-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_vq.py
286 lines (235 loc) · 10.2 KB
/
train_vq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import os
import json
import torch
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
import models.vqvae as vqvae
import utils.losses as losses
import options.option_vq as option_vq
import utils.utils_model as utils_model
from dataset import dataset_VQ, dataset_TM_eval
import utils.eval_trans as eval_trans
from options.get_eval_option import get_opt
from models.evaluator_wrapper import EvaluatorModelWrapper
import warnings
warnings.filterwarnings('ignore')
from utils.word_vectorizer import WordVectorizer
from tqdm import tqdm
from exit.utils import init_save_folder, set_seed, seed_worker
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler
import numpy as np
from torch.utils.data._utils.collate import default_collate
def collate_fn(batch):
batch.sort(key=lambda x: x[3], reverse=True)
return default_collate(batch)
def update_lr_warm_up(optimizer, nb_iter, warm_up_iter, lr):
current_lr = lr * (nb_iter + 1) / (warm_up_iter + 1)
for param_group in optimizer.param_groups:
param_group["lr"] = current_lr
return optimizer, current_lr
def train_iter(
net,
optimizer,
scheduler,
stage="Train",
total_iters=100,
curr_iter=0,
best_fid=0, best_iter=0, best_div=0, best_top1=0, best_top2=0, best_top3=0, best_matching=0,
):
avg_recons, avg_perplexity, avg_commit = 0., 0., 0.
nb_iter = curr_iter
epoch = 0
while True:
if ddp: train_sampler.set_epoch(epoch)
epoch += 1
for batch in train_loader:
nb_iter += 1
if stage=='Warmup':
optimizer, current_lr = update_lr_warm_up(optimizer, nb_iter, args.warm_up_iter, args.lr)
if nb_iter % args.print_iter == 0:
if master_process: logger.info(f'current_lr: {current_lr}')
gt_motion = batch.to(args.device).float()
pred_motion, loss_commit, perplexity = net(gt_motion)
# net(gt_motion, type='encode')
loss_motion = Loss(pred_motion, gt_motion)
loss_vel = Loss.forward_joint(pred_motion, gt_motion)
loss = loss_motion + args.commit * loss_commit + args.loss_vel * loss_vel
optimizer.zero_grad()
loss.backward()
optimizer.step()
if stage=='Train': scheduler.step()
torch.cuda.synchronize() # wait for the GPU to finish work
avg_recons += loss_motion.item()
avg_perplexity += perplexity.item()
avg_commit += loss_commit.item()
if nb_iter % args.print_iter == 0 and master_process:
avg_recons /= args.print_iter
avg_perplexity /= args.print_iter
avg_commit /= args.print_iter
if stage=='Train':
writer.add_scalar('./Train/L1', avg_recons, nb_iter)
writer.add_scalar('./Train/PPL', avg_perplexity, nb_iter)
writer.add_scalar('./Train/Commit', avg_commit, nb_iter)
logger.info(f"{stage}. Iter: {nb_iter} | Recons: {avg_recons:.5f} | Commit: {avg_commit:.5f} | PPL: {avg_perplexity:.2f} |")
avg_recons, avg_perplexity, avg_commit = 0., 0., 0.
if master_process and (stage=='Train') and (nb_iter % args.eval_iter==0 or nb_iter==1):
best_fid, best_iter, best_div, best_top1, best_top2, \
best_top3, best_matching = eval_trans.evaluation_vqvae(
args.out_dir, val_loader, net, nb_iter, best_fid,
best_iter, best_div, best_top1, best_top2,
best_top3, best_matching, eval_wrapper=eval_wrapper,
optimizer=optimizer, scheduler=scheduler, args=args)
if nb_iter >= total_iters: break
if nb_iter >= total_iters: break
return net, optimizer, scheduler
##### ---- Exp dirs ---- #####
args = option_vq.get_args_parser()
set_seed(args.seed)
##### ---- DDP ---- #####
ddp = args.ddp
if ddp:
world_size = args.world_size
ngpus_per_node = torch.cuda.device_count()
local_rank = int(os.environ.get("SLURM_LOCALID"))
rank = int(os.environ.get("SLURM_NODEID")) * ngpus_per_node + local_rank
torch.cuda.set_device(local_rank)
device = f'cuda:{local_rank}'
print(20*'-----')
print('ngpus_per_node: ', ngpus_per_node)
print('From Rank: {}, ==> Initializing Process Group...'.format(rank))
dist.init_process_group(backend=args.dist_backend, init_method=args.init_method, world_size=args.world_size, rank=rank)
print("process group ready")
print(f"From rank {rank} making model...")
