-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path1_run_mae.py
268 lines (229 loc) · 10.4 KB
/
1_run_mae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
from typing import List, Tuple, Dict, Any, Union, Callable, Iterable, Optional, TypeVar
from loguru import logger
from fire import Fire
import pandas as pd
import uuid
import numpy as np
import models
import dataset
import utils
import torch
import sys
import datetime
from pathlib import Path
import ignite
from ignite.contrib.handlers import ProgressBar, create_lr_scheduler_with_warmup, CosineAnnealingScheduler
from ignite.engine import (Engine, Events)
from ignite.handlers import (Checkpoint, DiskSaver, global_step_from_engine)
class MAELoss(torch.nn.Module):
def __init__(self, norm_pix_loss=True):
super().__init__()
self.norm_pix_loss = norm_pix_loss
def forward(self, pred: torch.Tensor, target: torch.Tensor,
mask: torch.Tensor) -> torch.Tensor:
if self.norm_pix_loss:
mean = target.mean(dim=-1, keepdim=True)
var = target.var(dim=-1, keepdim=True)
target = (target - mean) / (var + 1.e-6)**.5
loss = (pred - target)**2
loss = loss.mean(dim=-1) # [N, L], mean loss per patch
loss = (loss * mask).sum() / mask.sum() # mean loss on removed patches
return loss
logger.configure(handlers=[{
"sink": sys.stdout,
"format": "[<green>{time:YYYY-MM-DD HH:mm:ss}</green>] {message}",
'level': 'DEBUG',
}])
DEVICE = torch.device('cpu' if not torch.cuda.is_available() else 'cuda')
def transfer_to_device(batch: Iterable, device=DEVICE):
return (x.to(device, non_blocking=True)
if isinstance(x, torch.Tensor) else x for x in batch)
def log_basic_info(outputdir, config_parameters):
import os
if 'HOSTNAME' in os.environ:
logger.info(f"Running on host {os.environ['HOSTNAME']}")
logger.info(f"Running on device {DEVICE}")
logger.info(f"Storing output in {outputdir}")
logger.info(f"- PyTorch version: {torch.__version__}")
logger.info(f"- Ignite version: {ignite.__version__}")
if torch.cuda.is_available():
logger.info(f"- GPU Device: {torch.cuda.current_device()}")
logger.info(f"- CUDA version: {torch.version.cuda}")
for k, v in config_parameters.to_dict().items():
logger.info(f"{k} : {v}")
def create_engine(engine_function: Callable,
evaluation_metrics: Optional[List[str]] = None):
engine = Engine(engine_function)
ProgressBar().attach(engine, output_transform=lambda x: x)
if evaluation_metrics:
eval_mets = utils.metrics(evaluation_metrics)
for name, metric in eval_mets.items():
metric.attach(engine, name)
return engine
class RunnerMAE(object):
def __init__(self, seed: int = 42, nthreads: int = 1):
super().__init__()
torch.manual_seed(seed)
np.random.seed(seed)
torch.set_num_threads(nthreads)
def __setup(self,
config: Union[Path, str],
default_args=utils.MAEConfig,
**override_kwargs) -> Tuple[Path, utils.MAEConfig]:
config_parameters = utils.parse_config_or_kwargs(
config, default_args=default_args, **override_kwargs)
outputdir = Path(config_parameters.outputpath) / Path(
config).stem / f"{config_parameters.model}" / "{}_{}".format(
datetime.datetime.now().strftime('%Y-%m-%d_%H-%M'),
uuid.uuid1().hex)
outputdir.mkdir(exist_ok=True, parents=True)
log_fname = config_parameters.logfile
output_log = outputdir / log_fname
logger.add(
output_log,
enqueue=True,
level='INFO',
format=
"[<red>{level}</red> <green>{time:YYYY-MM-DD HH:mm:ss}</green>] {message}"
)
log_basic_info(outputdir, config_parameters)
return outputdir, config_parameters
def train(self, config: Union[str, Path], **overwrite_kwargs: Dict[str,
Any]):
outputdir, config_parameters = self.__setup(config, **overwrite_kwargs)
epochs: int = config_parameters.epochs
mask_ratio = config_parameters.mask_ratio
model = getattr(
models, config_parameters.model)(**config_parameters.model_args)
logger.info(model)
model = model.to(DEVICE).train()
if config_parameters.optimizer == 'Adam8bit':
import bitsandbytes as bnb
optimizer = bnb.optim.Adam8bit(
model.parameters(),
**config_parameters.optimizer_args) # add bnb optimizer
else:
optimizer = getattr(torch.optim, config_parameters.optimizer)(
model.parameters(), **config_parameters.optimizer_args)
train_df = utils.read_tsv_data(config_parameters.train_data,
basename=config_parameters.basename)
cv_df = utils.read_tsv_data(config_parameters.cv_data,
basename=config_parameters.basename)
logger.info(
f"Got {len(train_df)} train samples and {len(cv_df)} validation ones."
