-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcanonicalization.c
244 lines (180 loc) · 5.28 KB
/
canonicalization.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
// canonicaliation.c 規範化のメインループ
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "main_canost.h"
//#define TEST_CANONICALIZATION 1
extern int iatm;
extern int new_atm;
extern struct atom *a1st;
extern struct level *top,*down;
extern int equive;
extern struct level *reef;
extern int ore;
extern struct queue *front,*back;
extern FILE *fo;
extern int option;
extern int atoms_in_confine;
extern int *interim_order;
extern struct level *caput,*pes;
int canonicalization( void ){
int i;
// int i,j;
#ifdef TEST_CANONICALIZATION
printf("canonicalization \n");
#endif
equive = 2; // a1st[ ZERO ] のために 2 から
/* ------- First Bottom-Up Sorting -------- */
if( first_sort() != EXIT_SUCCESS ){
printf( " error: Cannot execute first bottom-up sorting \n" );
exit( EXIT_FAILURE );
}
/* ------- Top-Down Sorting ------- */
if( sort_t_d() != EXIT_SUCCESS ){
printf( " error: Cannot execute top-down sorting \n" );
exit( EXIT_FAILURE );
}
// orderingの実行
if( ordering() != EXIT_SUCCESS ){
printf(" error : Cannot execute ordering \n");
exit( EXIT_FAILURE );
}
if( equive == atoms_in_confine ){ // 全ての原子に異なる順位が付けられたかの判定
if( option == SYMMETRIC ){
if( duplicate_levels() != EXIT_SUCCESS ){
printf(" error : Cannot execute duplicate_level \n");
exit( EXIT_FAILURE );
}
}
if( set_atom() != EXIT_SUCCESS ){
printf(" error : Cannot set_atom \n");
exit( EXIT_FAILURE );
}
if( option == SYMMETRIC ){
for( i=0; i < iatm+new_atm ;i++ ){
a1st[i].state = UNVISITED;
a1st[i].grade = interim_order[i];
}
if( initialize_second_queue() != EXIT_SUCCESS ){
printf(" error : Cannot initialize secondary queue \n");
exit( EXIT_FAILURE );
}
reef=caput->next;
ore=0;
if( sym_substructure() != EXIT_SUCCESS ){
printf(" error : Cannot execute sym_substructure \n");
exit( EXIT_FAILURE );
}
if( judge_sym_substruct() != EXIT_SUCCESS ){
printf(" error : Cannot execute judge_sym_substruct \n");
exit( EXIT_FAILURE );
}
}
}else{ // 2層間の結合のみからなる連結成分に分解してその大きさで順位を付ける
// split_componentの実行
for( i=0; i < iatm+new_atm ;i++ ){
a1st[i].state = UNVISITED;
}
reef=top->next;
ore=0;
while( equive != atoms_in_confine && reef != down ){
if( split_component() == TRY ){
// orderingの実行
if( ordering() != EXIT_SUCCESS ){
printf(" error : Cannot execute ordering \n");
exit( EXIT_FAILURE );
}
}
}
if( equive == atoms_in_confine ){ // 全ての原子に異なる順位が付けられたかの判定
if( option == SYMMETRIC ){
if( duplicate_levels() != EXIT_SUCCESS ){
printf(" error : Cannot execute duplicate_level \n");
exit( EXIT_FAILURE );
}
}
if( set_atom() != EXIT_SUCCESS ){
printf(" error : Cannot set_atom \n");
exit( EXIT_FAILURE );
}
if( option == SYMMETRIC ){
for( i=0; i < iatm+new_atm ;i++ ){
a1st[i].state = UNVISITED;
a1st[i].grade = interim_order[i];
}
if( initialize_second_queue() != EXIT_SUCCESS ){
printf(" error : Cannot initialize secondary queue \n");
exit( EXIT_FAILURE );
}
reef=caput->next;
ore=0;
if( sym_substructure() != EXIT_SUCCESS ){
printf(" error : Cannot execute sym_substructure \n");
exit( EXIT_FAILURE );
}
if( judge_sym_substruct() != EXIT_SUCCESS ){
printf(" error : Cannot execute judge_sym_substruct \n");
exit( EXIT_FAILURE );
}
}
}else{ // 成分への分解
// 成分の大きさで順位付け 同じ大きさの成分は同順位
for( i=1; i < iatm+new_atm ;i++ ){
a1st[i].state = UNVISITED;
}
reef=top->next;
ore=0;
while( equive != atoms_in_confine && reef != down ){
if( permutable() == TRY ){
if( ordering() != EXIT_SUCCESS ){
printf(" error : Cannot execute ordering \n");
exit( EXIT_FAILURE );
}
}
}
if( option == SYMMETRIC ){
if( duplicate_levels() != EXIT_SUCCESS ){
printf(" error : Cannot execute duplicate_level \n");
exit( EXIT_FAILURE );
}
}
if( equive == atoms_in_confine ){ // 全ての原子に異なる順位が付けられたかの判定
if( set_atom() != EXIT_SUCCESS ){
printf(" error : Cannot set_atom \n");
exit( EXIT_FAILURE );
}
}else{ // intentinal_orderingへ
for( i=1; i < iatm+new_atm ;i++ ){
a1st[i].state = UNVISITED;
}
reef=top->next;
ore=0;
if( intentional_ordering() != EXIT_SUCCESS ){
printf(" error : Cannot execute intentional_ordering \n");
exit( EXIT_FAILURE );
}
}
if( option == SYMMETRIC ){
for( i=0; i < iatm+new_atm ;i++ ){
a1st[i].state = UNVISITED;
a1st[i].grade = interim_order[i];
}
if( initialize_second_queue() != EXIT_SUCCESS ){
printf(" error : Cannot initialize secondary queue \n");
exit( EXIT_FAILURE );
}
reef=caput->next;
ore=0;
if( sym_substructure() != EXIT_SUCCESS ){
printf(" error : Cannot execute sym_substructure \n");
exit( EXIT_FAILURE );
}
if( judge_sym_substruct() != EXIT_SUCCESS ){
printf(" error : Cannot execute judge_sym_substruct \n");
exit( EXIT_FAILURE );
}
}
}
}
return EXIT_SUCCESS;
}