From a8b17597465d1f2f3b6864a470541b3573b989bd Mon Sep 17 00:00:00 2001 From: Randall Holmes Date: Wed, 4 Sep 2024 11:17:10 -0600 Subject: [PATCH] arxiv version of NF paper --- Nfproof/maybedetangled2-for-arxiv.pdf | Bin 0 -> 559413 bytes Nfproof/maybedetangled2-for-arxiv.tex | 2094 +++++++++++++++++++++++++ 2 files changed, 2094 insertions(+) create mode 100644 Nfproof/maybedetangled2-for-arxiv.pdf create mode 100644 Nfproof/maybedetangled2-for-arxiv.tex diff --git a/Nfproof/maybedetangled2-for-arxiv.pdf b/Nfproof/maybedetangled2-for-arxiv.pdf new file mode 100644 index 0000000000000000000000000000000000000000..5bc56d0f16f0137c13cb9bfe32dfe157ac0157c3 GIT binary patch literal 559413 zcmbTdbC71sw(ecFZQHhOv&**4F59+k+tt-&n_af;y1mxfYwvZwv*Ww_p7*bOXUv>A zXJkf<-!sNDNEJlHXc_5Pp-5*IhE|}M2^a|M3@xE}c%bNIOl-}Z%?TJ;**FRQ{6W!+ zSy(%pI1oaZOhA2^CLhf+h1JOhi%G-MN=1OdLA-YvdU+~rT z+2nn*hbhaO5R?RQNn6W<6(2XU5E%}UUbN+S(EaqQJX61)=rk8J{614(@STsqw|lI^ z@L7GZcS(lwoYn5M#hhCeoaM1|JNLlun(_n@Ns5rdmkL&Mq6<`ZPzC8Ozm>2H=I(2x z&sB3b_Xoe-m{jv2U{q#i(ZMoOm~eeGJ4Q%*spgGh1_TeyxBUIlcAU8=eLSV*!3!7SF$RsTQn$EO1HT* ztZS~v2y97Z!a4J1o|AThpRqyXEuHDgN>)(h5B#)?YT%j&B` zoBQtI=3P2*Uv*bi=;%`pf98=)1jO^_FNxmr0^v`KQ?d$l9UX5|?bNZIkFVRrn-%N0 z1oP>jo%JwmfkvW)e6g>f{8|k^=4!6V1!feg*O(@UO)t8+3o11FB)gj(x(VVI=`p9$ zT2loBh2g5dl=XGVCrqA@7MXx*(7KXvB_5Kfk~)ivFJK%@L_*3A%CS@>8xH^ zLtARa0L?ZK;_g6!oC1f7HyQ^Gv?N4VUH=M!RAc}oz>v<;0jo#Z^rD~b;z!f%TCAj5 zp-x&Q$aJ%)ndGHOg7b|f!O5_gI2wZz0-6&V0n@7x@XQt7eJdOAl0=*Dt|ht;94Y%) z>#~khVs_A_Tsxx#sE{PGR;<98PBCKAm@`N)SDJ% zQ;hW43Juu>{YH|aS7-H2Rw-m<;Mud{j#lO0x(M`vK@nP0VRw=`CcPia&Ert`%*YzJ z>zNVR*hO0z=lMl~mPJdYDkCeZS~3jGg+WgtLFkpJNcDDuyz3&2#YC|x{9Y^0@#K@m zL~B$s&kU{Dz2oyH+_a_=f#PwYew;U4IH$P9;L*aI04o@NCQnhZE+`e&5)#Q1Rm6y< z-*UG)S);)B2Hw+A9S;eAUa>7n^VlCZtt*mCzIrdrZJ%x4#zn(;*(QSP1C3bh+*ZsM z0x%MPJLtBRWemSRfqW!co!J)wz?tr8F4I_$`o$%(@Y4#kDgUlOcfB{4OVtRW!Eu8b zCQ9iFby$vVM?CEP)wzVc3-iV%^q`L*)mHv!&1L28ep3-KSXTCYLTs-bG(DQ zcgOvFjsx-~u5vD`mt^n-I;LvDZ&$*eDgRd^U$3M%^NoJYb_nq&lrc;@{mjS4jZVa5 zcDpd>FcH|CXEjcE6yad$paHcd=AE+?r({weQlb|U3_nSl;I>t!lf84pVGwbwg4!HT4g(eMdb9@cl>bHlVQ3g0_j5d9p*Op@ zhz&C^WzVoaFp9uws6I9%;Ki{KUEVd4!