You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
堆栈(英语:stack)又称为栈或堆叠,是计算机科学中的一种抽象数据类型,只允许在有序的线性数据集合的一端(称为堆栈顶端,英语:top)进行加入数据(英语:push)和移除数据(英语:pop)的运算。因而按照后进先出(LIFO, Last In First Out)的原理运作。
常与另一种有序的线性数据集合队列相提并论。
堆栈常用一维数组或链表来实现。
重启数据结构与算法4
栈
应用场景:
数组模拟
先使用数组进行模拟
栈
测试结果:
链表模拟
接着使用链表模拟
计算表达式
前缀表达式
:波兰表示法(Polish notation,或波兰记法),是一种逻辑、算术和代数表示方法,其特点是操作符置于操作数的前面,因此也称做前缀表示法。如果操作符的元数(arity)是固定的,则语法上不需要括号仍然能被无歧义地解析。波兰记法是波兰数学家扬·武卡谢维奇1920年代引入的,用于简化命题逻辑。 ---- 维基百科中缀表达式
:中缀表示法(或中缀记法)是一个通用的算术或逻辑公式表示方法, 操作符是以中缀形式处于操作数的中间(例:3 + 4)。与前缀表达式(例:+ 3 4 )或后缀表达式(例:3 4 + )相比,中缀表达式不容易被电脑解析,但仍被许多程序语言使用,因为它符合人们的普遍用法。与前缀或后缀记法不同的是,中缀记法中括号是必需的。计算过程中必须用括号将操作符和对应的操作数括起来,用于指示运算的次序。 ---- 维基百科
后缀表达式
:逆波兰表示法(Reverse Polish notation,RPN,或逆波兰记法),是一种是由波兰数学家扬·武卡谢维奇1920年引入的数学表达式方式,在逆波兰记法中,所有操作符置于操作数的后面,因此也被称为后缀表示法。逆波兰记法不需要括号来标识操作符的优先级。逆波兰结构由弗里德里希·鲍尔(Friedrich L. Bauer)和艾兹格·迪科斯彻在1960年代早期提议用于表达式求值,以利用堆栈结构减少计算机内存访问。逆波兰记法和相应的算法由澳大利亚哲学家、计算机学家查尔斯·汉布尔(Charles Hamblin)在1960年代中期扩充[1][2]
在1960和1970年代,逆波兰记法广泛地被用于台式计算器,因此也在普通公众(如工程、商业和金融等领域)中使用。 ---- 维基百科
中缀表达式计算器
步骤:
numStack
和符号栈operStack
这里直接使用上方数组模拟栈的类
其实这里还是有一点问题的,如果表达式为
34+2*6-2
,上面的代码没有对多位数进行处理逆波兰计算器
为了方便计算,我们约定
3 4 + 5 * 6 -
下面加入中缀转后缀,转换步骤在注释中
下期预告
The text was updated successfully, but these errors were encountered: