forked from RavenProject/Ravencoin
-
Notifications
You must be signed in to change notification settings - Fork 8
/
hash_tests.cpp
185 lines (157 loc) · 7.8 KB
/
hash_tests.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
// Copyright (c) 2013-2018 The Bitcoin Core developers
// Copyright (c) 2017 The Raven Core developers
// Copyright (c) 2018 The Rito Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "hash.h"
#include "utilstrencodings.h"
#include "test/test_rito.h"
#include "consensus/merkle.h"
#include <vector>
#include<iostream>
#include <boost/test/unit_test.hpp>
BOOST_FIXTURE_TEST_SUITE(hash_tests, BasicTestingSetup)
BOOST_AUTO_TEST_CASE(murmurhash3)
{
#define T(expected, seed, data) BOOST_CHECK_EQUAL(MurmurHash3(seed, ParseHex(data)), expected)
// Test MurmurHash3 with various inputs. Of course this is retested in the
// bloom filter tests - they would fail if MurmurHash3() had any problems -
// but is useful for those trying to implement Rito libraries as a
// source of test data for their MurmurHash3() primitive during
// development.
//
// The magic number 0xFBA4C795 comes from CBloomFilter::Hash()
T(0x00000000, 0x00000000, "");
T(0x6a396f08, 0xFBA4C795, "");
T(0x81f16f39, 0xffffffff, "");
T(0x514e28b7, 0x00000000, "00");
T(0xea3f0b17, 0xFBA4C795, "00");
T(0xfd6cf10d, 0x00000000, "ff");
T(0x16c6b7ab, 0x00000000, "0011");
T(0x8eb51c3d, 0x00000000, "001122");
T(0xb4471bf8, 0x00000000, "00112233");
T(0xe2301fa8, 0x00000000, "0011223344");
T(0xfc2e4a15, 0x00000000, "001122334455");
T(0xb074502c, 0x00000000, "00112233445566");
T(0x8034d2a0, 0x00000000, "0011223344556677");
T(0xb4698def, 0x00000000, "001122334455667788");
#undef T
}
/*
SipHash-2-4 output with
k = 00 01 02 ...
and
in = (empty string)
in = 00 (1 byte)
in = 00 01 (2 bytes)
in = 00 01 02 (3 bytes)
...
in = 00 01 02 ... 3e (63 bytes)
from: https://131002.net/siphash/siphash24.c
*/
uint64_t siphash_4_2_testvec[] = {
0x726fdb47dd0e0e31, 0x74f839c593dc67fd, 0x0d6c8009d9a94f5a, 0x85676696d7fb7e2d,
0xcf2794e0277187b7, 0x18765564cd99a68d, 0xcbc9466e58fee3ce, 0xab0200f58b01d137,
0x93f5f5799a932462, 0x9e0082df0ba9e4b0, 0x7a5dbbc594ddb9f3, 0xf4b32f46226bada7,
0x751e8fbc860ee5fb, 0x14ea5627c0843d90, 0xf723ca908e7af2ee, 0xa129ca6149be45e5,
0x3f2acc7f57c29bdb, 0x699ae9f52cbe4794, 0x4bc1b3f0968dd39c, 0xbb6dc91da77961bd,
0xbed65cf21aa2ee98, 0xd0f2cbb02e3b67c7, 0x93536795e3a33e88, 0xa80c038ccd5ccec8,
0xb8ad50c6f649af94, 0xbce192de8a85b8ea, 0x17d835b85bbb15f3, 0x2f2e6163076bcfad,
0xde4daaaca71dc9a5, 0xa6a2506687956571, 0xad87a3535c49ef28, 0x32d892fad841c342,
0x7127512f72f27cce, 0xa7f32346f95978e3, 0x12e0b01abb051238, 0x15e034d40fa197ae,
0x314dffbe0815a3b4, 0x027990f029623981, 0xcadcd4e59ef40c4d, 0x9abfd8766a33735c,
0x0e3ea96b5304a7d0, 0xad0c42d6fc585992, 0x187306c89bc215a9, 0xd4a60abcf3792b95,
0xf935451de4f21df2, 0xa9538f0419755787, 0xdb9acddff56ca510, 0xd06c98cd5c0975eb,
0xe612a3cb9ecba951, 0xc766e62cfcadaf96, 0xee64435a9752fe72, 0xa192d576b245165a,
0x0a8787bf8ecb74b2, 0x81b3e73d20b49b6f, 0x7fa8220ba3b2ecea, 0x245731c13ca42499,
0xb78dbfaf3a8d83bd, 0xea1ad565322a1a0b, 0x60e61c23a3795013, 0x6606d7e446282b93,
0x6ca4ecb15c5f91e1, 0x9f626da15c9625f3, 0xe51b38608ef25f57, 0x958a324ceb064572
};
BOOST_AUTO_TEST_CASE(hash16R_test)
{
BOOST_TEST_MESSAGE("Running Hash16R Test");
CBlock block;
block.nVersion = 42;
std::string hashHex = "19bcdaa780349350b210ca84d73dc1c08fbae659990b47a9d28655e7e9be3970";
//decimal order of hash16R is d28655e7e9be3970 hex converted to 13 2 8 6 5 5 14 7 14 9 11 14 3 9 7 0
int expectedPositions[16] = {13, 2, 8, 6, 5, 5, 14, 7, 14, 9, 11, 14, 3, 9, 7, 0};
uint256 *hash = new uint256();
hash->SetHex(hashHex);
uint256 hash256 = hash[0];
BOOST_CHECK_EQUAL(hash256.GetHex(), hashHex);
for (int i = 0; i < 15; i++)
{
int pos = GetHashSelection(hash256, i);
//BOOST_TEST_MESSAGE("pos " << i << ", " << pos);
BOOST_CHECK_EQUAL(expectedPositions[i], pos);
}
};
BOOST_AUTO_TEST_CASE(siphash_test)
{
BOOST_TEST_MESSAGE("Running SipHash Test");
CSipHasher hasher(0x0706050403020100ULL, 0x0F0E0D0C0B0A0908ULL);
BOOST_CHECK_EQUAL(hasher.Finalize(), 0x726fdb47dd0e0e31ull);
static const unsigned char t0[1] = {0};
hasher.Write(t0, 1);
BOOST_CHECK_EQUAL(hasher.Finalize(), 0x74f839c593dc67fdull);
static const unsigned char t1[7] = {1, 2, 3, 4, 5, 6, 7};
hasher.Write(t1, 7);
BOOST_CHECK_EQUAL(hasher.Finalize(), 0x93f5f5799a932462ull);
hasher.Write(0x0F0E0D0C0B0A0908ULL);
BOOST_CHECK_EQUAL(hasher.Finalize(), 0x3f2acc7f57c29bdbull);
static const unsigned char t2[2] = {16, 17};
hasher.Write(t2, 2);
BOOST_CHECK_EQUAL(hasher.Finalize(), 0x4bc1b3f0968dd39cull);
static const unsigned char t3[9] = {18, 19, 20, 21, 22, 23, 24, 25, 26};
hasher.Write(t3, 9);
BOOST_CHECK_EQUAL(hasher.Finalize(), 0x2f2e6163076bcfadull);
static const unsigned char t4[5] = {27, 28, 29, 30, 31};
hasher.Write(t4, 5);
BOOST_CHECK_EQUAL(hasher.Finalize(), 0x7127512f72f27cceull);
hasher.Write(0x2726252423222120ULL);
BOOST_CHECK_EQUAL(hasher.Finalize(), 0x0e3ea96b5304a7d0ull);
hasher.Write(0x2F2E2D2C2B2A2928ULL);
BOOST_CHECK_EQUAL(hasher.Finalize(), 0xe612a3cb9ecba951ull);
BOOST_CHECK_EQUAL(SipHashUint256(0x0706050403020100ULL, 0x0F0E0D0C0B0A0908ULL, uint256S("1f1e1d1c1b1a191817161514131211100f0e0d0c0b0a09080706050403020100")), 0x7127512f72f27cceull);
// Check test vectors from spec, one byte at a time
CSipHasher hasher2(0x0706050403020100ULL, 0x0F0E0D0C0B0A0908ULL);
for (uint8_t x = 0; x < ARRAYLEN(siphash_4_2_testvec); ++x)
{
BOOST_CHECK_EQUAL(hasher2.Finalize(), siphash_4_2_testvec[x]);
hasher2.Write(&x, 1);
}
// Check test vectors from spec, eight bytes at a time
CSipHasher hasher3(0x0706050403020100ULL, 0x0F0E0D0C0B0A0908ULL);
for (uint8_t x = 0; x < ARRAYLEN(siphash_4_2_testvec); x += 8)
{
BOOST_CHECK_EQUAL(hasher3.Finalize(), siphash_4_2_testvec[x]);
hasher3.Write(uint64_t(x) | (uint64_t(x + 1) << 8) | (uint64_t(x + 2) << 16) | (uint64_t(x + 3) << 24) |
(uint64_t(x + 4) << 32) | (uint64_t(x + 5) << 40) | (uint64_t(x + 6) << 48) | (uint64_t(x + 7)
<< 56));
}
CHashWriter ss(SER_DISK, CLIENT_VERSION);
CMutableTransaction tx;
// Note these tests were originally written with tx.nVersion=1
// and the test would be affected by default tx version bumps if not fixed.
tx.nVersion = 1;
ss << tx;
BOOST_CHECK_EQUAL(SipHashUint256(1, 2, ss.GetHash()), 0x79751e980c2a0a35ULL);
// Check consistency between CSipHasher and SipHashUint256[Extra].
FastRandomContext ctx;
for (int i = 0; i < 16; ++i)
{
uint64_t k1 = ctx.rand64();
uint64_t k2 = ctx.rand64();
uint256 x = InsecureRand256();
uint32_t n = ctx.rand32();
uint8_t nb[4];
WriteLE32(nb, n);
CSipHasher sip256(k1, k2);
sip256.Write(x.begin(), 32);
CSipHasher sip288 = sip256;
sip288.Write(nb, 4);
BOOST_CHECK_EQUAL(SipHashUint256(k1, k2, x), sip256.Finalize());
BOOST_CHECK_EQUAL(SipHashUint256Extra(k1, k2, x, n), sip288.Finalize());
}
}
BOOST_AUTO_TEST_SUITE_END()