^0pTY^8PW2o4fTZYX@2Z{xQ^y=t!QtWYMl#{Y;Fzej(> z8K%F*8x;?G69Re#12YpSdSN?TXA@gzCxSl$k`ffXl8KX@i=&Z=69MCYU63^~wlEN~ zb0^SZ_$cyq=^qRI@&B*DCieT`1Ux*y!x$3>0m~oH z`(wyS!1|9N3kLz)Uqem;_J0f+ISDxax|flF^RFQj0plNUphWO{EqVn%Qh|1lo^Sl5(kO$gz8h#lQwJvdRxS^Hv`Po+G#<*1-r zvNA^ceq+|0FIuDA&lx8|bD33C6!O$iF=kjDPOge>)U^ zoTJ~z>sYY-n_d6Uw)c<2^8ejlRtDDpbbF&Uq@DKK5PPO;XKczU>O;0O zM=e~b<+@f~R9%zC`qP1F`jHIzngBRko|a4X2q?9-_Jx3s#R_MSKRf*0T{MO&dws(W zz6Ku$kIt&Tm0Ks8iZ-nARjFjyjum`E^=Oxz^KRa(y(DVxQKA|x%(Ts}Ft`7Bh5CGR zU|;Fc`o8`Ng0z?XjT0p@TJMN;ONmeKXt82zK~!lw;)HBEa#6K_O|`(i8#^wyWVUyY z=kxU$h(8!uvq*~!$8#OGjq_f{)6tcIr>L_ApQYl^qtA7~t0|`)-*frYps{DHfu`ya zBs1##o2cxaSP?!v_?{+-wOetYp@(iwA5A6~I<>!oqJD4d(Rg7viY5R|KPNx z$Hu9qHQtEgfQxTF44Yi#1%h98qT5cU>DVXu+pp$tSj>>1b_e4z*;DPRA*zd;nxfkBdM-pNaaia3&x@?x`w|a=d zS8{Mm__3dDfjHpb?oh5g#Ch65O>;upQG)qk8}s?gkO=){T?OT%PYPC znBDR1-^0ZgP7sGV1`6r5^I{dO6$vi%E~!e1(N{_&E{<_=adPzM?Ffe9&Np#KRU@Pi z_`{NH@kRALc0B~1xYElIE&~kk>sKBY9tqls08AiPpB*pp=y26qsWjqu`T*2aML+`B z)na}L{lX5!Mcpjl$4&qks-TK(5g(K>>mVdP4FL(^x2@-sa4GR8<%9}eV+M8e5}con z?GSwSgYD_#sy>3FO;qi&!bwx}e^m4;iLlET-f2tu{yo6qTKMFXjcIL+sbxJ~l5AWP ziX4COGogW8JfX7eDXbwq0&_D~pcUQy$8CrzI*?YcEdd~y4nPuY&i3#>F z7?^rt;F`i;x&!d_l|omXnyt46bb|0DRi;u0HBe?}1Eyc9$V>tJ+_a~4B7|g019&eG zI0C<9ICgrAE*xAzFirm@<^?CrAn^?F-QMF>`UmY%f0JOw)1%u(mIuE)^CN?yO{#=VKH%k$k(kM=8oKL)+^f4nab+CCb;kTm+2XYQOO841eq(RkFo+qHuESwb=8SE~VA$>3n;)^B8}7@1ZbmNON7W|c*p6u1C@JC1UM zSoGmK%Z&cYT`gvExt!kr3CkIA_T*WMnh z#ghS4fX7>zcl>y$^h_&<=?aPW6VyO0VApC_k5touXz*Z*es^Wa30>l%ro!c z0ozE)<{~DbPBdaFQ2eFOU@er+YqMbR`Z+uzhoVLy)1$Jj(w2?Y0qb?B#6wW7GU&2i zHw6|QnI?*I3WQ@hdoZsmgGQA(IY3uHYmzIV9Lnp+fNPywF+x)kw5yX_ICT-%ngCd- z?-L~rS-~6Ti2k522FJJ*`QShSr!>=pxTroP#Nrd6P;ngGsL0Q`(-JB4^X5GQ4a}y4 zz~cy`camj?mzrVwSN)KsgG728=y^`5#!1hJ=4Vm`=s)X~`uVYG%9Of7u0e-sv*}rM zRXvH)6Hb(7rp4T@P>vc8RD4Vi0gN<}q$|Ei^aVYETT!X#3r{6+v=ey~pO*khJbHJ8 zKx-aa3V{K}YTO_+=f|h0e{5?^6-R7fmr{b3*rS~j$uwVRc5g}DKFW|XK+**&HxIr& zuSlg+7nA0cHiFB51TlF$zP<|C!D#d8GL&KzXuD?yIN>cr#CHc`P@gIp%Fr6ZtR+fQ zRZ$sBvb*C!E+<>+2C&n>1{99{3eppr>r2J?