-
Notifications
You must be signed in to change notification settings - Fork 1
/
wtBigdata.py
55 lines (49 loc) · 1.51 KB
/
wtBigdata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import pandas as pd
def decile_group(position):
if position <= 6069:
return 1
elif position <= 17448:
return 2
elif position <= 30211:
return 3
elif position <= 44018:
return 4
elif position <= 59538:
return 5
elif position <= 77535:
return 6
elif position <= 98589:
return 7
elif position <= 124322:
return 8
elif position <= 158424:
return 9
elif position <= 247485:
return 10
elif position > 247485:
return 11
data = pd.read_csv("pitBigData.csv")
# sort by gross_total_income
data.sort_values('GROSS_TOTAL_INCOME', inplace=True)
data.reset_index(drop=True)
data['position'] = data.index + 1
data['decile_group'] = data['position'].apply(decile_group)
# define weights
ns = [6069, 11379, 12763 , 13807, 15520, 17997, 21054, 25733, 34102, 89061]
nreturns = 4949718
weights_dict = {}
for i in range(len(ns)):
n = ns[i]
weights_dict[i + 1] = nreturns / n
weights_dict[11] = 1
weights = pd.DataFrame()
weights['WT2017'] = [weights_dict[x] for x in data['decile_group']]
weights['WT2018'] = weights['WT2017'] * 1.1
weights['WT2019'] = weights['WT2018'] * 1.1
weights['WT2020'] = weights['WT2019'] * 1.1
weights['WT2021'] = weights['WT2020'] * 1.1
weights['WT2022'] = weights['WT2021'] * 1.1
weights['WT2023'] = weights['WT2022'] * 1.1
data = data.fillna(0)
data.to_csv('pitBigData.csv', index=False)
weights.to_csv('pit_weightsBD.csv', index=False)