-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_object_detection.py
528 lines (453 loc) · 21.4 KB
/
run_object_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
# Code from: https://github.com/huggingface/transformers/blob/main/examples/pytorch/object-detection/run_object_detection.py
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
"""Finetuning any 🤗 Transformers model supported by AutoModelForObjectDetection for object detection leveraging the Trainer API."""
import logging
import os
import sys
from dataclasses import dataclass, field
from functools import partial
from typing import Any, List, Mapping, Optional, Tuple, Union
import albumentations as A
import numpy as np
import torch
from datasets import load_dataset
from torchmetrics.detection.mean_ap import MeanAveragePrecision
import transformers
from transformers import (
AutoConfig,
AutoImageProcessor,
AutoModelForObjectDetection,
HfArgumentParser,
Trainer,
TrainingArguments,
)
from transformers.image_processing_utils import BatchFeature
from transformers.image_transforms import center_to_corners_format
from transformers.trainer import EvalPrediction
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.40.0.dev0")
require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/object-detection/requirements.txt")
@dataclass
class ModelOutput:
logits: torch.Tensor
pred_boxes: torch.Tensor
def format_image_annotations_as_coco(
image_id: str, categories: List[int], areas: List[float], bboxes: List[Tuple[float]]
) -> dict:
"""Format one set of image annotations to the COCO format
Args:
image_id (str): image id. e.g. "0001"
categories (List[int]): list of categories/class labels corresponding to provided bounding boxes
areas (List[float]): list of corresponding areas to provided bounding boxes
bboxes (List[Tuple[float]]): list of bounding boxes provided in COCO format
([center_x, center_y, width, height] in absolute coordinates)
Returns:
dict: {
"image_id": image id,
"annotations": list of formatted annotations
}
"""
annotations = []
for category, area, bbox in zip(categories, areas, bboxes):
formatted_annotation = {
"image_id": image_id,
"category_id": category,
"iscrowd": 0,
"area": area,
"bbox": list(bbox),
}
annotations.append(formatted_annotation)
return {
"image_id": image_id,
"annotations": annotations,
}
def convert_bbox_yolo_to_pascal(boxes: torch.Tensor, image_size: Tuple[int, int]) -> torch.Tensor:
"""
Convert bounding boxes from YOLO format (x_center, y_center, width, height) in range [0, 1]
to Pascal VOC format (x_min, y_min, x_max, y_max) in absolute coordinates.
Args:
boxes (torch.Tensor): Bounding boxes in YOLO format
image_size (Tuple[int, int]): Image size in format (height, width)
Returns:
torch.Tensor: Bounding boxes in Pascal VOC format (x_min, y_min, x_max, y_max)
"""
# convert center to corners format
boxes = center_to_corners_format(boxes)
# convert to absolute coordinates
height, width = image_size
boxes = boxes * torch.tensor([[width, height, width, height]])
return boxes
def augment_and_transform_batch(
examples: Mapping[str, Any], transform: A.Compose, image_processor: AutoImageProcessor
) -> BatchFeature:
"""Apply augmentations and format annotations in COCO format for object detection task"""
images = []
annotations = []
for image_id, image, objects in zip(examples["image_id"], examples["image"], examples["objects"]):
image = np.array(image.convert("RGB"))
# apply augmentations
output = transform(image=image, bboxes=objects["bbox"], category=objects["category"])
images.append(output["image"])
# format annotations in COCO format
formatted_annotations = format_image_annotations_as_coco(
image_id, output["category"], objects["area"], output["bboxes"]
)
annotations.append(formatted_annotations)
# Apply the image processor transformations: resizing, rescaling, normalization
result = image_processor(images=images, annotations=annotations, return_tensors="pt")
return result
def collate_fn(batch: List[BatchFeature]) -> Mapping[str, Union[torch.Tensor, List[Any]]]:
data = {}
data["pixel_values"] = torch.stack([x["pixel_values"] for x in batch])
data["labels"] = [x["labels"] for x in batch]
if "pixel_mask" in batch[0]:
data["pixel_mask"] = torch.stack([x["pixel_mask"] for x in batch])
return data
@torch.no_grad()
def compute_metrics(
evaluation_results: EvalPrediction,
image_processor: AutoImageProcessor,
threshold: float = 0.0,
id2label: Optional[Mapping[int, str]] = None,
) -> Mapping[str, float]:
"""
Compute mean average mAP, mAR and their variants for the object detection task.