=3q{eG~e z^==Ze4cx?aAzUA=)4$M~7oOrT-4E}RhM~(&2N;;YqHNh9g{13cUxyDb&MCipk}ljp z>Bch8!y!BPB<7NmIy*bBQ6Y;uSDJ7?N)W3&wM8j$Em~z0Rl*d4XMW8kI3;=&gR$ip z8fPe}`{A7C$3?e$^MO5x?)g$KWLxPdH=dGHrO#mwB{Y&~AVIZ6mC6DmY=5&Ey#*fg zA_pon#nT5O@Uwfvx*~wOm&QaZuW7kmg#CxWr$1TKdr z0EWBNz9#}FtwB+q8OpnxBMLT%$Dzfue&C)c43`7YY-i>KD~9^vdsBf(mG-VKf2nL| zsdzILPX+01*`rBltYxfDY%h6PH5`bhML^ucW#qT+F6^I{fXog|#1b;`v-z8KA6E34 z&cN{A7wskQJyV1Zjf@15-iCf2T#q#H(DXTZFT?QR7hLIdY%!dWj(+{-!`pc!?33(e zbi*>r*Q2rD??J?_0o@8HtB&gd#E)O#UwqFy8`0aDj1~1y`>{^;0d`h_D8DdA#hxu8 z(BV59b95)h8rLyg?VjDdT_`iRWYjCl*e&8~x5?_m2X*I|b9$}$-_e<5SG4~P)czqT z{sO~)54C^ljQ<9;f9jF{1=RjA@2|D~2DSfEHLM&2jDKmFf6AKw2ymJHuA~0aFRbkB z|0&=mYih=Bv?2OF)gHI10^>zr4nhENbe^5t?hb*?_woJk*lyz3oH#a*OBkN2mDf>` zw(+R!OkcqYAq@ncj2ttXf%q<2AJ5)cD&2R);25S61l9cevg@#LHcdDksIeDuv?M0`-hT z|I5tLf>VnOP)i&aH%wf4Sb3hcblspE1P;ggwG-dmr2Y|L{3j1Y3ab#wp5_kK!kuW_ z6zpj+u_Rtu+#2N(Y#>0&*?n`AN%q1?T(Wy)N=Z%N;a&B#} zd!KNq^)aQA$ge^_>|>U;X^n>UlyNlN?nH^ye%R5YwNf87M@jI>=p3a=6_7x-I)C6+ zhpP$X_J4$w+qA7?UG=UMR!-Nbg&f+k@HT|-+)rEJgX6-riTM*Te$Uxi)eNBjzBM`a zjoy^!4c2%#6MN*@Sl8GiC184Yzt1ARQL&Hwt1=eD<~IOuU`uXV0}?yCStx>_&)^a* z;!KLp!tN4K0w`4x)73ST=5oQsWKO*kjuFq}ua`4^K;pC|5gQGj>nU>izCcTlr%0#cHwHdDX)5=4-CyQvf@*?SNIU z*k2EWQzp*c)Fs`#QhYy_x+@jK-Jpls6-uD47R&R_;Mkyl^6wc7-z&MHjn7YBYyM_|>LPc73NFDe(00vZa+7bXQ?HT_qX3B*W>$NlU7o1#uXOuA2U&6< zN|JxgWm*DTbH0%{^P}qX6?f&$(mwfQ02Ov0BD$7HB{0Vv%Y#wKeqR`$K)Z_=RaXNs zbQVzOw;%Q+#&XP{dW0rFmWfII>@qRs@`(rOJw>+#C>{yGOvgElWC^GfPDIED#00_+ z`rvTC1V8V#m+z{%ZYtCV9dWmIz+n7{9ud_U$>;PUIWM_CX|dA?li$Z@qzCOK-?WOf z_ruK#$=)Nw#KLYIo4IUGQIy)hwt9$UEtJ95%p3&7N984aHC;`Rd~mdM^9 z_B6f=}%Wbd95MPOieXK=ac-9pP zdfq0FkFF|Vcw4WZC#^m}ZyI8GMR-6f&o1-3BWLao_{&&!c%faHC+#Jeur5?vl{o0} z_oXzTm`hf#-ooEVQU^}?xV-Ylv<UB5$WnEOhHcN7 z4d}FeoGLR4nGw|#?1B1L1QyxdI*L2gHbjD#a8v?8fE=2n?{1Vy6lPH0N1pY0_Gdbd z9HuQZmp8~utM^AZ`asaMrdXoR?wAoZ5f-F>1U&e7!i%~+nv%K%&Uj!gxiBdoAfCxq zKqi79Jwmgq`Go^(vkL50e;D&QCcZHB0J{WYd%)=5b>QICB%)(`s1R)oIerXy19$O9 zRd`=OBt47}X$Ax%_yYST>q%=<-8vxe=JUi{r0Z@&!|IssTZx*}K=v#7;knV+qdKMx z{m>Fbw4Popt!mSmR3Ma13V^ck(7O#}hgZ8FVbz#Mtuk3iV4>49=|8U+Q&KvU&%opM z_J#Ozd^wv8uI+lH^Z$XLyi2v4wdkY$4yji@$Q0gP%it260MqVAk6nQ!JD85Orr=o* zQwdMZ4{IYX3gvSgWb`0Md_bFr^>u?BcNmhsiw+S&ou->bIypeqW55v2X<5ILOi=jp zZK|UwEA8!