From b5bbb9f5f3f1d2a46118dd2b6b944221999f2cae Mon Sep 17 00:00:00 2001 From: Will Kimmerer Date: Mon, 11 Apr 2022 22:06:42 -0400 Subject: [PATCH] distributed docs (#44940) --- doc/src/manual/distributed-computing.md | 23 ++++++++++------------- 1 file changed, 10 insertions(+), 13 deletions(-) diff --git a/doc/src/manual/distributed-computing.md b/doc/src/manual/distributed-computing.md index abaf47a53b39c..73c7bd8b1ee00 100644 --- a/doc/src/manual/distributed-computing.md +++ b/doc/src/manual/distributed-computing.md @@ -1258,20 +1258,21 @@ in future releases. ## Noteworthy external packages Outside of Julia parallelism there are plenty of external packages that should be mentioned. -For example [MPI.jl](https://github.com/JuliaParallel/MPI.jl) is a Julia wrapper for the `MPI` protocol, or -[DistributedArrays.jl](https://github.com/JuliaParallel/Distributedarrays.jl), as presented in [Shared Arrays](@ref). +For example [MPI.jl](https://github.com/JuliaParallel/MPI.jl) is a Julia wrapper for the `MPI` protocol, [Dagger.jl](https://github.com/JuliaParallel/Dagger.jl) provides functionality similar to Python's [Dask](https://dask.org/), and +[DistributedArrays.jl](https://github.com/JuliaParallel/Distributedarrays.jl) provides array operations distributed across workers, as presented in [Shared Arrays](@ref). + A mention must be made of Julia's GPU programming ecosystem, which includes: -1. Low-level (C kernel) based operations [OpenCL.jl](https://github.com/JuliaGPU/OpenCL.jl) and [CUDAdrv.jl](https://github.com/JuliaGPU/CUDAdrv.jl) which are respectively an OpenCL interface and a CUDA wrapper. +1. [CUDA.jl](https://github.com/JuliaGPU/CUDA.jl) wraps the various CUDA libraries and supports compiling Julia kernels for Nvidia GPUs. -2. Low-level (Julia Kernel) interfaces like [CUDAnative.jl](https://github.com/JuliaGPU/CUDAnative.jl) which is a Julia native CUDA implementation. +2. [oneAPI.jl](https://github.com/JuliaGPU/oneAPI.jl) wraps the oneAPI unified programming model, and supports executing Julia kernels on supported accelerators. Currently only Linux is supported. -3. High-level vendor-specific abstractions like [CuArrays.jl](https://github.com/JuliaGPU/CuArrays.jl) and [CLArrays.jl](https://github.com/JuliaGPU/CLArrays.jl) +3. [AMDGPU.jl](https://github.com/JuliaGPU/AMDGPU.jl) wraps the AMD ROCm libraries and supports compiling Julia kernels for AMD GPUs. Currently only Linux is supported. -4. High-level libraries like [ArrayFire.jl](https://github.com/JuliaComputing/ArrayFire.jl) and [GPUArrays.jl](https://github.com/JuliaGPU/GPUArrays.jl) +4. High-level libraries like [KernelAbstractions.jl](https://github.com/JuliaGPU/KernelAbstractions.jl), [Tullio.jl](https://github.com/mcabbott/Tullio.jl) and [ArrayFire.jl](https://github.com/JuliaComputing/ArrayFire.jl). -In the following example we will use both `DistributedArrays.jl` and `CuArrays.jl` to distribute an array across multiple +In the following example we will use both `DistributedArrays.jl` and `CUDA.jl` to distribute an array across multiple processes by first casting it through `distribute()` and `CuArray()`. Remember when importing `DistributedArrays.jl` to import it across all processes using [`@everywhere`](@ref) @@ -1284,7 +1285,7 @@ julia> addprocs() julia> @everywhere using DistributedArrays -julia> using CuArrays +julia> using CUDA julia> B = ones(10_000) ./ 2; @@ -1322,9 +1323,8 @@ true julia> typeof(cuC) CuArray{Float64,1} ``` -Keep in mind that some Julia features are not currently supported by CUDAnative.jl[^2] , especially some functions like `sin` will need to be replaced with `CUDAnative.sin`(cc: @maleadt). -In the following example we will use both `DistributedArrays.jl` and `CuArrays.jl` to distribute an array across multiple +In the following example we will use both `DistributedArrays.jl` and `CUDA.jl` to distribute an array across multiple processes and call a generic function on it. ```julia @@ -1407,6 +1407,3 @@ mpirun -np 4 ./julia example.jl introduced a new set of communication mechanisms, collectively referred to as Remote Memory Access (RMA). The motivation for adding rma to the MPI standard was to facilitate one-sided communication patterns. For additional information on the latest MPI standard, see . - -[^2]: - [Julia GPU man pages](https://juliagpu.github.io/CUDAnative.jl/stable/man/usage.html#Julia-support-1)