-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun.py
575 lines (515 loc) · 24 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
from typing import Callable, List, Optional, Tuple, Dict, Any, Union
from loguru import logger
from fire import Fire
import pandas as pd
import uuid
import numpy as np
from dataclasses import asdict
import dataset
import utils
import torch
import sys
import datetime
from pathlib import Path
import ignite
import models
from ignite.contrib.handlers import ProgressBar, create_lr_scheduler_with_warmup, CosineAnnealingScheduler
from ignite.engine import (Engine, Events)
from ignite.handlers import (Checkpoint, DiskSaver, global_step_from_engine,
EarlyStopping)
logger.configure(handlers=[{
"sink": sys.stderr,
"format": "[<green>{time:YYYY-MM-DD HH:mm:ss}</green>] {message}",
'level': 'DEBUG',
}])
DEVICE = torch.device('cpu' if not torch.cuda.is_available() else 'cuda')
def transfer_to_device(batch, device=DEVICE):
return (x.to(DEVICE, non_blocking=True)
if isinstance(x, torch.Tensor) else x for x in batch)
def _step_amp(
model: torch.nn.Module,
optimizer: torch.optim.Optimizer,
criterion: Union[Callable, torch.nn.Module],
spectransforms: Callable,
config_parameters: utils.TrainConfig,
):
from torch.cuda.amp import GradScaler
from torch.cuda.amp import autocast
scaler = GradScaler(enabled=True)
logger.info("Using AMP")
def _update(engine, batch):
model.train()
with torch.enable_grad():
x, y, specaug_value, specaug_min_value, fnames = transfer_to_device(
batch)
if config_parameters.disable_consistency:
specaug_value = torch.rand_like(torch.tensor(range(len(x))).float())
specaug_min_value = torch.rand_like(torch.tensor(range(len(x))).float())
mixup_lamb = None
if specaug_value is not None:
x = model.front_end(x)
x = spectransforms(x,
values=torch.tensor(specaug_value),
min_values=torch.tensor(specaug_min_value))
if config_parameters.mixup is not None and config_parameters.mixup > 0.0:
mixup_lamb = torch.tensor(np.random.beta(
config_parameters.mixup,
config_parameters.mixup,
size=len(x)),
device=DEVICE,
dtype=torch.float32)
x = utils.mixup(x, mixup_lamb)
with autocast(enabled=True):
model_pred = model.forward_spectrogram(x)
if isinstance(model_pred, tuple):
model_pred = model_pred[0]
if mixup_lamb is not None:
loss = utils.mixup_criterion(model_pred,
y,
lamb=mixup_lamb,
criterion=criterion)
else:
loss = criterion(model_pred, y)
else:
with autocast(enabled=True):
if config_parameters.mixup is not None and config_parameters.mixup > 0.0:
mixup_lamb = torch.tensor(np.random.beta(
config_parameters.mixup,
config_parameters.mixup,
size=len(x)),
device=DEVICE,
dtype=torch.float32)
x = utils.mixup(x, mixup_lamb)
model_pred = model(x)
if isinstance(model_pred, tuple):
model_pred = model_pred[0]
if mixup_lamb is not None:
loss = utils.mixup_criterion(model_pred,
y,
lamb=mixup_lamb,
criterion=criterion)
else:
loss = criterion(model_pred, y)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
model.zero_grad(set_to_none=True)
return {
'total_loss': loss.item(),
'lr': optimizer.param_groups[0]['lr'],
}
return _update
def _step_ampbf16(
model: torch.nn.Module,
optimizer: torch.optim.Optimizer,
criterion: Union[Callable, torch.nn.Module],
spectransforms: Callable,
config_parameters: utils.TrainConfig,
):
from torch.cuda.amp import autocast
logger.info("Using AMP BF16")
def _update(engine, batch):
model.train()
with torch.enable_grad():
x, y, specaug_value, specaug_min_value, fnames = transfer_to_device(