(FoCXbW)IPu!v*ISK~{P$DcFNiJq5pjVojgdM8mXE2Iq6f=7$L+45gkp zowoRE_3{lj{|p~9DFJ#%Sfb(8Xy>m9RPO3wO^vM{{hV4F)N@T9d*h^b6msL6ety18 z3U{xjXRTPWCPrG@G_44DNCe7HSuiEP5z0@8d14Z<5S+tihLIPkl^Nz<`qM~_0tk*; zBMm~>3FHEQy@%G9=BfyYuA%H&W7@<9M9`FJ@y|p&!~{d|Hz!E{-0aZ}NlfkVooH?{ z3q-X8b`RpKLJ?+Xci$<0!A(yTFnao3&+OjA^N3ng$&Mlc&154~YxJ!3o8txSqD0es z`|t$buMWU={+2W*#TzS8h>>R324sF1MpG zI{J7pJvm19j(!V@AfAWdoUYS2fIE_Ks>(tB*iI*wgtI^G^~DOF<07HRU0bvXjeyQ6+Z%{LFD z)77ws8voj;!~U^FQ|s!ciCLm>8K1E#bvQg&`2~#ZK~VlbL7C}~Wcpw5`fow`PXzt% zC4oPa@&5}@{$t)>YyAt9|4GF3V*kDpz{E5PKg;?5zWraz{Kd@79Blt7GiPf` z{!R*`_B_=p95Sgah8^}e%gL!`xtCB$7AI?$IQfZ62u+9z$E9TJ<+chEE#5D<%K_lw zq4hj?>DO^p1uW|EfzEweyq#PU(x?~fnJTudUH;~hXU&|N29~En4jr4y#p$g*Ph|9B zb{yF^m`$eZi9V8MY%$ekI~m-cJ(kC4G<)wy^Zwd7RS&ls~D_^@}9OY+|FD6N^ z=Q=%K?inE7NhtW8d2n!E&t#F3w;s*+S=JZnNwmjHb1d{d9S|KAx z;J2BWF>@yEK{SW!&9G;(qhk1^mP2WSHASve1f=r%cT z=gW0BlFd^4snOjJie$2EyuI{y$zLo7_K2s41h4QCDDTK3gnJmlu8H>0=UaVyJEVCbe<|MH=0!yt6N6y)LHHn z-InZ1Zpu3@)eYpoGp9!v?gy_tNvs8Yvw zo{6I2%g${Hsp=C;3NS9x8DPf1L4pBlS$<9=PK0q?gDCqt7GaK(RwCdAhuIu7tB@A_ zEpn1|63xk4K3tDu8IOI|G~d$NHd#zefFrs52d-UfO&gQqut=@QT)k&C3SR>)F5r1~ zt@^xc?Tm#QdDPv2V^4rqmQXAFw1Grfo0h)n@clrI@mYbUxE(MH)Fk=GnuHLO?~H+U z<>>$lEBOVeO638F#(}vgq#`((`fcp@EO~BfDC^!n{FV}x=!oMIK-z;~7V#J;hyYO& zek1cRdF6M^*$KZ9mV2^8E_~S9{d~j*S9~2KwTZqPd=oK6SCTE)Sqcb9eU-_`@FAfI z6D>g|U(ci?8f+2?7FV?>rwL`5s&qAH8PFLr>ju&_R`UX@3-5NU4pT%Ke=hLqnNOv9 zcJpv-TDF72FtQ~mFD%1Yp83F>{>RZ|zXP<HxIx6yaN7Q652wUM>D9((6?0~eOVR!YWD-om0$z2heX_l0s#cK0CYCVLRw zK#KU0m;vSWt|H?Dl#4B!1mPqD=c9tCrG5Mk#6nK_!cI+EfhW0zvDRGh7grsdG;)It z3+2eSex?Jl#K{Qu=9lWH z_!dpc!G$fh+tnUwG01d5KFvJ#KVY5TgNk7-k_L1IUyDIOIL%E|6)~v_NM8 zc3w$b{Q%plv(MK`1%L?r#l?1f2Q=>4f=&aHCH>$DKW0;I``qSMgdc3Gx5AZxl28&q zlNk2&+oFKO)m%U5eaaCohkLDgn=dlwouIw^=*i9%shMGyq_Ih)Cj8EPPaKT@MRdFX zpO}V;Cu4Q4sJCBQ5vfuy<*I1Y5gSA%8^|x!=Qt7P;Gt{%A?p`v!3_vowxX^$b72E< zRwBqW%YPmzPK4Nts}&?*1%<_#M*!