Args:
evaluation_results (EvalPrediction): Predictions and targets from evaluation.
threshold (float, optional): Threshold to filter predicted boxes by confidence. Defaults to 0.0.
id2label (Optional[dict], optional): Mapping from class id to class name. Defaults to None.
Returns:
Mapping[str, float]: Metrics in a form of dictionary {<metric_name>: <metric_value>}
"""
predictions, targets = evaluation_results.predictions, evaluation_results.label_ids
# For metric computation we need to provide:
# - targets in a form of list of dictionaries with keys "boxes", "labels"
# - predictions in a form of list of dictionaries with keys "boxes", "scores", "labels"
# TODO Ugly but somehow the last batch get's slaughtered
predictions = predictions[:-1]
targets = targets[:-1]
image_sizes = []
post_processed_targets = []
post_processed_predictions = []
# Collect targets in the required format for metric computation
for batch in targets:
# collect image sizes, we will need them for predictions post processing
batch_image_sizes = torch.tensor([x["orig_size"] for x in batch])
image_sizes.append(batch_image_sizes)
# collect targets in the required format for metric computation
# boxes were converted to YOLO format needed for model training
# here we will convert them to Pascal VOC format (x_min, y_min, x_max, y_max)
for image_target in batch:
boxes = torch.tensor(image_target["boxes"])
boxes = convert_bbox_yolo_to_pascal(boxes, image_target["orig_size"])
labels = torch.tensor(image_target["class_labels"])
post_processed_targets.append({"boxes": boxes, "labels": labels})
# Collect predictions in the required format for metric computation,
# model produce boxes in YOLO format, then image_processor convert them to Pascal VOC format
for batch, target_sizes in zip(predictions, image_sizes):
batch_logits, batch_boxes = batch[1], batch[2]
output = ModelOutput(logits=torch.tensor(batch_logits), pred_boxes=torch.tensor(batch_boxes))
post_processed_output = image_processor.post_process_object_detection(
output, threshold=threshold, target_sizes=target_sizes
)
post_processed_predictions.extend(post_processed_output)
# Compute metrics
metric = MeanAveragePrecision(box_format="xyxy", class_metrics=True)
metric.update(post_processed_predictions, post_processed_targets)
metrics = metric.compute()
# Replace list of per class metrics with separate metric for each class
classes = metrics.pop("classes")
map_per_class = metrics.pop("map_per_class")
mar_100_per_class = metrics.pop("mar_100_per_class")
for class_id, class_map, class_mar in zip(classes, map_per_class, mar_100_per_class):
class_name = id2label[class_id.item()] if id2label is not None else class_id.item()
metrics[f"map_{class_name}"] = class_map
metrics[f"mar_100_{class_name}"] = class_mar
metrics = {k: round(v.item(), 4) for k, v in metrics.items()}
return metrics
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify
them on the command line.
"""
dataset_name: str = field(
default="cppe-5",
metadata={
"help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)."
},
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_val_split: Optional[float] = field(
default=0.15, metadata={"help": "Percent to split off of train for validation."}
)
image_square_size: Optional[int] = field(
default=600,
metadata={
"help": "Image longest size will be resized to this value, then image will be padded to square."
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
default="facebook/detr-resnet-50",
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."})
ignore_mismatched_sizes: bool = field(
default=False,
metadata={
"help": "Whether or not to raise an error if some of the weights from the checkpoint do not have the same size as the weights of the model (if for instance, you are instantiating a model with 10 labels from a checkpoint with 3 labels)."
},
)
token: str = field(
default=None,
metadata={
"help": (
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
trust_remote_code: bool = field(
default=False,
metadata={
"help": (
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
"should only be set to `True` for repositories you trust and in which you have read the code, as it will "
"execute code present on the Hub on your local machine."
)
},
)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# # information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_object_detection", model_args, data_args)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
+ f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Detecting last checkpoint.