batch)
if config_parameters.disable_consistency:
specaug_value = torch.rand_like(torch.tensor(specaug_value).float())
specaug_min_value = torch.rand_like(torch.tensor(specaug_min_value).float())
mixup_lamb = None
if specaug_value is not None:
x = model.front_end(x)
x = spectransforms(x,
values=torch.tensor(specaug_value),
min_values=torch.tensor(specaug_min_value))
if config_parameters.mixup is not None and config_parameters.mixup > 0.0:
mixup_lamb = torch.tensor(np.random.beta(
config_parameters.mixup,
config_parameters.mixup,
size=len(x)),
device=DEVICE,
dtype=torch.float32)
x = utils.mixup(x, mixup_lamb)
with autocast(enabled=True, dtype=torch.bfloat16):
model_pred = model.forward_spectrogram(x)
if isinstance(model_pred, tuple):
model_pred = model_pred[0]
if mixup_lamb is not None:
loss = utils.mixup_criterion(model_pred,
y,
lamb=mixup_lamb,
criterion=criterion)
else:
loss = criterion(model_pred, y)
else:
with autocast(enabled=True, dtype=torch.bfloat16):
model_pred = model(x)
if isinstance(model_pred, tuple):
model_pred = model_pred[0]
loss = criterion(model_pred, y)
loss.backward()
optimizer.step()
model.zero_grad(set_to_none=True)
return {
'total_loss': loss.item(),
'lr': optimizer.param_groups[0]['lr'],
}
return _update
def _step(model: torch.nn.Module,
optimizer: torch.optim.Optimizer,
criterion: Union[Callable, torch.nn.Module],
spectransforms: Callable,
config_parameters: utils.TrainConfig,
):
def _update(engine, batch):
model.train()
with torch.enable_grad():
optimizer.zero_grad(set_to_none=True)
x, y, specaug_value, specaug_min_value, fnames = transfer_to_device(
batch)
if config_parameters.disable_consistency:
specaug_value = torch.rand_like(torch.tensor(specaug_value).float())
specaug_min_value = torch.rand_like(torch.tensor(specaug_min_value).float())
mixup_lamb = None
if specaug_value is not None:
x = model.front_end(x)
x = spectransforms(x,
values=torch.tensor(specaug_value),
min_values=torch.tensor(specaug_min_value))
if config_parameters.mixup is not None and config_parameters.mixup > 0.0:
#Spectrogram level specaug
mixup_lamb = torch.tensor(np.random.beta(
config_parameters.mixup, config_parameters.mixup, size=len(x)),
device=DEVICE,
dtype=torch.float32)
x = utils.mixup(x, mixup_lamb)
model_pred = model.forward_spectrogram(x)
else:
model_pred = model(x)
if isinstance(model_pred, tuple):
model_pred = model_pred[0]
if mixup_lamb is not None:
loss = utils.mixup_criterion(model_pred,
y,
lamb=mixup_lamb,
criterion=criterion)
else:
loss = criterion(model_pred, y)
loss.backward()
optimizer.step()
return {
'total_loss': loss.item(),
'lr': optimizer.param_groups[0]['lr'],
}
return _update
def create_supervised_trainer(
model: torch.nn.Module,
optimizer: torch.optim.Optimizer,
criterion: Union[Callable, torch.nn.Module],
spectransforms: Callable,
config_parameters: utils.TrainConfig,
mode: Optional[str] = None,
):
if mode == 'amp':
return _step_amp(model, optimizer, criterion, spectransforms, config_parameters)
elif mode == 'amp_bf16':
return _step_ampbf16(model, optimizer, criterion, spectransforms, config_parameters)
return _step(model, optimizer, criterion,spectransforms, config_parameters)
def log_basic_info(params):
config_parameters = params['params']
logger.info(f"Running on device {DEVICE}")
logger.info(f"Storing output in {params['outputdir']}")
logger.info(f"- PyTorch version: {torch.__version__}")
logger.info(f"- Ignite version: {ignite.__version__}")
