-
Notifications
You must be signed in to change notification settings - Fork 69
/
loss_func.py
427 lines (327 loc) · 9.24 KB
/
loss_func.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
import numpy as np
from MLlib.activations import Sigmoid
from MLlib import Tensor
from MLlib import autograd
from MLlib.utils.misc_utils import unbroadcast
class MeanSquaredError(autograd.Function):
"""
Calculate Mean Squared Error.
"""
__slots__ = ()
@staticmethod
def forward(ctx, prediction, target):
if not (type(prediction).__name__ == 'Tensor' and
type(target).__name__ == 'Tensor'):
raise RuntimeError("Expected Tensors, got {} and {}. Please use "
".loss() method for non-Tensor data"
.format(type(prediction).__name__,
type(target).__name__))
requires_grad = prediction.requires_grad
batch_size = target.data.shape[0]
out = prediction.data - target.data
if requires_grad:
ctx.derivative_core = out
out = np.sum(np.power(out, 2)) / (2*batch_size)
output = Tensor(out, requires_grad=requires_grad,
is_leaf=not requires_grad)
return output
@staticmethod
def backward(ctx, grad_output):
derivative = ctx.derivative_core
grad_prediction = (derivative / derivative.shape[0]) * grad_output.data
return Tensor(unbroadcast(grad_prediction, derivative.shape))
@staticmethod
def loss(X, Y, W):
"""
Calculate loss by mean square method.
PARAMETERS
==========
X:ndarray(dtype=float,ndim=1)
input vector
Y:ndarray(dtype=float)
output vector
W:ndarray(dtype=float)
Weights
RETURNS
=======
array of mean squared losses
"""
M = X.shape[0]
return np.sum((np.dot(X, W).T - Y) ** 2) / (2 * M)
@staticmethod
def derivative(X, Y, W):
"""
Calculate derivative for mean square method.
PARAMETERS
==========
X:ndarray(dtype=float,ndim=1)
input vector
Y:ndarray(dtype=float)
output vector
W:ndarray(dtype=float)
Weights
RETURNS
=======
array of derivates
"""
M = X.shape[0]
return np.dot((np.dot(X, W).T - Y), X).T / M
class MSELoss(MeanSquaredError):
pass
class LogarithmicError():
"""
Calculate Logarithmic Error.
"""
@staticmethod
def loss(X, Y, W):
"""
Calculate loss by logarithmic error method.
PARAMETERS
==========
X:ndarray(dtype=float,ndim=1)
input vector
Y:ndarray(dtype=float)
output vector
W:ndarray(dtype=float)
Weights
RETURNS
=======
array of logarithmic losses
"""
M = X.shape[0]
sigmoid = Sigmoid()
H = sigmoid.activation(np.dot(X, W).T)
return (1/M)*(np.sum((-Y)*np.log(H)-(1-Y)*np.log(1-H)))
@staticmethod
def derivative(X, Y, W):
"""
Calculate derivative for logarithmic error method.
PARAMETERS
==========
X:ndarray(dtype=float,ndim=1)
input vector
Y:ndarray(dtype=float)
output vector
W:ndarray(dtype=float)
Weights
RETURNS
=======
array of derivates
"""
M = X.shape[0]
sigmoid = Sigmoid()
H = sigmoid.activation(np.dot(X, W).T)
return (1/M)*(np.dot(X.T, (H-Y).T))
class AbsoluteError():
"""
Calculate Absolute Error.
"""
@staticmethod
def loss(X, Y, W):
"""
Calculate loss by absolute error method.
PARAMETERS
==========
X:ndarray(dtype=float,ndim=1)
input vector
Y:ndarray(dtype=float)
output vector
W:ndarray(dtype=float)
Weights
RETURNS
=======
array of absolute losses
"""
M = X.shape[0]
return np.sum(np.absolute(np.dot(X, W).T - Y)) / M
@staticmethod
def derivative(X, Y, W):
"""
Calculate derivative for absolute error method.
PARAMETERS
==========
X:ndarray(dtype=float,ndim=1)
input vector
Y:ndarray(dtype=float)
output vector
W:ndarray(dtype=float)
Weights
RETURNS
=======
array of derivates
"""
M = X.shape[0]
AbsError = (np.dot(X, W).T-Y)
return np.dot(
np.divide(
AbsError,
np.absolute(AbsError),
out=np.zeros_like(AbsError),
where=(np.absolute(AbsError)) != 0),
X
).T/M
class CosineSimilarity():
"""
Calculate Similarity between actual value and similarity value.
