-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
383 lines (330 loc) · 13.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import sys
from pprint import pformat
from typing import Dict, List, Optional, Tuple, Union, Callable, TypeVar, Any
from einops import rearrange
from dataclasses import dataclass, field, asdict
from ignite.metrics import Loss, Precision, Recall, RunningAverage, Accuracy, EpochMetric
from sklearn.metrics import average_precision_score, label_ranking_average_precision_score, roc_auc_score, accuracy_score, recall_score, precision_score, f1_score
import numpy as np
import pandas as pd
import torch
import yaml
from loguru import logger
from torchaudio import transforms as audio_transforms
import torch_audiomentations as wavtransforms
R = TypeVar('R')
@dataclass
class MAEConfig:
train_data: str
cv_data : str
outputpath: str = 'experiments/mae/'
n_saved: int = 4
epoch_length: Optional[int] = None
epochs: int = 40
batch_size: int = 32
eval_batch_size: int = batch_size
num_workers: int = 4
chunk_length: float = 10.0 # in seconds
average: bool = True # Average topk
model: str = 'mae_audiotransformer_tiny'
model_args: Dict[str, Any] = field(default_factory=dict)
valid_every: int = 1 #When to run validation
mask_ratio: float = 0.75
optimizer: str = 'Adam8bit'
optimizer_args: Dict[str, Any] = field(default_factory=lambda: {
'lr': 0.0002,
'weight_decay': 0.0000005
})
decay_steps: Optional[
int] = None # Decay over the entire length of training
decay_frac: Optional[float] = 0.01
warmup_iters: Optional[int] = None
warmup_epochs: Optional[int] = 3
use_scheduler: bool = True
shuffle: bool = True
logfile:str = 'train.log'
pretrained_path: Optional[str] = None
basename: bool = True
def to_dict(self):
return asdict(self)
@dataclass
class AudiosetConfig:
train_data: str
cv_data: str
psl_data: str # Parquet formatted data, can be downloaded
outputpath: str = 'experiments/audioset'
n_saved: int = 4
valid_every: int = 1
epoch_length: Optional[int] = None
epochs: int = 150
warmup_iters: Optional[int] = None
warmup_epochs: int = 5
# Sampler Kwargs
sampler: Optional[str] = 'balanced'
replacement: bool = True
num_samples: int = 200_000
batch_size: int = 32
eval_batch_size: int = batch_size
num_workers: int = 4
mixup_alpha: Optional[float] = None
use_scheduler: bool = True
num_classes: int = 527
model: str = 'SAT_T_2s'
model_args: Dict[str, Any] = field(default_factory=dict)
pretrained_path: Optional[str] = None
# Optimizer
optimizer: str = 'Adam8bit'
optimizer_args: Dict[str, Any] = field(default_factory=lambda: {
'lr': 0.0005,
'weight_decay': 0.00000005
})
decay_steps: Optional[int] = None
decay_frac: Optional[float] = 0.1
spectransforms: List = field(default_factory=list)
wavtransforms: List = field(default_factory=list)
chunk_length: Optional[float] = None
basename: bool = True
logfile: str = 'train.log'
average: bool = True
def to_dict(self):
return asdict(self)
ALL_EVAL_METRICS = {
'Accuracy':
lambda: Accuracy(),
'PositiveMultiClass_Accuracy':
lambda: EpochMetric(compute_fn=compute_accuracy_with_noise),
'Micro_Recall':
lambda: EpochMetric(lambda y_pred, y_tar: recall_score(
y_tar.numpy(), y_pred.numpy(), average='micro', zero_division=1),
output_transform=lambda x:
((x[0] > 0.2).float(), x[1]),
check_compute_fn=False),