|VM{r0GgBE73W{CJG+j-`RaG=oJA3a~754f8o z(}nzt*7z<15BxUVtY1Jiu5Sn69%^JOR^}jL<5vIpmquE!am_j}z_bz)F;B2piz5b1myG*3m za6M@!5RETtd{&}K{8KDzKIY>bS=} zYOPFUj5D{}3Int4H6esEvHX*st5@u(8Q#eaIz$P1RVa|hLfZ?k99j>$F=Z}PtzcO; zYCmH`dJgw(M&S+=+O$*-AhWMgDgVe57^%ILW@ZZB?6zKkkqP7%S81Rcmw5_La4G4l z8!wQ32SC(|zHB|QkS7O7HoSQH@VT>ZMxkhNgMu}4mHCcXi-KaQZUw-uc|}+o z5!5q3h9&*5Qr@bbw=?xma%^8HOHH)OU0n1TP8GJUJlCEXf-o3fm1e;B6*lf)ha|>A z8z6zrCqM-*35+hcp!9nX&)to=MD@)j52I%2AStG8rJ=ZB8{Q7p8G_2A2aDntOcY6u zfOm?D#!fwia-4|OcK{%Ny{pik&u4i3tl0->gSK@&ky*G5glp9w%3}` z`8~4#alquWoUkAMk{0}Ke|>KCvYO1_9=JakBo>;4(g9 zx-m_t^LkGE*(0HfOeS?7^li$=ym=Iwe*}u^xFKtG9&0741j46L}EBt2T z|1zfhN6B2~zq9r~z?7MV^B-=M|GV3BQcF5cN*HGw(SSfY2%tY|F&2u$=aqn(}sLJE%q0nZ1MMc)9;ewybzTJpo zqLVo}Hj4cSv<2R4>-Z5Rw2`(SXOq9odC|g@aXy&3)zK*z15ock z6@Rgv!ScA3R@)pY%5CPLn0sL)J;~7eHWJXl~0kp#+-wXH5C8Y z+mCt-|Apdn^zECaKW}$_3QnsjdtlaLQ#u#_020sqET6a|-*#@v5NqAdQcdJl1jOLa z7`9mr%Zv!Dcpz_IEfqIXiKWl7j7~@BUar>{{oa1e*ZCTprRO&<&(DOiptjmX$R`h~ z-5*5)ZKQ4dRh%&ghP2A4n#KMf4vg2(?CqF*1>Ib*o0_9%G^hTFV^jmm29YQzvapqa zvNXDO#!yi_Nzd&Iv)5IbIl2^TaT>w-Iz&D7HVC)H!oTaHWjN@UAnwFE`zMlyUt83N9 zWl5a{#gD{O9u=>S^Q<;@7l7Y*%Nd^Y&*2v$h&v3plJB3(H;E9I2{rEpHLoIK2W47a z<8qTRaEZEXPdnPi-);x>$9}#A?beuc&)^nMY?o>{|4JEl)N(9=kw3~2 zu&1qCgQfH3K2Tldu0$cj%tDWh8FFB5v==W#7Fov~d-H?H!mmSdtV!YOYiG7O9y>V- zZ3gnO9)C}%x;T5vl82#4tXJCd;{%hK=(`o>m%=&nH6QN@wHJJxCMzTj)z}*jJVEoP z^guEb7&32`^kae`6w@V=8S*TGaoM9i6#(KAFb)8xo|Pr;kEv#!;!y-Y7j|JNf~%h| zqVW&@p)GTz5TV&*BUi-Nr$cR^BHI+$aSn|&mwkB^%BPfKO_mswQ3gFS;xpl|$NW+1 zzjT}jebjs*tA4KFFmD{?GV}e{H?2>F%ZRv~gJUv(`h(sG8$CAG&!i)fe3TI(8sq*& zV-VnQtXi?d%03dAA#FNx0|4o5>G&8R)OypHk!8Sgt79;$v?!uhzs}Xx$#^y(95rM( zBjsN+1k1s2vrkC(eMf!s;j2b>6cEfTE_s}rpY>H&K&Ewooj~7Nj$R_Q1|u2ah5Ok3 zZ2;nSzwr)dtTG>~=NeC%$Ktpe;G@K#X@MnK_zfp+*7g0MfC}sc16BE%PJi4f(Wm(| zi71fc^E8za0NLam90~itw$BAP2b6=B%9i|7$!p3RIfFPHb$&2xcpJt0&^MkTpg^^G zmHlEiM9`e3|0>K6COYcjj)%$1AvWqUA%u1OhfFbjjb^N1Mcck~7zDtv&IJSJxFPWn z&w%G7z&OV@4O4>&79QmzRZ>CZF}fEy6(o6l_@QGBvQ-mY#cvZyAP`=C98Ahc<~)@o z1RaXWy>0oCcOkyICLnDKvudBqRC_9<^_2HG@XAmSn76|XoUTDNltajH=!RxzdG0re z&c%Uo+z)J#wUA_nVly~^4tU3bCv6-k3$&z2bI~(cD|}T3zqHs_4jYs@k`T2*R8mD} zh6-SNE|$}Z6DZHkz2QzIBDeb|&5e%ZM0cd!M!?S<(URmvil)LTU=0#9!e=pqgGLB= zNPI`uE1j}#e!VAtJPmXt&bogg5FsNpLQqt39eGSU3^tze3!>ykoMX|aFi)8GVa}O# zmOI77&}!7%ry#3k6%xMDsK5MZ@DUg(c(U>fZ$TPt8Yco#M&mGyoF=SufatfqMk&3j z3m9Zlm(lkGd;(sVLtO#wEeg|r$&;9%5#VVH?