diff --git a/stdlib/LinearAlgebra/src/dense.jl b/stdlib/LinearAlgebra/src/dense.jl index e5909a459395c..d23dca5e6488e 100644 --- a/stdlib/LinearAlgebra/src/dense.jl +++ b/stdlib/LinearAlgebra/src/dense.jl @@ -1449,12 +1449,13 @@ function pinv(A::AbstractMatrix{T}; atol::Real = 0.0, rtol::Real = (eps(real(flo return similar(A, Tout, (n, m)) end if isdiag(A) - ind = diagind(A) - dA = view(A, ind) + indA = diagind(A) + dA = view(A, indA) maxabsA = maximum(abs, dA) tol = max(rtol * maxabsA, atol) B = fill!(similar(A, Tout, (n, m)), 0) - B[ind] .= (x -> abs(x) > tol ? pinv(x) : zero(x)).(dA) + indB = diagind(B) + B[indB] .= (x -> abs(x) > tol ? pinv(x) : zero(x)).(dA) return B end SVD = svd(A) diff --git a/stdlib/LinearAlgebra/test/pinv.jl b/stdlib/LinearAlgebra/test/pinv.jl index d3eafb26797a9..c7268865a0505 100644 --- a/stdlib/LinearAlgebra/test/pinv.jl +++ b/stdlib/LinearAlgebra/test/pinv.jl @@ -63,39 +63,23 @@ function tridiag(T::Type, m::Integer, n::Integer) end tridiag(m::Integer, n::Integer) = tridiag(Float64, m::Integer, n::Integer) -function randn_float64(m::Integer, n::Integer) - a=randn(m,n) - b = Matrix{Float64}(undef, m, n) - for i=1:n - for j=1:m - b[j,i]=convert(Float64,a[j,i]) - end - end - return b -end - -function randn_float32(m::Integer, n::Integer) - a=randn(m,n) - b = Matrix{Float32}(undef, m, n) - for i=1:n - for j=1:m - b[j,i]=convert(Float32,a[j,i]) - end - end - return b -end - +function test_pinv(a,tol1,tol2) + m,n = size(a) -function test_pinv(a,m,n,tol1,tol2,tol3) apinv = @inferred pinv(a) - + @test size(apinv) == (n,m) @test norm(a*apinv*a-a)/norm(a) ≈ 0 atol=tol1 - x0 = randn(n); b = a*x0; x = apinv*b + @test norm(apinv*a*apinv-apinv)/norm(apinv) ≈ 0 atol=tol1 + b = a*randn(n) + x = apinv*b @test norm(a*x-b)/norm(b) ≈ 0 atol=tol1 - apinv = pinv(a,sqrt(eps(real(one(eltype(a)))))) + apinv = @inferred pinv(a,sqrt(eps(real(one(eltype(a)))))) + @test size(apinv) == (n,m) @test norm(a*apinv*a-a)/norm(a) ≈ 0 atol=tol2 - x0 = randn(n); b = a*x0; x = apinv*b + @test norm(apinv*a*apinv-apinv)/norm(apinv) ≈ 0 atol=tol2 + b = a*randn(n) + x = apinv*b @test norm(a*x-b)/norm(b) ≈ 0 atol=tol2 end @@ -104,28 +88,25 @@ end default_tol = (real(one(eltya))) * max(m,n) * 10 tol1 = 1e-2 tol2 = 1e-5 - tol3 = 1e-5 if real(eltya) == Float32 tol1 = 1e0 tol2 = 1e-2 - tol3 = 1e-2 end @testset "dense/ill-conditioned matrix" begin - ### a = randn_float64(m,n) * hilb(eltya,n) a = hilb(eltya, m, n) - test_pinv(a, m, n, tol1, tol2, tol3) + test_pinv(a, tol1, tol2) end @testset "dense/diagonal matrix" begin a = onediag(eltya, m, n) - test_pinv(a, m, n, default_tol, default_tol, default_tol) + test_pinv(a, default_tol, default_tol) end @testset "dense/tri-diagonal matrix" begin a = tridiag(eltya, m, n) - test_pinv(a, m, n, default_tol, tol2, default_tol) + test_pinv(a, default_tol, tol2) end @testset "Diagonal matrix" begin a = onediag_sparse(eltya, m) - test_pinv(a, m, m, default_tol, default_tol, default_tol) + test_pinv(a, default_tol, default_tol) end @testset "Vector" begin a = rand(eltya, m) @@ -164,6 +145,18 @@ end @test C ≈ ones(2,2) end + @testset "non-square diagonal matrices" begin + A = eltya[1 0 ; 0 1 ; 0 0] + B = pinv(A) + @test A*B*A ≈ A + @test B*A*B ≈ B + + A = eltya[1 0 0 ; 0 1 0] + B = pinv(A) + @test A*B*A ≈ A + @test B*A*B ≈ B + end + if eltya <: LinearAlgebra.BlasReal @testset "sub-normal numbers/vectors/matrices" begin a = pinv(floatmin(eltya)/100)