)
train_dataloader = torch.utils.data.DataLoader(
dataset.UnlabeledRandomChunkedHDF5Dataset(
data_df=train_df,
chunk_length=config_parameters.chunk_length,
),
batch_size=config_parameters.batch_size,
num_workers=config_parameters.num_workers,
shuffle=config_parameters.shuffle,
collate_fn=dataset.sequential_pad)
test_dataloader = torch.utils.data.DataLoader(
dataset.UnlabeledHDF5Dataset(
cv_df, chunk_length=config_parameters.chunk_length),
batch_size=config_parameters.eval_batch_size,
num_workers=config_parameters.num_workers,
shuffle=False,
)
criterion = MAELoss().to(DEVICE)
def _train(engine, batch):
model.train()
with torch.enable_grad():
optimizer.zero_grad(set_to_none=True)
x, *_ = transfer_to_device(batch)
pred, tar, mask = model(x, mask_ratio=mask_ratio)
loss = criterion(pred, tar, mask)
loss.backward()
optimizer.step()
return {
'total_loss': loss.item(),
}
def _inference(engine, batch):
model.eval()
with torch.no_grad():
data, *_ = transfer_to_device(batch)
pred, tar, mask = model(data, mask_ratio=mask_ratio)
return {
'y_pred': pred,
'y': tar,
'criterion_kwargs': {
'mask': mask
}
}
def log_metrics(engine, title=None):
results = engine.state.metrics
output_str_list = [
f"{title:<10} Results - Epoch : {train_engine.state.epoch:<4}"
] + [f"{metric} {results[metric]:<5.4f}" for metric in results
] + [f"LR: {optimizer.param_groups[0]['lr']:.2e}"]
logger.info(" ".join(output_str_list))
train_engine = create_engine(_train)
inference_engine = create_engine(_inference)
ignite.metrics.Loss(criterion).attach(inference_engine, 'Loss')
score_function = Checkpoint.get_default_score_fn(*['Loss', -1.0])
checkpoint_saver = Checkpoint(
{
'model': model.encoder,
'config': utils.DictWrapper(config_parameters.to_dict()),
},
DiskSaver(outputdir),
n_saved=config_parameters.n_saved,
global_step_transform=global_step_from_engine(train_engine),
filename_prefix='best',
score_function=score_function)
last_checkpoint_saver = Checkpoint(
{
'model': model.encoder,
'config': utils.DictWrapper(config_parameters.to_dict()),
},
DiskSaver(outputdir),
n_saved=1,
global_step_transform=global_step_from_engine(train_engine))
decay_steps = len(
train_dataloader
) * epochs if config_parameters.decay_steps is None else config_parameters.decay_steps
decay_frac = config_parameters.decay_frac
if config_parameters.use_scheduler:
scheduler = ignite.handlers.param_scheduler.CosineAnnealingScheduler(
optimizer, 'lr', optimizer.param_groups[0]['lr'],
optimizer.param_groups[0]['lr'] * decay_frac, decay_steps)
warmup_time_in_iters = None
if config_parameters.warmup_iters is not None:
warmup_time_in_iters = config_parameters.warmup_iters
elif config_parameters.warmup_epochs is not None:
warmup_time_in_iters = len(
train_dataloader) * config_parameters.warmup_epochs
if warmup_time_in_iters is not None:
logger.info(f"Using warmup with {warmup_time_in_iters} iters")
scheduler = create_lr_scheduler_with_warmup(
scheduler,
warmup_start_value=0.0,
warmup_duration=warmup_time_in_iters)
train_engine.add_event_handler(Events.ITERATION_STARTED, scheduler)
inference_engine.add_event_handler(Events.COMPLETED, checkpoint_saver)
inference_engine.add_event_handler(Events.COMPLETED,
last_checkpoint_saver)
@train_engine.on(
Events.EPOCH_COMPLETED(every=config_parameters.valid_every))
def valid_eval(train_engine):
with inference_engine.add_event_handler(Events.COMPLETED,
log_metrics, "Validation"):
inference_engine.run(test_dataloader)
train_engine.run(
train_dataloader,
max_epochs=epochs,
epoch_length=config_parameters.epoch_length,
)
output_model = outputdir / checkpoint_saver.last_checkpoint
if config_parameters.average:
output_model = outputdir / 'averaged.pt'
logger.info(f"Averaging best models -> {output_model}")
averaged_state_dict = utils.average_models(
[outputdir / f.filename for f in checkpoint_saver._saved])
torch.save(averaged_state_dict, output_model)
return output_model
if __name__ == "__main__":
Fire(RunnerMAE)