{n6qf%)#*m3N;dg)nD3mx>HVz66gq zr7BZ5$FO;WeQI;MYi+Wtu!UPpd5s=NQO1P14@pTOxy%xE!yMP*hU*Iz5~Aebnnq4rAxx;#M$^ z98-Ui9p!e8rnRZOI_|V8#QS49bCw&ndi19b2loMySIf~0DI!;yM*58O@{MU(GMWv< zrzBdbq^HR)${YqCb$t=o_ytO)TiF^IDdb7nuWSTLw%AkKN-qy4zrj(PK z_mM#hlIYg}+O0UC*|oK9!NM?xW8w)L-kl>2=jzkNsh*hjQlAz~Qdd5&6+~1#AEVKI zgCvbpKXSsz>(b>r1=)#rbxao9$Cd zpX;L)2p2bKI5~7|2`tG-LRaqxISQnVPE6$%5lzm_w#wy6W8+lM*w=9$l?B+d2+Ldg z8S+hmwdEMpDQG*HKG2|H`Ar3Jkdsds4|-iXRd-F94}3LMw5tyiWqEX?)UY2YuAh5Z zb;g<%?{ZI*m@TKn@cY2Le6oLGlUafYVu#s!#+55>^klgK^oyl@*D3Js(YImEmLv$X zL}W}M%tYXHrYM&FKw0?w^LW;oomIn8k1>cbc9`RQ#ybSYSPuUVz_!zR8f~!HpA9!W z1Hs^;SpL)HJdCvx!&H>6b~d8Is~S67e%;lwKHALP8?CTGr-fFaszM@2+s(TU3F%g0 zwwlZtkVZU+3#l!%J0{GSsIKzmv$?S!3t=+uAc_eF zYqRIivOC2bF=|L?;Bq+YPQSUr+d*a$D|g}y1Q>Mt=(>P*$E3>fV1AOgckEk$UO&~BU@haw3EGfK&nMEr#YJUzj`!K z7((`0{I)Rg4P_HJa2Q0w$UsBduGD`~i5b)*aq-X%TY<24!$v^Esv#Y2KZfDRM;Rh$ z^SAkia!jZUwh;mv?b=MR{%3?h@p6qkBd|sN1RePj!bAxKvX$A?kpm|ACx>FJsE>wc zTjFxoX|^(!i6~B;1#Y8?ZgLtoNvX3T`(3Cdf<+`0U4Oxr3%}h z2Ag>Fj@Ik9J;Rx~b49aH&DeD|a*Hv#PtmdzOnqJ~oBgrn4u|k7>MP6n9PMk{s$L42 zuo~HTV;m}82?J1Ax$fZdW0*G!4kMkT5QvK&-!1RPKKdTy#I>(d9v75CHj1Hkq-n@H@4E=>r~fwKStfLU=u^n;en+4IF(=H^yhRe9^O5ZM44rP+Y5_TD z96?-r`;yj}cnzu1-pbkd&dXDk4b}fPH7VZO2)lJ=fBw5;g&H&HJL|kZx##I|067}) zjp=b-(QP=-$y8|T(@wiH4Hs~t&@@mM+f?&$ap^OC*C}7czfrn>FM0f1rTeES{BPxz z-%S$#D|7vy^ZuvO{aa1tZw{dc*w3*Z=hue^qbT*ctxQ>P@qz zWbFC~YR{WGL?A#u18qjLy|f%Mf!uFHU4NTDpy8W>tg1Asv~gh3#^%d|hcs%dDZOAq zq@{^!_k~wv!lXf>_2(_!%|&j_ukJ5`FXU-#MkJ6?GKsMKy4)bEFNQ{ zniBc>=Bw?Y2sVCV%D#GV#olZ-P90RbnpA>*j3(V7%khh?npbbfEHj(tRzsqD6%sMk zA`aavlDUV(0tkNptg=K*(MP5C{r!YQ#oYi%hkL-DK{$D~09zV3^wXmw3^iVb&&l5m_43UI?E&-I~Ye)1Cp&cV13#CCqN8)Kmto25sI(zISTv4nq~cJx?4Uiu^8`UkRH zwAzZwNXQ^o7Tmvnop?q95u)i!+d^{hr<5_bO7t!fmFyZUkmOkQ=x6ia5IKpXLY z1J-Je1EI_neMIdC%&tth{ycQ#xNX=85p@~H3Pg72Z&}V2IREX^_)e$tTw*zORM*W^ z&5J0*>$Vo*>9OW})lXZ8wHV|gHAylTmg?O(icj4g+ibl zZt)7J!tHbxW*z|+Im@-1SKh^V)G=(o8HIYL01)vP5G_E7(Xl5>HaZ%JBa;>g^*JR# zy*ywgW1D^}5WOhVaWe-Qb8t5RXxvci)#n~upG!UW7*wjkJmDOH@P)@s$UWnC>x#gowerPETu8$o-J6?>ytWMBAhq- z)K+uchfq>fpI@i2)NblglAb}PNNd*0HJl*|M=hVXW1#P|1BXwnm44YrUmhR}ubdy* z!