file name.') +args = p.parse_args() + +if args.out is None: + args.out = os.path.join(args.folder,'combined_metrics.csv') + +if not os.path.isdir(args.folder): + sys.exit(f'ERROR: Input path {args.folder} not a folder.') + +def parse_fastdesign_filters(folder): + files = glob.glob(os.path.join(folder,'*.pdb')) + records = [] + for f in files: + row = OrderedDict() + row['name'] = os.path.basename(f)[:-4] + recording = False + with open(f) as inf: + for line in inf: + if recording and len(line)>1: + tokens = line.split() + if len(tokens) == 2: + row[tokens[0]] = float(tokens[1]) + if '#END_POSE_ENERGIES_TABLE' in line: + recording=True + if line.startswith('pose'): + row['rosetta_energy'] = float(line.split()[-1]) + records.append(row) + if len(records)>0: return pd.DataFrame.from_records(records) + return pd.DataFrame({'name':[]}) + +def parse_lddt(folder): + data = {'name':[], 'lddt':[]} + files = glob.glob(os.path.join(folder,'*.npz')) + if len(files)==0: + return pd.DataFrame({'name':[]}) + for f in files: + prefix = os.path.basename(f).replace('.npz','') + lddt_data = np.load(f) + data['lddt'].append(lddt_data['lddt'].mean()) + data['name'].append(prefix) + return pd.DataFrame.from_dict(data) + +def parse_rosetta_energy_from_pdb(folder): + files = glob.glob(os.path.join(folder,'*.pdb')) + records = [] + for pdbfile in files: + with open(pdbfile) as inf: + name = os.path.basename(pdbfile).replace('.pdb','') + rosetta_energy = np.nan + for line in inf.readlines(): + if line.startswith('pose'): + rosetta_energy = float(line.split()[-1]) + row = OrderedDict() + row['name'] = name + row['rosetta_energy'] = rosetta_energy + records.append(row) + if len(records)==0: return pd.DataFrame({'name':[]}) + return pd.DataFrame.from_records(records) + +def parse_frag_qual(folder): + records = [] + for frag_folder in glob.glob(os.path.join(folder,'*_fragments')): + fn = os.path.join(frag_folder,'frag_qual.dat') + if not os.path.exists(fn): continue + with open(fn) as inf: + lines = inf.readlines() + index=1 + y_index=[] + y_avg=[] + y_bestmer=[] + for line in lines: + if int(line.split()[1]) == index: + y_index.append(float(line.split()[3])) + else: + y_avg.append(np.average(np.array(y_index))) + y_bestmer.append(np.amin(np.array(y_index))) + y_index=[] + index=int(line.split()[1]) + avg_all_frags=np.average(y_avg) + avg_best_frags=np.average(y_bestmer) + row = OrderedDict() + row['name'] = os.path.basename(frag_folder).replace('_fragments','') + row['avg_all_frags'] = avg_all_frags + row['avg_best_frags'] = avg_best_frags + records.append(row) + if len(records)==0: return pd.DataFrame({'name':[]}) + return pd.DataFrame.from_records(records) + +def parse_cce(folder): + df = pd.DataFrame() + for fn in glob.glob(os.path.join(folder,'*.trR_scored.txt')): + row = pd.read_csv(fn) + df = df.append(row) + if df.shape[0]>0: + df.columns = ['name','cce10','cce_1d','acc'] + return df[['name','cce10']] + return pd.DataFrame({'name':[]}) + +def csv2df(fn,**kwargs): + if os.path.exists(fn): return pd.read_csv(fn,**kwargs) + return pd.DataFrame({'name':[]}) + +def parse_all_metrics(folder): + df = pd.DataFrame({'name':[]}) + + print(f'Parsing metrics in {folder}: ',end='') + tmp = parse_lddt(os.path.join(folder,'lddt')) + df = df.merge(tmp,on='name',how='outer') + print(f'lddt ({tmp.shape[0]}), ',end='',flush=True) + + fn = os.path.join(folder,'pymol_metrics.csv') + tmp = parse_fastdesign_filters(os.path.join(folder)) + df = df.merge(tmp,on='name',how='outer') + print(f'rosetta metrics from PDB file ({tmp.shape[0]}), ',end='',flush=True) + + tmp = parse_cce(os.path.join(folder,'trr_score')) + df = df.merge(tmp,on='name',how='outer') + print(f'cce ({tmp.shape[0]}), ',end='',flush=True) + + tmp = parse_frag_qual(os.path.join(folder,'frags')) + df = df.merge(tmp,on='name',how='outer') + print(f'fragment quality ({tmp.shape[0]}), ',end='',flush=True) + + tmp = csv2df(os.path.join(folder,'tmscores.csv'),index_col=0) + df = df.merge(tmp,on='name',how='outer') + print(f'TM-scores ({tmp.shape[0]}), ',end='',flush=True) + + tmp = csv2df(os.path.join(folder,'pymol_metrics.csv'),index_col=0) + df = df.merge(tmp,on='name',how='outer') + print(f'Pymol metrics ({tmp.shape[0]}), ',end='',flush=True) + + tmp = csv2df(os.path.join(folder,'pyrosetta_metrics.csv'),index_col=0) + df = df.merge(tmp,on='name',how='outer') + print(f'Pyrosetta metrics ({tmp.shape[0]}), ',end='',flush=True) + + tmp = csv2df(os.path.join(folder,'af2_metrics.csv'),index_col=0) + df = df.merge(tmp,on='name',how='outer') + print(f'AlphaFold2 metrics ({tmp.shape[0]}), ',end='',flush=True) + + tmp = csv2df(os.path.join(folder,'../complex/interface_metrics.csv'),index_col=0) + df = df.merge(tmp,on='name',how='outer') + print(f'interface metrics ({tmp.shape[0]}), ',end='',flush=True) + + tmp = csv2df(os.path.join(folder,'rmsd_trr.csv')) + if len(tmp)>0: + df = df.merge(tmp[['name','rmsd']].rename(columns={'rmsd':'rmsd_trr'}),on='name',how='outer') + print(f'TrR RMSD ({tmp.shape[0]}), ',end='',flush=True) + + tmp = csv2df(os.path.join(folder,'rmsd_trunk.csv')) + if len(tmp)>0: + df = df.merge(tmp[['name','rmsd']].rename(columns={'rmsd':'rmsd_trunk'}),on='name',how='outer') + print(f'Trunk RMSD ({tmp.shape[0]})',flush=True) + + print(f'final dataframe shape: {df.shape}') + print(f'final dataframe columns: {df.columns.values}') + return df + +df = parse_all_metrics(args.folder) +df.to_csv(args.out)