-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsym_substructure.c
221 lines (199 loc) · 5.87 KB
/
sym_substructure.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
// sym_substructure.c ひとつの原子の順位を高くする
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "main_canost.h"
extern int iatm;
extern int new_atm;
extern struct atom *a1st;
extern struct queue *head,*tail;
extern struct level *pes;
extern struct level *reef;
extern int ore;
extern int *confined_bond;
extern int *representative;
extern int *orbit_size;
int sym_substructure(void){
int i,j,k;
int flag_1,flag_2;
int *inter_root;
int scale;
int *pile;
int peak;
struct bond *bp,*bp2;
int counter;
int wall; // 結合レベルを表す変数
i=0;
scale=0;
flag_1=0;
flag_2=0;
peak=1;
pile=NULL;
while( reef != pes ){ //最下位のレベルの層になるまで
flag_1=0;
flag_2=0;
pile=reef->member; // 層の原子
while( ore+1 < reef->member_Num ){ // 層の範囲
// 同順位の原子の集合か否かの判定
if( !(flag_1) && confined_bond[ pile[ore] ] == 1 ){
ore++;
continue;
}
if( a1st[ pile[ore] ].grade == a1st[ pile[ore+1] ].grade &&
a1st[ pile[ore] ].state == UNVISITED &&
a1st[ pile[ore+1] ].state == UNVISITED ){
peak++; // 同順位な原子の個数
flag_1=1; // 同順位な原子が見付かった
ore++;
}else{
ore++;
if( flag_1 ){
i=ore-1;
flag_2=1; // 同順位な原子の集合の最後
}
}
if( flag_1 && flag_2 ){ // 最も順位の高い同順位の集合が見付けられた
break;
}
}
if( flag_1 && flag_2 ){ // 最も順位の高い同順位の集合が見付けられた
break;
}
if( flag_1 && (ore+1 == reef->member_Num) ){
i=ore;
break;
}
reef=reef->next; // 次の層に移る
ore=0; // 層の先頭から
}
if( peak <= 1 ){
// 同順位の原子の集合は存在しない
return EXIT_SUCCESS;
}else{
if( (inter_root=(int *)calloc(peak,sizeof(int)))==NULL ){
printf("error : Cannot allocate memory in sym_substructure \n");
exit( EXIT_FAILURE );
}
scale=peak; // 同順位の原子の集合の大きさ
j = peak;
k = 0;
while( j > 0 ){
if( a1st[ pile[i] ].link == BRANCH || a1st[ pile[i] ].link == COLUMN ||
a1st[ pile[i] ].link == LOOP ){
inter_root[--peak]=pile[i];
}else{
k = findgroup( pile[i],representative );
if( orbit_size[k] > 1 ){
inter_root[--peak]=pile[i];
}
}
i--;
j--;
}
if( (scale - peak) > 1 ){
bp=NULL;
for( i = peak ; i < scale ; i++ ){
counter=0;
wall=0;
initialize_primary_queue();
add_primary_queue( inter_root[i] );
add_primary_queue( MINUS );
add_second_queue( inter_root[i] );
add_second_queue( MINUS );
a1st[ inter_root[i] ].state = VISITED;
while( head != tail ){
j=remove_primary_queue();
if( ( j > MINUS && a1st[j].link != KNOT && a1st[j].link != HITCH ) || j == inter_root[i] ){
for( bp=a1st[j].adj_list; bp != NULL ; bp= bp->next ){
if( a1st[ bp->alias ].layer == a1st[j].layer+1 ){
if( a1st[ bp->alias ].link == KNOT || a1st[ bp->alias ].link == HITCH ){
if( a1st[ bp->alias ].state <= i+iatm+REVISITED ){
add_primary_queue( bp->alias );
add_second_queue( bp->alias );
a1st[ bp->alias ].state = i+iatm+REVISITED+1;
counter++;
}
}else{
if( a1st[ bp->alias ].state == UNVISITED ){
add_primary_queue( bp->alias );
add_second_queue( bp->alias );
a1st[ bp->alias ].state = VISITED;
counter++;
}else if( a1st[ bp->alias ].state != VISITED && a1st[ bp->alias ].state <= i+iatm+REVISITED ){
add_primary_queue( bp->alias );
add_second_queue( bp->alias );
a1st[ bp->alias ].state = i+iatm+REVISITED+1;
counter++;
for( bp2=a1st[ bp->alias ].adj_list ; bp2 != NULL ; bp2=bp2->next ){
if( a1st[ bp2->alias ].layer == a1st[ bp->alias ].layer+1 ){
a1st[ bp2->alias ].state = i+iatm+REVISITED;
}
}
/*
if( wall < SYM_SEARCH ){
add_primary_queue( bp->alias );
add_second_queue( bp->alias );
a1st[ bp->alias ].state = i+iatm+REVISITED+1;
counter++;
for( bp2=a1st[ bp->alias ].adj_list ; bp2 != NULL ; bp2=bp2->next ){
if( a1st[ bp2->alias ].layer == a1st[ bp->alias ].layer+1 ){
a1st[ bp2->alias ].state = i+iatm+REVISITED;
}
}
}
*/
}else{
continue;
}
}
} // end of if( a1st[ bp->alias ].layer == a1st[j].layer+1 )
}
}else if( j <= MINUS ){
if( counter != 0 ){
counter=0;
wall++;
add_primary_queue( MINUS );
add_second_queue( MINUS );
}
}else if( a1st[j].link == KNOT || a1st[j].link == HITCH ){
if( j < iatm ){
k = findgroup( j,representative );
if( orbit_size[k] > 1 ){
for( bp=a1st[j].adj_list ; bp != NULL ; bp=bp->next ){
if( a1st[ bp->alias ].layer == a1st[j].layer+1 ){
if( a1st[ bp->alias ].state != VISITED && a1st[ bp->alias ].state <= i+iatm+REVISITED ){
add_primary_queue( bp->alias );
add_second_queue( bp->alias );
a1st[bp->alias ].state = i+iatm+REVISITED+1;
counter++;
}
for( bp2=a1st[ bp->alias ].adj_list ; bp2 != NULL ; bp2=bp2->next ){
if( a1st[ bp2->alias ].layer == a1st[ bp->alias ].layer+1 ){
a1st[ bp2->alias ].state = i+iatm+REVISITED;
}
}
}
}
} // end of if( orbit_size[k] > 1 )
} // end of if( j <= iatm )
}else{
continue;
}
} // end of while
add_second_queue( 2*MINUS );
} // end of for(i+0;i<scale;i++)
add_second_queue( 3*MINUS );
for( i=0 ; i < iatm+new_atm ; i++){
if( a1st[i].state >= iatm ){
a1st[i].state = REVISITED;
}
}
}
free(inter_root);
if( sym_substructure() != EXIT_SUCCESS ){
printf("error : Cannot execute sym_substructure \n");
exit( EXIT_FAILURE );
}
return EXIT_SUCCESS;
}
}