if torch.cuda.is_available():
logger.info(f"- GPU Device: {torch.cuda.current_device()}")
logger.info(f"- CUDA version: {torch.version.cuda}")
for k, v in asdict(config_parameters).items():
logger.info(f"{k} : {v}")
def create_engine(engine_function, evaluation_metrics: Optional[List[str]] = None):
engine = Engine(engine_function)
ProgressBar().attach(engine, output_transform=lambda x: x)
if evaluation_metrics:
eval_mets = utils.Metrics().get_metrics(evaluation_metrics)
for name, metric in eval_mets.items():
metric.attach(engine, name)
return engine
class Runner(object):
def __init__(self, seed: int = 42, nthreads: int = 1):
super().__init__()
torch.manual_seed(seed)
np.random.seed(seed)
torch.set_num_threads(nthreads)
logger.info(f"Using seed {seed}")
def __setup(self,
config: Path,
**override_kwargs) -> Dict[str, Any]:
config_parameters = utils.parse_config_or_kwargs(
config, config_type=utils.TrainConfig, **override_kwargs)
outputdir = Path(config_parameters.outputpath) / Path(
config).stem / f"{config_parameters.model}" / "{}_{}".format(
datetime.datetime.now().strftime('%Y-%m-%d_%H-%M'),
uuid.uuid1().hex)
outputdir.mkdir(exist_ok=True, parents=True)
log_fname = config_parameters.logfile
output_log = outputdir / log_fname
logger.add(
output_log,
enqueue=True,
level='INFO',
format=
"[<red>{level}</red> <green>{time:YYYY-MM-DD HH:mm:ss}</green>] {message}"
)
return_params = {'outputdir': outputdir, 'params': config_parameters}
log_basic_info(return_params)
return return_params
def train(self, config: Union[Path, str], **overwrite_kwargs):
param_dict = self.__setup(Path(config), **overwrite_kwargs)
config_parameters = param_dict['params']
outputdir = param_dict['outputdir']
meta_data = torch.load(Path(config_parameters.logitspath) / 'meta.pt')
spectransforms = meta_data['spectransforms']
wavtransforms = meta_data['wavtransforms']
model = getattr(models, config_parameters.model)(
pretrained=True, **config_parameters.model_args)
logger.info(model)
if config_parameters.pretrained is not None:
utils.load_pretrained(model,
trained_model=torch.load(
config_parameters.pretrained,
map_location='cpu'))
model = model.to(DEVICE).train()
if config_parameters.optimizer == 'Adam8bit':
import bitsandbytes as bnb
optimizer = bnb.optim.Adam8bit(
model.parameters(),
**config_parameters.optimizer_args) # add bnb optimizer
else:
optimizer = getattr(torch.optim, config_parameters.optimizer)(
model.parameters(), **config_parameters.optimizer_args)
criterion = getattr(
torch.nn, config_parameters.loss)(**config_parameters.loss_args)
def _inference(engine, batch):
model.eval()
with torch.no_grad():
data, targets, *_ = transfer_to_device(batch)
model_pred = model(data)
if isinstance(model_pred, tuple):
model_pred = model_pred[0]
return model_pred, targets
def run_validation(engine, title=None):
results = engine.state.metrics
output_str_list = [
f"{title:<10} Results - Epoch : {train_engine.state.epoch:<4}"
]
for metric in results:
if isinstance(results[metric], np.ndarray):
pass
else:
output_str_list += [f"{metric} {results[metric]:<5.4f}"]
output_str_list += [f"LR: {optimizer.param_groups[0]['lr']:.4e}"]
logger.info(" ".join(output_str_list))
train_engine = create_engine(
create_supervised_trainer(model,
optimizer,
criterion,
spectransforms,
config_parameters,
mode=config_parameters.mode))
inference_engine = create_engine(
_inference,
evaluation_metrics=['mAP']) # Common mAP between all datasets
train_df = utils.read_tsv_data(config_parameters.train_data,
