-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstatmatch_original.py
84 lines (72 loc) · 2.78 KB
/
statmatch_original.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import pandas as pd
import numpy as np
import statsmodels.api as sm
def counts(df, groupby, wt):
gdf = df.groupby(groupby)
count = gdf.size().reset_index(name="count")
wt = gdf[wt].sum().reset_index(name="wt")
return pd.concat([count, wt["wt"]], axis=1, sort=False)
def reg(df, dep_var, indep_vars, wt):
if "const" not in indep_vars:
indep_vars.append("const")
model = sm.WLS(df[dep_var], df[indep_vars], weights=df[wt])
results = model.fit()
print(results.rsquared)
return results.params
def predict(df, indep_vars):
"""
Assumes that both the independent variables and parameters
are in the DataFrame
"""
params = list("param_" + pd.Series(indep_vars))
x = df[indep_vars]
p = df[params]
yhat = x.mul(p.values, axis="index").sum(axis=1)
return yhat
def match(donor, recipient, donor_id, recipient_id,
donor_wt, recipient_wt, yhat="yhat",
cell_id="cell_id"):
"""
Function to iterate through both files and match them with their
closest record
"""
epsilon = 0.001 # tolerance for using up weights
donor_list = [] # list to store IDs from donor file
recipient_list = [] # list to store IDs from recipient
cwt_list = [] # list to hold the new weights
cell_ids = np.unique(recipient[cell_id])
# loop through each cell ID and find matches
for cid in cell_ids:
_donor = donor[donor[cell_id] == cid]
_recipient = recipient[recipient[cell_id] == cid]
_donor = _donor.sort_values(yhat, kind="mergesort")
_recipient = _recipient.sort_values(yhat, kind="mergesort")
# convert to list of dictionaries
_donor = _donor.to_dict("records")
_recipient = _recipient.to_dict("records")
j = 0
bwt = _donor[j][donor_wt]
count = len(_donor) - 1
for record in _recipient:
awt = record[recipient_wt]
while awt > epsilon:
# weight of new record will be min of
# records being matched
cwt = min(awt, bwt)
recipient_seq = record[recipient_id]
donor_seq = _donor[j][donor_id]
# append each sequence to respective list
donor_list.append(donor_seq)
recipient_list.append(recipient_seq)
cwt_list.append(cwt)
# recalculate weights
awt = max(0, awt - cwt)
bwt = max(0, bwt - cwt)
if bwt <= epsilon:
if j < count:
j += 1
bwt = _donor[j][donor_wt]
match = pd.DataFrame({"donor_seq": donor_list,
"recipient_seq": recipient_list,
"cwt": cwt_list})
return match