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif os.path.isdir(training_args.output_dir) and not training_args.overwrite_output_dir:
checkpoint = get_last_checkpoint(training_args.output_dir)
if checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# ------------------------------------------------------------------------------------------------
# Load dataset, prepare splits
# ------------------------------------------------------------------------------------------------
dataset = load_dataset(path=data_args.dataset_name, name="VIERSEN2024", cache_dir=model_args.cache_dir)
# If we don't have a validation split, split off a percentage of train as validation
data_args.train_val_split = None if "validation" in dataset.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0:
split = dataset["train"].train_test_split(data_args.train_val_split, seed=training_args.seed)
dataset["train"] = split["train"]
dataset["validation"] = split["test"]
# Get dataset categories and prepare mappings for label_name <-> label_id
categories = dataset["train"].features["objects"].feature["category"].names
id2label = dict(enumerate(categories))
label2id = {v: k for k, v in id2label.items()}
# ------------------------------------------------------------------------------------------------
# Load pretrained config, model and image processor
# ------------------------------------------------------------------------------------------------
common_pretrained_args = {
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"token": model_args.token,
"trust_remote_code": model_args.trust_remote_code,
}
config = AutoConfig.from_pretrained(
model_args.config_name or model_args.model_name_or_path,
label2id=label2id,
id2label=id2label,
**common_pretrained_args,
)
model = AutoModelForObjectDetection.from_pretrained(
model_args.model_name_or_path,
config=config,
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
**common_pretrained_args,
)
image_processor = AutoImageProcessor.from_pretrained(
model_args.image_processor_name or model_args.model_name_or_path,
# At this moment we recommend using external transform to pad and resize images.
# It`s faster and yields much better results for object-detection models.
do_pad=False,
do_resize=False,
# We will save image size parameter in config just for reference
size={"longest_edge": data_args.image_square_size},
**common_pretrained_args,
)
# ------------------------------------------------------------------------------------------------
# Define image augmentations and dataset transforms
# ------------------------------------------------------------------------------------------------
max_size = data_args.image_square_size
basic_transforms = [
A.LongestMaxSize(max_size=max_size),
A.PadIfNeeded(max_size, max_size, border_mode=0, value=(128, 128, 128), position="top_left"),
]
train_augment_and_transform = A.Compose(
[
A.Compose(
[
A.SmallestMaxSize(max_size=max_size, p=1.0),
A.RandomSizedBBoxSafeCrop(height=max_size, width=max_size, p=1.0),
],
p=0.2,
),
A.OneOf(
[
A.Blur(blur_limit=7, p=0.5),
A.MotionBlur(blur_limit=7, p=0.5),
A.Defocus(radius=(1, 5), alias_blur=(0.1, 0.25), p=0.1),
],
p=0.1,
),
A.Perspective(p=0.1),
A.HorizontalFlip(p=0.5),
A.RandomBrightnessContrast(p=0.5),
A.HueSaturationValue(p=0.1),
*basic_transforms,
],
bbox_params=A.BboxParams(format="coco", label_fields=["category"], clip=True, min_area=25),
)
validation_transform = A.Compose(
basic_transforms,
bbox_params=A.BboxParams(format="coco", label_fields=["category"], clip=True),
)
# Make transform functions for batch and apply for dataset splits
train_transform_batch = partial(
augment_and_transform_batch, transform=train_augment_and_transform, image_processor=image_processor
)
validation_transform_batch = partial(
augment_and_transform_batch, transform=validation_transform, image_processor=image_processor
)
dataset["train"] = dataset["train"].with_transform(train_transform_batch)
dataset["validation"] = dataset["validation"].with_transform(validation_transform_batch)
dataset["test"] = dataset["test"].with_transform(validation_transform_batch)
# ------------------------------------------------------------------------------------------------
# Model training and evaluation with Trainer API
# ------------------------------------------------------------------------------------------------
eval_compute_metrics_fn = partial(
compute_metrics, image_processor=image_processor, id2label=id2label, threshold=0.0
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset["train"] if training_args.do_train else None,
eval_dataset=dataset["validation"] if training_args.do_eval else None,
tokenizer=image_processor,
data_collator=collate_fn,
compute_metrics=eval_compute_metrics_fn,
)
# Training
if training_args.do_train:
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model()
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
# Final evaluation
if training_args.do_eval:
metrics = trainer.evaluate(eval_dataset=dataset["test"], metric_key_prefix="test")
trainer.log_metrics("test", metrics)
trainer.save_metrics("test", metrics)
# Write model card and (optionally) push to hub
kwargs = {
"finetuned_from": model_args.model_name_or_path,
"dataset": data_args.dataset_name,
"tags": ["object-detection", "vision"],
}
if training_args.push_to_hub:
trainer.push_to_hub(**kwargs)
else:
trainer.create_model_card(**kwargs)
if __name__ == "__main__":
main()