-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathpredictor.py
175 lines (129 loc) · 5.12 KB
/
predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# -*- coding: utf-8 -*-
"""
Created on Thu Apr 4 13:53:49 2019
@author: ncelik34
"""
from tensorflow.keras import backend as K
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import os
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import LSTM
from tensorflow.keras.layers import Dropout
from tensorflow.keras.utils import to_categorical
from sklearn import preprocessing
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import RobustScaler
from sklearn.metrics import confusion_matrix, roc_auc_score, classification_report
import math
batch_size = 256
Qubname = 'outfinaltest3(NF=50Hz)_SKM_F1.csv'
Qub2name = 'outfinaltest3(NF=50Hz)_halfamp_F1.csv'
Dname = 'outfinaltest78.csv'
df30 = pd.read_csv(Dname, header=None)
dataset = df30.values
dataset = dataset.astype('float64')
timep = dataset[:, 0]
maxer = np.amax(dataset[:, 2])
print(maxer)
maxeri = maxer.astype('int')
maxchannels = maxeri
idataset = dataset[:, 2]
idataset = idataset.astype(int)
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset)
def mcor(y_true, y_pred):
# matthews_correlation
y_pred_pos = K.round(K.clip(y_pred, 0, 1))
y_pred_neg = 1 - y_pred_pos
y_pos = K.round(K.clip(y_true, 0, 1))
y_neg = 1 - y_pos
tp = K.sum(y_pos * y_pred_pos)
tn = K.sum(y_neg * y_pred_neg)
fp = K.sum(y_neg * y_pred_pos)
fn = K.sum(y_pos * y_pred_neg)
numerator = (tp * tn - fp * fn)
denominator = K.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
return numerator / (denominator + K.epsilon())
def precision(y_true, y_pred):
"""Precision metric.
Only computes a batch-wise average of precision.
Computes the precision, a metric for multi-label classification of
how many selected items are relevant.
"""
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
return precision
def recall(y_true, y_pred):
"""Recall metric.
Only computes a batch-wise average of recall.
Computes the recall, a metric for multi-label classification of
how many relevant items are selected.
"""
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
recall = true_positives / (possible_positives + K.epsilon())
return recall
def f1(y_true, y_pred):
def recall(y_true, y_pred):
"""Recall metric.
Only computes a batch-wise average of recall.
Computes the recall, a metric for multi-label classification of
how many relevant items are selected.
"""
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
recall = true_positives / (possible_positives + K.epsilon())
return recall
def precision(y_true, y_pred):
"""Precision metric.
Only computes a batch-wise average of precision.
Computes the precision, a metric for multi-label classification of
how many selected items are relevant.
"""
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
return precision
precision = precision(y_true, y_pred)
recall = recall(y_true, y_pred)
return 2*((precision*recall)/(precision+recall+K.epsilon()))
def auc(y_true, y_pred):
auc = tf.metrics.auc(y_true, y_pred)[1]
K.get_session().run(tf.local_variables_initializer())
return auc
train_size = int(len(dataset))
in_train = dataset[:, 1]
target_train = idataset
in_train = in_train.reshape(len(in_train), 1, 1, 1)
loaded_model = load_model('model/nmn_oversampled_deepchanel2_5.h5', custom_objects={
'mcor': mcor, 'precision': precision, 'recall': recall, 'f1': f1, 'auc': auc})
loaded_model.summary()
c = loaded_model.predict_classes(in_train, batch_size=batch_size, verbose=True)
print(target_train[:20])
print(c[:20])
cm_dc = confusion_matrix(target_train, c)
lenny = 2000
ulenny = 5000
plt.figure(figsize=(30, 6))
plt.subplot(4, 1, 1)
plt.plot(dataset[lenny:ulenny, 1], color='blue', label="the raw data")
plt.title("The raw test")
plt.subplot(4, 1, 2)
plt.plot(target_train[lenny:ulenny], color='black',
label="the actual idealisation")
plt.subplot(4, 1, 3)
plt.plot(c[lenny:ulenny], color='red', label="predicted idealisation")
plt.xlabel('timepoint')
plt.ylabel('current')
plt.legend()
plt.show()
# standard deviation of the dataset:
x_input = dataset[:, 1]
mean_x = sum(x_input) / np.count_nonzero(x_input)
sd_x = math.sqrt(sum((x_input - mean_x)**2) / np.count_nonzero(x_input))