}cdnH2`T4*poOq4OS^YbbH_ksXz3yoaie2ln{odCY<^{1?*?TBQ1FN9JD4<t5$M1SJvwq?5SPg z9HyA1qpAT+xy_GK>S-7iBPi$biv&vp-Tl)ArpqY#mmd0U?c8e}fSHz- zc!{CKYltx%a|3Y5lLk0GpDa{AEtYs0g9umL9(L=T<~?V0y>9!gRTdB}6J5$^{pc$N zv%nO-L(fHM903nPo~W|a%Xx$B`2xN7H17-P$M7nibn9aJAWGdCop6=F?S}B^{D76m zcpAK$dkdSPLk*%AGLm;9AzW17u7O7oWF~kp4^7AoTdU4f!ngjKT+L8|;n-)OCzH5! zY1cNj z+4YAfK+!gu&gL)OL4ziJ5x|~mYO#cCeoNg9#h$#q6n)%Y&UkcywNOijcQm5Wsc!ec z{AdtOURRXbby48Ey13g(i#TihR&2Bg01mLY9TDI*h*^*WRb>{D2+zX{nScs9s{Y9m z#D5-St*(C|OuH{~lcvPCIRFPzAZU@a{jD_2)}Je)-GgJ4U}nf1cMRPyfh?@P4b(@b zuU*`s3kZ0Rr1cJcbCVEUYtG{FrBr+?RK~p1S5|IZ8z?cs;+uDOFwR2LCi}3FI{YY% zn@D*AtH8tI8={WHSUYNqh~j)gsUM-pUCTimZfKRuM&kxy>H$AllT5L^OTN=CkkVar z=wrW%2un4r;lW+T)Rep+M1?HEQe%ijv$BLxx4v)N?#u{317yBkECY~Kq)zC77z#Mb zP+Wwqe!ROzkHrf36pKENpxV3%&Gnk6TWrLWIUaBNfJXSp|oJAI4V5_!Ls5yuW$A`^$8Q%=i~QBlBhA)xouLvO_-Fs>_UA$cm)TIztoPC+t3J&C%iP zLD2T6(6MkcA8!hpaXAqXS(O!=`wySV#u6JkZS#4*EsKFh3djNEv=43H0}dc`9^OYx{jD5?+3-5T=VQRS89nfA5ptAD0n44x{#E3JRMwebSeU5 zXCWr$)k{nK48(*F#Q1NqX73}D!w$&9I}C0lDYEic6X~7)PK+W|DgMSRkoP_EHeFH?NrSF<+}P;Z}Xq? z{vu_ufA(1a4f6jE_Wupw{|5GdBlv%5g8!(T#q#%N-hYrf3j^nW+?z0@rTIrW>vwNL z8c(qD&CCx$gnKf0U2-{2NzPF6(ZE=$7?J3<_#cdv9&TSguSAfJ1e528N1`BtIMHH- zZ)dg?ogKYnHJ{ItWYejwx!#Y-59(6ICOK!7>yyb$WVBhmjvn!riF%tgwLQ|#6}5Ir za~`)gowc=g*6HMLr)||crJ4^K28oA#__n>>2N9=rhZ(--3%Qqh>g%k{&X(-U{2QMq zW5(ryqqa$s(puL=3^|IU^_QogVbOeVQpxHj-?%Q~W-{wzlJ^TjSgaaCoix)iZzTi2@2 z>7EgJOzOqbF4xARdByQDkfXyb-Ylqc+d8!^@o`?8ZSm2Nuoo&ON|vR6q0U7AsC?BOqNkLRj@b?K>oWo5WkAG%1ft*L7)`7;r~ghv$b z-i`0U_qf-?0Y4q+#~A9t3|PCfxuDFcL3VQ06{{Rg^V47fwP`PyVS{!5m&3Gd&d_5P zzwtYPLy(zHb=_pjuNV#Aw?14$92Pp-Xe@T}hAtl3TSN0}Yz#PaSKU?#WPd# zA}F8th8j0mH535`h_6dpb#^B;Thl!4(}jMx2@GO!l%Qv2jCSYI z&66;vU4wz}HfNmoIR%N*FG#*^+qUgKZQDL=+qP}n?$fqy z+qQYyd*+L|JKw~;6MJ`K>#3q5{x9`ZnZL{|X1wbWMxNNcP+(vdNze#-XDwVgf->7z zShg(aQXyb#U#=x#b%CHgE+!4X15l@@x5rvyYk-WIvII4_8NK&i>uzsl6-HOBkNbxw z<(U&ms1DT>=%~|J?G?O3VnuT1u5C7ID-tEv#YJ-J*_}}ok2YviJeCE`n3yKa3JCeB zEvx8yiGKA{ODV2H#3g-w+mVG=kxMJ%yp-Vv5pqaTLs)&_*9K(wc=rgJDK9(0=y2(y zc^Y_l`>5?jbo4P=MXggk1k%T0mPnu_Be5x@bXb;peDF#lVifc15yb9;#I|re2fclc