basename=True)
eval_df = utils.read_tsv_data(config_parameters.eval_data,
basename=True)
info_message = f"#Lengths: Train - {len(train_df)} Eval - {len(eval_df)}"
logger.info(info_message)
train_dataset = dataset.LogitsReader(
train_df,
logits_basepath=Path(config_parameters.logitspath),
wavtransforms=wavtransforms
if config_parameters.disable_consistency is False else None,
label_type=config_parameters.label_type,
max_epochs=config_parameters.max_aug_epochs,
num_classes=config_parameters.num_classes)
audioset_test_dataloader = torch.utils.data.DataLoader(
dataset.WeakHDF5Dataset(eval_df,
num_classes=config_parameters.num_classes),
batch_size=config_parameters.eval_batch_size,
num_workers=config_parameters.num_workers,
shuffle=False,
persistent_workers=True,
collate_fn=dataset.sequential_pad,
)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=config_parameters.batch_size,
num_workers=config_parameters.num_workers,
collate_fn=dataset.sequential_pad,
shuffle=True)
logger.info(f"Training Dataloader has size {len(train_dataloader)}")
# Update Epoch for LogitsReader, Epoch starts at 1
@train_engine.on(Events.EPOCH_STARTED)
def restart_dataloader():
train_engine.state.dataloader.dataset._set_epoch(train_engine.state.epoch)
score_function = Checkpoint.get_default_score_fn(*['mAP', 1.0])
checkpoint_saver = Checkpoint(
{
'model': model,
'config': utils.DictWrapper(config_parameters.asdict()),
},
DiskSaver(outputdir),
n_saved=config_parameters.n_saved,
global_step_transform=global_step_from_engine(train_engine),
filename_prefix='best',
score_function=score_function)
decay_steps = config_parameters.epochs * len(
train_dataloader
) if config_parameters.epoch_length == None else config_parameters.epochs * config_parameters.epoch_length
if config_parameters.use_scheduler:
scheduler = CosineAnnealingScheduler(
optimizer, 'lr', optimizer.param_groups[0]['lr'],
optimizer.param_groups[0]['lr'] * config_parameters.decay_frac,
decay_steps)
logger.info(f"Using scheduler {scheduler.__class__.__name__} with {decay_steps} steps.")
warmup_iters_num = None
if config_parameters.warmup_iters is not None:
warmup_iters_num = config_parameters.warmup_iters
elif config_parameters.warmup_epochs is not None:
warmup_iters_num = config_parameters.warmup_epochs * len(
train_dataloader)
if warmup_iters_num is not None:
logger.info(
f"Warmup with {warmup_iters_num}, if you want to disable warmup pass warmup_iters = None"
)
scheduler = create_lr_scheduler_with_warmup(
scheduler,
warmup_start_value=0.0,
warmup_duration=warmup_iters_num)
train_engine.add_event_handler(Events.ITERATION_STARTED, scheduler)
earlystop_handler = EarlyStopping(
patience=config_parameters.early_stop,
score_function=score_function,
trainer=train_engine)
# Stop on Wensheng no improvement
inference_engine.add_event_handler(Events.COMPLETED,
earlystop_handler)
inference_engine.add_event_handler(Events.COMPLETED,
checkpoint_saver)
@train_engine.on(
Events.EPOCH_COMPLETED(every=config_parameters.valid_every))
def valid_eval(train_engine):
with inference_engine.add_event_handler(
Events.COMPLETED, run_validation,
f"{config_parameters.eval_data}"):
inference_engine.run(audioset_test_dataloader)
train_engine.run(
train_dataloader,
max_epochs=config_parameters.epochs,
epoch_length=config_parameters.epoch_length,
)
output_model = outputdir / checkpoint_saver.last_checkpoint
if config_parameters.average:
logger.info("Averaging best models ...")
