-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprune_branch.c
275 lines (224 loc) · 7.54 KB
/
prune_branch.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
// prune_branch.c 原子が環構造上の原子かどうかを判定する関数
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "main_canost.h"
// #define TEST_PRUNE_BRANCH 1
#ifdef TEST_PRUNE_BRANCH
extern struct level *top;
extern FILE *dummyfile;
#endif
extern int iatm;
extern struct atom *a1st;
extern int new_atm;
extern int start;
extern struct queue *head,*tail;
int prune_branch( void ){
int i,j;
struct bond *bp;
int *connector; // 探索先で最もレベルの高い原子が入る配列
int *linkage; // 環構造の個数
int *visit_order; // 探索した順番
#ifdef TEST_PRUNE_BRANCH
int *comps;
struct level *lp;
printf(" prune_branch \n");
#endif
if( (connector = (int *)malloc((iatm+new_atm)*sizeof(int))) == NULL ){
printf(" error : Cannot allocate memory in prune_branch \n");
exit( EXIT_SUCCESS );
}
if( (linkage = (int *)malloc((iatm+new_atm)*sizeof(int))) == NULL ){
printf(" error : Cannot allocate memory in prune_branch \n");
exit( EXIT_SUCCESS );
}
if( (visit_order = (int *)malloc((iatm+new_atm)*sizeof(int))) == NULL ){
printf(" error : Cannot allocate memory in prune_branch \n");
exit( EXIT_SUCCESS );
}
/*** 初期化 ***/
for( i=1; i < iatm+new_atm ; i++){
a1st[i].state = UNVISITED;
a1st[i].couple = UNCOUPLE;
connector[i] = iatm + new_atm + 1;
linkage[i] = 0;
visit_order[i] = MINUS;
}
// Queueの初期化
head = NULL;
tail = NULL;
initialize_primary_queue();
// 頂点の分類開始
a1st[ start ].state = VISITED;
if( visit_atom( start, MINUS, connector, linkage, visit_order ) != EXIT_SUCCESS ){
printf(" error : Cannot execute visit_atom \n");
exit( EXIT_SUCCESS );
}
#ifdef TEST_PRUNE_BRANCH
printf("the linkage of start atom %d \n", linkage[ start ]);
#endif
while( head != tail ){
j = remove_primary_queue();
a1st[j].link = LOOP;
if( a1st[j].couple == COUPLE ){
a1st[j].couple = UNCOUPLE;
}
for( bp=a1st[j].adj_list ; bp != NULL ; bp = bp->next ){
if( a1st[ bp->alias ].layer == a1st[j].layer+1 ){
if( a1st[ bp->alias ].link == CAVE ){
add_primary_queue( bp->alias );
}else if( a1st[ bp->alias ].link == KNOT ){
a1st[ bp->alias ].link = HITCH;
}
}
}
}
// 結合数が5以上の原子に関しては全列挙するようにする
for( i=1; i < iatm+new_atm ; i++ ){
if( a1st[i].nbnd >= 5 ){
if( a1st[i].link == BRANCH || a1st[i].link == COLUMN ){
// a1st[i].link = TRUNK;
for( bp = a1st[i].adj_list; bp != NULL ; bp=bp->next ){
if( a1st[ bp->alias ].layer == a1st[i].layer+1 ){
if( a1st[ bp->alias].link == BRANCH || a1st[ bp->alias ].link == COLUMN ){
a1st[ bp->alias ].link = TRUNK;
}
}
}
}
}
}
#ifdef TEST_PRUNE_BRANCH
dummyfile=fopen("dummy_prune_branch.dat","w");
for( lp=top ; lp->next != NULL ; lp=lp->next ){
fprintf(dummyfile,"%d \n\n",lp->member_Num );
comps=lp->member;
for( i=0 ; i < lp->member_Num ; i++ ){
fprintf(dummyfile," %3d link%3d layer%3d couple%3d linkage %3d connector %3d\n",
comps[i],a1st[ comps[i] ].link,a1st[ comps[i] ].layer,
a1st[ comps[i] ].couple, linkage[ comps[i] ], connector[ comps[i] ]);
}
fprintf(dummyfile,"\n\n");
}
fclose(dummyfile);
#endif
free(connector);
free(linkage);
free(visit_order);
return EXIT_SUCCESS;
}
int visit_atom( int visitor, int caller, int *connector, int *linkage, int *visit_order ){
static int vo = 0; // 探索した順序 visiting order
struct bond *bp;
struct bond *bp2;
connector[ visitor ] = vo;
visit_order[ visitor ] = vo;
vo++;
for( bp = a1st[ visitor ].adj_list; bp != NULL ; bp = bp->next ){
