-
Notifications
You must be signed in to change notification settings - Fork 53
/
eval.py
261 lines (190 loc) · 7.78 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import argparse
import os
import shutil
import time
import math
import sys
import numpy as np
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from peleenet import PeleeNet
model_names = [ 'peleenet']
engine_names = [ 'caffe', 'torch']
parser = argparse.ArgumentParser(description='PeleeNet ImageNet Evaluation')
parser.add_argument('data', metavar='DIR', help='path to dataset')
parser.add_argument('--arch', '-a', metavar='ARCH', default='peleenet',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: peleenet)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('-b', '--batch-size', default=100, type=int,
metavar='N', help='mini-batch size (default: 100)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--deploy', '-m', metavar='ARCH', default='caffe/peleenet.prototxt',
help='model file ' )
parser.add_argument('--engine', '-e', metavar='ENGINE', default='caffe', choices=engine_names,
help='engine type ' +
' | '.join(engine_names) +
' (default: caffe)')
parser.add_argument('--weights', type=str, metavar='PATH', default='caffe/peleenet.caffemodel',
help='path to init checkpoint (default: none)')
parser.add_argument('--input-dim', default=224, type=int,
help='size of the input dimension (default: 224)')
best_prec1 = 0
def main():
global args, best_prec1
args = parser.parse_args()
print( 'args:',args)
# Data loading code
# Val data loading
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
val_dataset = datasets.ImageFolder(
valdir,
transforms.Compose([
transforms.Resize(args.input_dim+32),
transforms.CenterCrop(args.input_dim),
transforms.ToTensor(),
normalize,
]))
val_loader = torch.utils.data.DataLoader(val_dataset,
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
num_classes = len(val_dataset.classes)
print('Total classes: ',num_classes)
# create model
print("=> creating {} model '{}'".format(args.engine, args.arch))
model = create_model(num_classes, args.engine)
if args.engine == 'torch':
validate_torch(val_loader, model)
else:
validate_caffe(val_loader, model)
def create_model(num_classes, engine='torch'):
if engine == 'torch':
if args.arch == 'peleenet':
model = PeleeNet(num_classes=num_classes)
else:
print("=> unsupported model '{}'. creating PeleeNet by default.".format(args.arch))
model = PeleeNet(num_classes=num_classes)
# print(model)
model = torch.nn.DataParallel(model).cuda()
if args.weights:
if os.path.isfile(args.weights):
print("=> loading checkpoint '{}'".format(args.weights))
checkpoint = torch.load(args.weights)
model.load_state_dict(checkpoint['state_dict'])
else:
print("=> no checkpoint found at '{}'".format(args.weights))
cudnn.benchmark = True
else:
# create caffe model
import caffe
caffe.set_mode_gpu()
caffe.set_device(0)
model_def = args.deploy
model_weights = args.weights
model = caffe.Net(model_def, # defines the structure of the model
model_weights, # contains the trained weights
caffe.TEST) # use test mode (e.g., don't perform dropout)
return model
def validate_torch(val_loader, model):
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
for i, (input, target) in enumerate(val_loader):
target = target.cuda(async=True)
input_var = torch.autograd.Variable(input, volatile=True)
target_var = torch.autograd.Variable(target, volatile=True)
# compute output
output = model(input_var)
loss = criterion(output, target_var)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.data[0], input.size(0))
top1.update(prec1[0], input.size(0))
top5.update(prec5[0], input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return top1.avg
def validate_caffe(val_loader, net):
batch_time = AverageMeter()
batch_time = AverageMeter()
top1 = AverageMeter()
end = time.time()
for i, (inputs, target) in enumerate(val_loader):
batch = inputs.numpy()[:, ::-1, ...]
net.blobs['data'].reshape(len(batch), # batch size
3, # 3-channel (BGR) images
args.input_dim, args.input_dim)
net.blobs['data'].data[...] = batch
output = net.forward()
# measure elapsed time
batch_time.update(time.time() - end)
pre = np.array([x.argmax() for x in output['prob']])
correct = np.sum(pre == target.numpy()) * 1.0/len(batch)
top1.update(correct)
#if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'.format(
i, len(val_loader), batch_time=batch_time, top1=top1))
end = time.time()
print( ' * Prec@1 {top1.avg:.3f} '.format(top1=top1))
return top1.avg
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()