output_model = outputdir / 'averaged.pt'
averaged_state_dict = utils.average_models(
[outputdir / f.filename for f in checkpoint_saver._saved])
torch.save(averaged_state_dict, output_model)
model.load_state_dict(averaged_state_dict['model'], strict=True)
else:
logger.info(f"Loading best model {output_model}")
model.load_state_dict(torch.load(output_model)['model'],
strict=True)
with inference_engine.add_event_handler(
Events.COMPLETED, run_validation,
f"{config_parameters.eval_data}"):
inference_engine.run(audioset_test_dataloader)
logger.info(f"Results can be found at {outputdir}")
return output_model
def _evaluate(
self, inference_engine, audioset_test_dataloader):
#Label Maps for audioset
class_labels = 'data/class_labels_indices.csv'
label_map_df = pd.read_csv(class_labels)
label_map_df['display_name'] = label_map_df['display_name'].str.lower()
label_maps = label_map_df.set_index(
'index')['display_name'].to_dict()
def log_metrics(engine, title, scale: float = 100):
results = engine.state.metrics
log = [f"{title:}"]
for metric in results.keys():
# Returned dict means that its for each class some result metric
if isinstance(results[metric], np.ndarray):
if engine.label_maps is None:
engine.label_maps = {
idx: idx
for idx in range(len(results[metric]))
}
sorted_idxs = np.argsort(results[metric])[::-1]
for i, cl in enumerate(sorted_idxs):
log.append(
f"{metric} Class {engine.label_maps[cl]} : {results[metric][cl]*scale:<4.2f}"
)
else:
log.append(f"{metric} : {results[metric]*scale:<4.2f}")
logger.info("\n".join(log))
inference_engine.label_maps = label_maps
with inference_engine.add_event_handler(Events.COMPLETED, log_metrics,
"Audioset Eval"):
inference_engine.run(audioset_test_dataloader)
def evaluate(self,
experiment_path: Union[str, Path],
test_data: str = 'data/eval_asedata.csv',
mode: Optional[str] = None, # can also be amp
):
from torch.cuda.amp import autocast
experiment_path = Path(experiment_path)
model_dump_path = None
if experiment_path.is_file():
# Is the file itself
model_dump_path = experiment_path
self.experiment_path = experiment_path.parent
else:
# Is a directory,need to find file
model_dump_path = next(experiment_path.glob('*pt'))
self.experiment_path = experiment_path
model_dump = torch.load(model_dump_path, map_location='cpu')
config_parameters = model_dump['config']
if isinstance(config_parameters, dict):
config_parameters = utils.TrainConfig(**config_parameters)
num_classes = config_parameters.num_classes
if 'pretrained' in config_parameters.model_args:
config_parameters.model_args.pop(
'pretrained') # Dont need pretraining here
model = getattr(
models, config_parameters.model)(**config_parameters.model_args)
model = model.to(DEVICE).eval()
model.load_state_dict(model_dump['model'])
def _inference(engine, batch):
model.eval()
with torch.no_grad():
data, targets, lengths, *_ = transfer_to_device(batch)
with autocast(enabled=mode == 'amp'):
clip_out = model(data)
return clip_out, targets
audioset_eval_df = utils.read_tsv_data(test_data, basename=True)
dataloader = torch.utils.data.DataLoader(
dataset.WeakHDF5Dataset(audioset_eval_df, num_classes=num_classes),
batch_size=config_parameters.eval_batch_size,
num_workers=4,
shuffle=False,
collate_fn=dataset.sequential_pad,
)
engine = create_engine(_inference,
evaluation_metrics=[
'mAP'
])
logger.add(Path(self.experiment_path) /
f'evaluation_{Path(test_data).stem}.txt',
format='{message}',
level='INFO',
mode='w')
self._evaluate(engine, dataloader)
if __name__ == '__main__':
Fire(Runner)