if( bp->alias != caller ){ // 呼び出した原子ではない
if( a1st[ bp->alias ].state == UNVISITED ){ // 未探索の場合
if( a1st[ bp->alias ].layer + 1 == a1st[ visitor ].layer ){ // 上向きの結合に関して
a1st[ bp->alias ].state = VISITED;
if( a1st[ visitor ].link == KNOT ){
a1st[ bp->alias ].couple = COUPLE;
}
if( a1st[ bp->alias ].link != KNOT ){
a1st[ bp->alias ].link = CAVE;
}
#ifdef TEST_PRUNE_BRANCH
printf("call up: visitor %d link %d bp->alias %d\n", visitor, a1st[ bp->alias ].link, bp->alias);
#endif
// visit_atom の再帰的呼び出し
if( visit_atom( bp->alias , visitor, connector, linkage, visit_order ) != EXIT_SUCCESS ){
printf(" error : Cannot execute visit_atom \n");
exit( EXIT_FAILURE );
}
// 探索終了後
if( connector[ bp->alias ] < connector[ visitor ] ){
connector[ visitor ] = connector[ bp->alias ];
linkage[ visitor ] += linkage[ bp->alias ];
}
}else if( a1st[ bp->alias ].layer == a1st[ visitor ].layer + 1 ){ // 下向きの結合に関して
a1st[ bp->alias ].state = VISITED;
if( a1st[ bp->alias ].link == KNOT ){
if( a1st[ visitor ].link != KNOT ){
a1st[ visitor ].link = CAVE;
}
a1st[ visitor ].couple = COUPLE;
}
#ifdef TEST_PRUNE_BRANCH
printf("call down: visitor %d link %d bp->alias %d\n", visitor, a1st[ bp->alias ].link, bp->alias);
#endif
// visit_atom の再帰的呼び出し
if( visit_atom( bp->alias , visitor, connector, linkage, visit_order ) != EXIT_SUCCESS ){
printf(" error : Cannot execute visit_atom \n");
exit( EXIT_FAILURE );
}
// 探索終了後
if( connector[ bp->alias ] < visit_order[ visitor ] ){
linkage[ visitor ] += linkage[ bp->alias ];
if( connector[ bp->alias ] < connector[ visitor ] ){
connector[ visitor ] = connector[ bp->alias ];
}
if( a1st[ visitor ].link != KNOT ){
a1st[ visitor ].link = CAVE;
}
}else{
if( linkage[ bp->alias ] > 1 ){
linkage[ visitor ] += linkage[ bp->alias ];
if( a1st[ visitor ].link != KNOT && a1st[ visitor ].link != CAVE ){
a1st[ visitor ].link = TRUNK;
#ifdef TEST_PRUNE_BRANCH
printf("detect TRUNK atom %d linkage %d \n", visitor,linkage[ visitor ]);
#endif
}
}else{
if( connector[ bp->alias ] == visit_order[ visitor ] ){
for( bp2 = a1st[ visitor ].adj_list; bp2 != NULL ; bp2 = bp2->next ){
if( a1st[ bp2->alias ].state == VISITED
&& visit_order[ bp->alias ] <= visit_order[ bp2->alias ]
&& a1st[ bp2->alias ].link == CAVE ){
add_primary_queue( bp2->alias );
}
}
}
if( a1st[ visitor ].link != KNOT && a1st[ visitor ].link != CAVE && a1st[ visitor ].link != TRUNK ){
a1st[ visitor ].link = COLUMN;
#ifdef TEST_PRUNE_BRANCH
printf("detect COLUMN atom %d linkage %d \n", visitor,linkage[ visitor ]);
#endif
}
}
}
}else{
continue; // 指定されたレベル外なので探索しない
}
}else{ // a1st[ bp->alias ].state == VISITED
if( a1st[ bp->alias ].layer + 1 == a1st[ visitor ].layer ){ // 上向きの結合に関して
linkage[ visitor ]++;
if( a1st[ visitor ].link == KNOT ){
a1st[ bp->alias ].couple = COUPLE;
if( a1st[ bp->alias ].link != KNOT ){
a1st[ bp->alias ].link = CAVE;
}
}
}
if( a1st[ bp->alias ].layer == a1st[ visitor ].layer + 1 ){ // 下向きの結合に関して
if( connector[ bp->alias ] != visit_order[ visitor ] ){
linkage[ visitor ]++;
}
if( a1st[ bp->alias ].link == KNOT ){
a1st[ visitor ].couple = COUPLE;
if( a1st[ visitor ].link != KNOT ){
a1st[ visitor ].link = CAVE;
}
}
}
if( visit_order[ bp->alias ] < connector[ visitor ] ){
connector[ visitor ] = visit_order[ bp->alias ];
}
} // a1st[ bp->alias ].state == VISITED
} // bp->alias != caller
}
return EXIT_SUCCESS;
}