"""
@staticmethod
def loss(X, Y, W):
"""
Calculate error by cosine similarity method
PARAMETERS
==========
X:ndarray(dtype=float,ndim=1)
input vector
Y:ndarray(dtype=float)
output vector
W:ndarray(dtype=float)
Weights
RETURNS
=======
Percentage of error in the actural value and predicted value
"""
H = (np.dot(X, W).T)
DP = np.sum(np.dot(H, Y))
S = DP/((np.sum(np.square(H))**(0.5))*(np.sum(np.square(Y))**(0.5)))
dissimilarity = 1-S
return dissimilarity*(np.sum(np.square(Y))**(0.5))
class Log_cosh():
@staticmethod
def logcosh_loss(X, Y, W):
"""
Calculate Error by log cosh method
PARAMETERS
==========
X: ndarray(dtype=float,ndim=1)
Input Vector
Y: ndarray (dtpye=float)
Output Vector
W:ndarray(dtype=float)
Weights
RETURNS
=======
Logarithm of the hyperbolic cosine of the prediction error
"""
p = np.cosh(Y - np.dot(X, W).T)
loss = np.log(p)
error = np.sum(loss)
return error
@staticmethod
def derivative_logcosh(X, Y, W):
"""
Calculate the derivative of "log cosh" loss method
PARAMETERS
==========
X: ndarray(dtype=float,ndim=1)
Actual values
Y: ndarray (dtpye=float)
Predicted values
W:ndarray(dtype=float)
Weights
RETURNS
=======
Derivative of Log cosh prediction error
"""
t = np.tanh(Y-np.dot(X, W).T) @ (-X)
derivative = np.sum(t)
return derivative
class Huber():
"""
Calculate Huber loss.
"""
@staticmethod
def loss(X, Y, W, delta=1.0):
"""
Calculate loss by Huber method.
PARAMETERS
==========
X:ndarray(dtype=float,ndim=1)
input vector
Y:ndarray(dtype=float)
output vector
W:ndarray(dtype=float)
Weights
RETURNS
=======
array of Huber loss
"""
y_pred = np.dot(X, W).T
M = X.shape[0]
error = np.where(np.abs(Y - y_pred) <= delta,
0.5 * (Y - y_pred)**2,
delta * (np.abs(Y - y_pred)-0.5*delta))
return np.sum(error) / M
@staticmethod
def derivative(X, Y, W, delta=1.0):
"""
Calculate derivative for Huber method.
PARAMETERS
==========
X:ndarray(dtype=float,ndim=1)
input vector
Y:ndarray(dtype=float)
output vector
W:ndarray(dtype=float)
Weights
RETURNS
=======
array of derivates
"""
y_pred = np.dot(X, W).T
M = X.shape[0]
der = 0
for i in range(M):
y = Y.transpose()
yp = y_pred.transpose()
if abs(y[i] - yp[i]) <= delta:
der += -X[i] * (y[i] - yp[i])
else:
der += delta * X[i] * (y[i] - yp[i]) / abs(yp[i] - y[i])
return der
class MeanSquaredLogLoss():
"""""
Calcute Mean Squared Log Loss
"""
@staticmethod
def loss(X, Y, W):
"""
Calculate Mean Squared Log Loss
PARAMETERS
==========
X:ndarray(dtype=float,ndim=1)
input vector
Y:ndarray(dtype=float)
output vector
W:ndarray(dtype=float)
Weights
RETURNS
=======
array of mean of logarithmic losses
"""
M = X.shape[0]
sigmoid = Sigmoid()
H = sigmoid.activations(np.dot(X, W).T)
return np.sqrt((1 / M) * (np.sum(np.log(Y + 1) - np.log(H + 1))))
class MeanAbsolutePrecentageError():
"""""
Calcute Mean Absolute Percentage Loss
"""
@staticmethod
def loss(X, Y, W):
"""
Calculate Mean Squared Log Loss
PARAMETERS
==========
X:ndarray(dtype=float,ndim=1)
input vector
Y:ndarray(dtype=float)
output vector
W:ndarray(dtype=float)
Weights
RETURNS
=======
array of Mean Absolute Percentage Loss
"""
y_pred = np.dot(X, W).T
L = np.sum(np.true_divide((np.abs(Y - y_pred) * 100), Y)) / X.shape[0]
return L