'Micro_Precision':
lambda: EpochMetric(lambda y_pred, y_tar: precision_score(
y_tar.numpy(), y_pred.numpy(), average='micro', zero_division=0),
output_transform=lambda x:
((x[0] > 0.2).float(), x[1]),
check_compute_fn=False),
'Precision':
lambda: EpochMetric(lambda y_pred, y_tar: precision_score(
y_tar.numpy(), y_pred.numpy(), average=None, zero_division=0),
output_transform=lambda x:
((x[0] > 0.2).float(), x[1]),
check_compute_fn=False),
'Macro_Precision':
lambda: EpochMetric(lambda y_pred, y_tar: precision_score(
y_tar.numpy(), y_pred.numpy(), average='macro', zero_division=0),
output_transform=lambda x:
((x[0] > 0.2).float(), x[1]),
check_compute_fn=False),
'Macro_Recall':
lambda: EpochMetric(lambda y_pred, y_tar: recall_score(
y_tar.numpy(), y_pred.numpy(), average='macro', zero_division=0),
output_transform=lambda x:
((x[0] > 0.2).float(), x[1]),
check_compute_fn=False),
'Recall':
lambda: EpochMetric(lambda y_pred, y_tar: recall_score(
y_tar.numpy(), y_pred.numpy(), average=None, zero_division=0),
output_transform=lambda x:
((x[0] > 0.2).float(), x[1]),
check_compute_fn=False),
'Macro_F1':
lambda: EpochMetric(lambda y_pred, y_tar: f1_score(
y_tar.numpy(), y_pred.numpy(), average='macro', zero_division=0),
output_transform=lambda x:
((x[0] > 0.2).float(), x[1]),
check_compute_fn=False),
'Micro_F1':
lambda: EpochMetric(lambda y_pred, y_tar: f1_score(
y_tar.numpy(), y_pred.numpy(), average='micro', zero_division=0),
output_transform=lambda x:
((x[0] > 0.2).float(), x[1]),
check_compute_fn=False),
'AUC':
lambda: EpochMetric(compute_roc_auc, check_compute_fn=False),
'BCELoss':
lambda: Loss(torch.nn.BCELoss()),
'CELoss':
lambda: Loss(torch.nn.CrossEntropyLoss()),
'mAP':
lambda: EpochMetric(lambda y_pred, y_tar: np.nanmean(
average_precision_score(
y_tar.to('cpu').numpy(), y_pred.to('cpu').numpy(), average=None)),
check_compute_fn=False),
'mAP_transform':
lambda output_transform:
EpochMetric(output_transform=output_transform,
compute_fn=lambda y_pred, y_tar: np.nanmean(
average_precision_score(y_tar.to('cpu').numpy(),
y_pred.to('cpu').numpy(),
average=None)),
check_compute_fn=False),
'AP':
lambda: EpochMetric(lambda y_pred, y_tar: average_precision_score(
y_tar.to('cpu').numpy(), y_pred.to('cpu').numpy(), average=None),
check_compute_fn=False),
'lwlwrap':
lambda: EpochMetric(calculate_overall_lwlrap_sklearn,
check_compute_fn=False),
# metrics.Lwlwrap(),
'ErrorRate':
lambda: EpochMetric(lambda y_pred, y_tar: 1. - np.nan_to_num(
accuracy_score(y_tar.to('cpu').numpy(),
y_pred.to('cpu').numpy())),
check_compute_fn=False),
}
def metrics(metric_names: List[str]) -> Dict[str, EpochMetric]:
'''
Returns metrics given some metric names
'''
return {met: ALL_EVAL_METRICS[met]() for met in metric_names}
class DictWrapper(object):
def __init__(self, adict):
self.dict = adict
def state_dict(self):
return self.dict
def load_state_dict(self, state):
self.dict = state
def load_pretrained(model: torch.nn.Module, trained_model: dict):
if 'model' in trained_model:
trained_model = trained_model['model']
model_dict = model.state_dict()
# filter unnecessary keys
pretrained_dict = {
k: v
for k, v in trained_model.items() if (k in model_dict) and (
model_dict[k].shape == trained_model[k].shape)
}
assert len(pretrained_dict) > 0, "Couldnt load pretrained model"