print(20*'-----')
master_process = rank == 0 # this process will do logging, checkpointing etc.
else:
# vanilla, non-DDP run
rank = 0
local_rank = 0
world_size = 1
master_process = True
device = args.device
args.rank = rank
args.local_rank = local_rank
args.world_size = world_size
args.device = device
args.master_process = master_process
args.batch_size = args.total_batch_size // world_size
########## ------------- Seed -----------##############
if master_process:
args.out_dir = os.path.join(args.out_dir, f'vq') # /{args.exp_name}
# os.makedirs(args.out_dir, exist_ok = True)
init_save_folder(args)
set_seed(args.seed)
##### ---- Logger ---- #####
if master_process:
logger = utils_model.get_logger(args.out_dir, args.resume_pth, args=args)
writer = SummaryWriter(args.out_dir)
logger.info(json.dumps(vars(args), indent=4, sort_keys=True))
args.logger = logger
args.writer = writer
########## ------------- Data -----------##############
w_vectorizer = WordVectorizer('./glove', 'our_vab')
if args.dataname == 'kit' :
dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt'
args.nb_joints = 21
else :
dataset_opt_path = 'checkpoints/t2m/Comp_v6_KLD005/opt.txt'
args.nb_joints = 22
if master_process:
logger.info(f'Training on {args.dataname}, motions are with {args.nb_joints} joints')
wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
##### ---- Dataloader ---- #####
trainSet = dataset_VQ.VQMDataset(args.dataname,
args.batch_size,
window_size=args.window_size,
num_workers=args.num_workers,
unit_length=2**args.down_t,
args=args)
if args.ddp:
train_sampler = DistributedSampler(trainSet, num_replicas=args.world_size, rank=args.rank, shuffle=True)
else:
train_sampler = None
train_loader = torch.utils.data.DataLoader(trainSet,
args.batch_size,
shuffle=(train_sampler is None),
sampler=train_sampler,
num_workers=args.num_workers,
worker_init_fn=seed_worker,
drop_last = True)
val_dataset = dataset_TM_eval.T2MDataset(args.dataname, False,
32,
w_vectorizer,
unit_length=2**args.down_t,
args=args)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=32,
shuffle=False,
num_workers=args.num_workers,
collate_fn=collate_fn,
drop_last=True,
pin_memory=args.pin_memory)
if master_process:
logger.info(f"len train dataset {len(trainSet)}")
logger.info(f"len valid dataset {len(val_dataset)}")
logger.info(f"len train loader {len(train_loader)}")
logger.info(f"len valid loader {len(val_loader)}")
##### ---- Network ---- #####
net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers
args.nb_code,
args.code_dim,
args.output_emb_width,
args.down_t,
args.stride_t,
args.width,
args.depth,
args.dilation_growth_rate,
args.vq_act,
args.vq_norm)
net.train()
net.to(args.device)
##### ---- Optimizer & Scheduler ---- #####
optimizer = optim.AdamW(net.parameters(), lr=args.lr, betas=(0.9, 0.99), weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_scheduler, gamma=args.gamma)
Loss = losses.ReConsLoss(args.recons_loss, args.nb_joints)
#### Move net to DDP ###################3
if ddp:
net = DDP(net, device_ids=[local_rank])
raw_net = net.module if ddp else net # always contains the "raw" unwrapped net
if master_process:
n = sum([p.numel() for k, p in raw_net.named_parameters()])
logger.info(f"Number of transformer parameters: {n/1e6} M")
if args.resume_pth :
logger.info('loading checkpoint from {}'.format(args.resume_pth))
ckpt = torch.load(args.resume_pth, map_location='cpu')
net.load_state_dict(ckpt['net'], strict=True)
net.train()
net.to(device)
##### ---- Load model or Resume ---- #####
best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching = 1000, 0, 100, 0, 0, 0, 100
if args.resume_pth is None and master_process:
best_fid, best_iter, best_div, best_top1,\
best_top2, best_top3, best_matching = eval_trans.evaluation_vqvae(
args.out_dir, val_loader, raw_net, 0, best_fid=1000, best_iter=0, best_div=100,
best_top1=0, best_top2=0, best_top3=0, best_matching=100, eval_wrapper=eval_wrapper,
optimizer=optimizer, scheduler=scheduler, draw=False, args=args, save=False)
train_iter(
net,
optimizer,
scheduler,
"Warmup",
args.warm_up_iter,
0,
best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching)
train_iter(
net,
optimizer,
scheduler,
"Train",
args.total_iters,
0,
best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching)