Skip to content

Latest commit

 

History

History
100 lines (67 loc) · 4.02 KB

README.md

File metadata and controls

100 lines (67 loc) · 4.02 KB

🚀 Ai-sampler

Learning to sample with Adversarial Involutive Markov kernels.

License: MIT Python Style Schema

📚 This code is for reproducing the experiments in: Ai-sampler: Adversarial Learning of Markov kernels with involutive maps .

Getting started with 🚀 Ai-sampler

Installation

To ensure that JAX and PyTorch are installed with the right CUDA/cuDNN version of your platform, we recommend installing the GPU-supported JAX and CPU-only Pytorch.

To use this library, simply clone the repository, create a conda environment and install the dependencies with:

conda create -n aisampler python=3.10
conda activate aisampler
pip install -r requirements.txt

then install the library by running

pip install -e .

Note: the library supports wandb for better logging.

macOS

For macOS change jax[cuda12] into jax[cpu] in the requirement.txt file.

Repository structure

The repository is structured as follows:

  • ./aisampler. Library source code that implements the Ai-sampler.
  • ./data. Contains the data for Bayesian logistic regression.
  • ./experiments. Collection of the experiments.
    • /train. Scripts for training the Ai-sampler.
    • /test. Scripts for sampling with the trainied Ai-sampler and with HMC.

Usage

To train the Ai-sampler on the 2D densities, from the root folder run:

python experiments/train/train_toy_density.py --task.target_density_name=hamiltonian_mog2  --task.train.num_epochs=51 --task.checkpoint.checkpoint_dir=./checkpoints --task.checkpoint.save_every=50

Checkpoints are saved every save_every epochs into checkpoint_dir. To sample using the trained Ai-sampler run:

python experiments/test/sample_aisampler_toy_density.py --task.target_density_name=hamiltonian_mog2 --task.checkpoint.checkpoint_dir=./checkpoints --task.checkpoint.checkpoint_epoch=50 --task.num_parallel_chains=10 --task.num_iterations=1000 --task.burn_in=100

where num_parallel_chains sets the number of Markov chains run in parallel, num_iterations the length of the chains (after burn_in).

To train the Ai-sampler on the Bayesian logistic regression posterior, from the root folder run:

python experiments/train/train_logistic_regression.py --task=experiments/config/config_train_logistic_regression.py --task.dataset_name=Heart  --task.train.num_epochs=200 --task.checkpoint.checkpoint_dir=./checkpoints --task.checkpoint.save_every=50

To sample from the trained Ai-sampler run:

python experiments/test/sample_aisampler_logistic_regression.py --task.dataset_name=Heart --task.checkpoint.checkpoint_dir=./checkpoints --task.checkpoint.checkpoint_epoch=400 --task.num_parallel_chains=10 --task.num_iterations=1000 --task.burn_in=100

To sample from 2D densities with HMC (Neal 2012) run:

python experiments/test/sample_hmc_toy_density.py --task.target_density_name=hamiltonian_mog2

To sample with HMC from Bayesian logistic regression posterior, run

python experiments/test/sample_hmc_logistic_regression.py --task.dataset_name=Heart

Note: the library supports wandb for better logging. Simply install it and add --task.wandb.use=True.

Citing

If you want to cite us use the following BibTeX entry:

@article{egorov2024ai,
  title={Ai-Sampler: Adversarial Learning of Markov kernels with involutive maps},
  author={Egorov, Evgenii and Valperga, Ricardo and Gavves, Efstratios},
  journal={arXiv preprint arXiv:2406.02490},
  year={2024}
}