# Found time positional embeddings ....
if 'time_pos_embed' in trained_model.keys():
pretrained_dict['time_pos_embed'] = trained_model['time_pos_embed']
pretrained_dict['freq_pos_embed'] = trained_model['freq_pos_embed']
logger.info(
f"Loading {len(pretrained_dict)} Parameters for model {model.__class__.__name__}"
)
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict, strict=True)
return model
def parse_config_or_kwargs(config_file, default_args: Callable[..., R],
**kwargs) -> R:
"""parse_config_or_kwargs
:param config_file: Config file that has parameters, yaml format
:param **kwargs: Other alternative parameters or overwrites for config
"""
with open(config_file) as con_read:
yaml_config = yaml.load(con_read, Loader=yaml.FullLoader)
# values from config file are all possible params
arguments = dict(yaml_config, **kwargs)
return default_args(**arguments)
def parse_wavtransforms(transforms_dict: Dict) -> Callable:
"""parse_transforms
parses the config files transformation strings to coresponding methods
:param transform_list: String list
"""
transforms = []
for trans_name, v in transforms_dict.items():
transforms.append(getattr(wavtransforms, trans_name)(**v))
return torch.nn.Sequential(*transforms)
def parse_spectransforms(transforms: Union[List, Dict]) -> Callable:
"""parse_transforms
parses the config files transformation strings to coresponding methods
:param transform_list: String list
"""
if isinstance(transforms, dict):
return torch.nn.Sequential(*[
getattr(audio_transforms, trans_name)(**v)
for trans_name, v in transforms.items()
])
elif isinstance(transforms, list):
return torch.nn.Sequential(*[
getattr(audio_transforms, trans_name)(**v) for item in transforms
for trans_name, v in item.items()
])
else:
raise ValueError("Transform unknown")
def pprint_dict(in_dict, outputfun=sys.stdout.write, formatter='yaml'):
"""pprint_dict
:param outputfun: function to use, defaults to sys.stdout
:param in_dict: dict to print
"""
if formatter == 'yaml':
format_fun = yaml.dump
elif formatter == 'pretty':
format_fun = pformat
for line in format_fun(in_dict).split('\n'):
outputfun(line)
def mixup(x: torch.Tensor, lamb: torch.Tensor):
""" x: Tensor of shape ( batch_size, ... )
lamb: lambdas [0,1] of shape (batch_size)
"""
x1 = rearrange(x.flip(0), 'b ... -> ... b')
x2 = rearrange(x, 'b ... -> ... b')
mixed = x1 * lamb + x2 * (1. - lamb)
return rearrange(mixed, '... b -> b ...')
def read_tsv_data(datafile: str,
nrows: Optional[int] = None,
basename=True) -> pd.DataFrame:
df = pd.read_csv(datafile, sep="\t", nrows=nrows)
assert 'hdf5path' in df.columns and 'filename' in df.columns and 'labels' in df.columns
if any(df['labels'].str.contains(';')):
df['labels'] = df['labels'].str.split(';').map(
lambda x: np.array(x, dtype=int))
if basename:
df['filename'] = df['filename'].str.rsplit('/').str[-1]
return df
def read_psl_data(datafile: str, ) -> pd.DataFrame:
psl_df = pd.read_parquet(datafile)
psl_df['prob'] = psl_df['prob'].str.split(';').map(
lambda x: np.array(x, dtype=np.float32)).reset_index(drop=True)
psl_df['idxs'] = psl_df['idxs'].str.split(';').map(
lambda x: np.array(x, dtype=np.int64)).reset_index(drop=True)
return psl_df
def average_models(models: List[str]):
model_res_state_dict = {}
state_dict = {}
has_new_structure = False
for m in models:
cur_state = torch.load(m, map_location='cpu')
if 'model' in cur_state:
has_new_structure = True
model_params = cur_state.pop('model')
# Append non "model" items, encoder, optimizer etc ...
for k in cur_state:
state_dict[k] = cur_state[k]
# Accumulate statistics
for k in model_params:
if k in model_res_state_dict:
model_res_state_dict[k] += model_params[k]
else:
model_res_state_dict[k] = model_params[k]
else:
for k in cur_state:
if k in model_res_state_dict:
model_res_state_dict[k] += cur_state[k]
else:
model_res_state_dict[k] = cur_state[k]
# Average
for k in model_res_state_dict:
# If there are any parameters
if model_res_state_dict[k].ndim > 0:
model_res_state_dict[k] /= float(len(models))
if has_new_structure:
state_dict['model'] = model_res_state_dict
else:
state_dict = model_res_state_dict
return state_dict
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('models', nargs="+")
parser.add_argument('-o',
'--output',
required=True,
help="Output model (pytorch)")
args = parser.parse_args()
mdls = average_models(args.models)
torch.save(mdls, args.output)