-
Notifications
You must be signed in to change notification settings - Fork 2
/
train.py
142 lines (126 loc) · 5.89 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import torch
import numpy as np
import argparse
import time
import util
from engine import trainer
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cuda:0', help='')
parser.add_argument('--data', type=str, default='data/', help='data path')
parser.add_argument('--num_nodes', type=int, default=207, help='nodes num')
parser.add_argument('--seq_length', type=int, default=12, help='predict length')
parser.add_argument('--nhid', type=int, default=64, help='')
parser.add_argument('--edim', type=int, default=32, help='hidden dim')
parser.add_argument('--batch_size', type=int, default=32, help='')
parser.add_argument('--learning_rate', type=float, default=0.001, help='learning rate')
parser.add_argument('--dropout', type=float, default=0.15, help='dropout rate')
parser.add_argument('--weight_decay', type=float, default=0.0001, help='weight decay rate')
parser.add_argument('--epochs', type=int, default=60, help='')
parser.add_argument('--print_every', type=int, default=1000, help='')
parser.add_argument('--save', type=str, default='garage/', help='save path')
parser.add_argument('--expid', type=int, default=1, help='experiment id')
args = parser.parse_args()
def main():
device = torch.device(args.device)
dataloader = util.load_dataset(args.data, args.batch_size, args.batch_size, args.batch_size)
scaler = dataloader['scaler']
engine = trainer(scaler, args.edim, args.seq_length, args.nhid, args.dropout, args.learning_rate,
args.weight_decay, args.device, args.num_nodes, args.batch_size)
print("start training...", flush=True)
his_loss = []
val_time = []
train_time = []
for i in range(1, args.epochs + 1):
train_loss = []
train_mape = []
train_rmse = []
t1 = time.time()
dataloader['train_loader'].shuffle()
for iter, (x, y) in enumerate(dataloader['train_loader'].get_iterator(), start=1):
trainx = torch.Tensor(x).to(device)
trainx = trainx.transpose(1, 3)
trainy = torch.Tensor(y).to(device)
trainy = trainy.transpose(1, 3)
metrics = engine.train(trainx, trainy[:, 0, :, :])
train_loss.append(metrics[0])
train_mape.append(metrics[1])
train_rmse.append(metrics[2])
if iter % args.print_every == 0:
log = 'Iter: {:03d}, Train Loss: {:.4f}, Train MAPE: {:.4f}, Train RMSE: {:.4f}'
print(log.format(iter, train_loss[-1], train_mape[-1], train_rmse[-1]), flush=True)
t2 = time.time()
train_time.append(t2 - t1)
# validation
valid_loss = []
valid_mape = []
valid_rmse = []
s1 = time.time()
for iter, (x, y) in enumerate(dataloader['val_loader'].get_iterator()):
testx = torch.Tensor(x).to(device)
testx = testx.transpose(1, 3)
testy = torch.Tensor(y).to(device)
testy = testy.transpose(1, 3)
metrics = engine.eval(testx, testy[:, 0, :, :])
valid_loss.append(metrics[0])
valid_mape.append(metrics[1])
valid_rmse.append(metrics[2])
s2 = time.time()
log = 'Epoch: {:03d}, Inference Time: {:.4f} secs'
print(log.format(i, (s2 - s1)))
val_time.append(s2 - s1)
mtrain_loss = np.mean(train_loss)
mtrain_mape = np.mean(train_mape)
mtrain_rmse = np.mean(train_rmse)
mvalid_loss = np.mean(valid_loss)
mvalid_mape = np.mean(valid_mape)
mvalid_rmse = np.mean(valid_rmse)
his_loss.append(mvalid_loss)
log = 'Epoch: {:03d}\nTrain Loss: {:.4f}, Train MAPE: {:.4f}, Train RMSE: {:.4f}\nValid Loss: {:.4f}, Valid MAPE: {:.4f}, Valid RMSE: {:.4f}\nTraining Time: {:.4f} sec/epoch'
print(log.format(i, mtrain_loss, mtrain_mape, mtrain_rmse, mvalid_loss, mvalid_mape, mvalid_rmse, (t2 - t1)),
flush=True)
torch.save(engine.model.state_dict(),
args.save + "_epoch_" + str(i) + "_" + str(round(mvalid_loss, 2)) + ".pth")
print("Average Training Time: {:.4f} secs/epoch".format(np.mean(train_time)))
print("Average Inference Time: {:.4f} secs".format(np.mean(val_time)))
# testing
bestid = np.argmin(his_loss)
engine.model.load_state_dict(
torch.load(args.save + "_epoch_" + str(bestid + 1) + "_" + str(round(his_loss[bestid], 2)) + ".pth"))
outputs = []
realy = []
for iter, (x, y) in enumerate(dataloader['test_loader'].get_iterator()):
testx = torch.Tensor(x).to(device)
testx = testx.transpose(1, 3)
testy = torch.Tensor(y).to(device)
testy = testy.transpose(1, 3)[:, :1, :, :]
with torch.no_grad():
preds = engine.model(testx).transpose(1, 3)
outputs.append(preds)
realy.append(testy)
yhat = torch.cat(outputs, dim=0)
yhat = scaler.inverse_transform(yhat)
realy = torch.cat(realy, dim=0)
print("Training finished!")
print("The valid loss on best model is", str(round(his_loss[bestid], 4)))
amae = []
amape = []
armse = []
print(yhat.shape, realy.shape)
for i in range(args.seq_length):
pred = yhat[..., i]
real = realy[..., i]
metrics = util.metric(pred, real)
log = 'Evaluate best model on test data for horizon {:d}, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}'
print(log.format(i + 1, metrics[0], metrics[1], metrics[2]))
amae.append(metrics[0])
amape.append(metrics[1])
armse.append(metrics[2])
log = 'On average, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}'
print(log.format(*util.metric(yhat, realy)))
torch.save(engine.model.state_dict(),
args.save + "_exp" + str(args.expid) + "_best_" + str(round(his_loss[bestid], 2)) + ".pth")
if __name__ == "__main__":
t1 = time.time()
main()
t2 = time.time()
print("Total time spent: {:.4f}".format(t2 - t1))