z`OHyq_w#Xu;1Q=RxdsIZFT8Z1B;hl*c>W) z`3-kCB7=yn*IPpeg^H=Mk)ptn#Il;jVOXFTD{ql(eZ`u|`7*bdR_D>6wD!lRW{Jl` ziW%rB>+AN61#aTx2W7E;ggLXRB5QW|NkWYqQcymk4ZlJv^q8jnb!p4#|cZ(Vwd{W+Aky{)PUmWmb}-Nu3@BavU{m)*cDB+sH`Sws zsw2zyejcVRQIPGKVCjhv;yAe!yhrCo7XNy`f>Er<$#WtTlrtchrDbafgug@tmQW%6 z%BFL+fZ}tFRTnbBU?L<{bHx~wAB#9Z`yH%I#-m}ZxbOto9m|DX(Yk=RNJM$fQqYn# z0YIpus;yB$W+XuXchdC>i?Fyq6c6SHhqD#-Ep*4l?qPi>w8}1}YHP&IP#5UR;0bgO zep9`0HWnnC3X+utAjT1$yUMQ^q-v;1_~ulXk*nFn&+R@`=zUfH(s10_T^&DaP3l=# zIS{B#kX-}~^XxR`W=tpUR`Lhu?RhrK%&PUR8ay^Nt!-^1j7B2&VGB*|rxNp*2WM7r4FpCV z4kK#|W@P3rJ(ZHDJ}KX%R)PHevT}ajA0AZS5gH_@0TX@LiqPKi{zI=6FoNtqlvjR9 z^b>P!6s2n+bq66XN4-6}-W8W`@?wh&0(Ol*8Y35z(Yo1yG!-f47T;&d+0efqPNP56 zR^atl#4aH!Pc0!zWj~WZFqdEKfawpT8BVjI`z}iEqG>mg^JdNanfUgjGy5DzCWF2* zs}}UD6ZnoxD*xtO@ZgtBG-IDTI438>W}yoGJv$7OzX!x{zaj`)pE}CrqT<*?S_y&^ zpSQ2cu@Iq1|FGCfs?>s%DwN1Rh%XgBWvCzZJU@YOMVmnAw(cmWyt8VcxWlr|BOeAE zXaBqEcb)CoL3;|OrgjxezAy~h>PGMUN@4`jgny#44lc9_n|Ft82RIBl7~5!qPSA=N zSXm{0dpr7fZ~;Ms4NafXz?HI+NVWiH zrq1|Fex0bfsOQfvbx@U|E1_3G=q^9a95!FC@A3CuURVyPij(UC*-!a9K|2iWPB9##JT$fm}MjdX%kCusfz}qWi zWs1f!zR{dR1Z9j>?5@<)G%7;w?m!gbpE|28F@jQFu5Ig&ZMS^y6I@_F&Y3VwR17?2 z5em~J<%YrDY^10ou=T#AfKBpye3|Ojc)K}~1=NSld>7lddE6vjDOMn~P)G;Oc@5xcGr5akgeYr{6@XLJeE=aB#z}?SZo9W0)<@&ej?Q5oAX`Cpr8GmAg5IX#@WzgzxFX(Vhw>?KG*1Nx zg~K%%cfF5Aj}$i`EGh$MGeNYZ;`574=b zy9~vmO0V^HGt%TaFJ=`F;?M+W?1`5swK%1$4;b;o$#|>BW7cKiHm^suV^DMIL^maM z77I?L438SaFn2`hQ;I}1QCx??C(Cr3zy1ityl2%D+*W=M&0b`h9#Cuur~F{_*U;>) z(U&9^gSSXI$Kfj=QGziRe-+%SIFE7OvCC3@MyT61caCbm7r{t)Bf`U;@J|-Bh0zDk}-e3e#>|g@NEbBb9sB-6`#uE9RtYWY0FW*vJ+?MPW~BErd`$PihQV zrI=V$24fE&8KxQ1djiODTT~*xTZv(9ZqGTwDTUu7=!0R@-JcK*2dSE$R?kLXXg*`r z-hD@P9`s7d=1oVZoAMQ?$_8JMjZUGJ2LE%iD3HC=e8FUV*g;aIImvqOdi6FKrcsc_ z8B7@lVic!K%Egwnwf*E0`yz7p7@E}P72A!=+p#5aTy@b_j9EhTh90Rbsk_$Mu*^k~r#>?ls)e z;do~cgqO^atQ-i>0XNk%y0z7djn|ZI1b{3HttQGFYPfr)9cugm?D7bLp(Z-l$lxyd zir6Dx9a7ZPas4h;3<=Pgpv!W)|HR02wgm@-k3GQp$u1gJ2eN09eFyqCa&H4aA@ZnzLHqwKgO)miUo~7=J=W{4&J^)@PLU3JOTu{fEMITaGecKQL0zn0O zLgV%mt)SJ#D^PNi!xS*iGh+S`?S`a>G7rG@Hn93*$vUiBm;<5q za}By68a7%-rbdXn250JeKn@M`L8xPTU>q0gPx#S8tAGy1CP&KM5PbqvnGe17YZEr4 z;W=@JD9U*lzR=xJp~GoHNM088SEjPp!bz7dq}hk%mJ-O*n4*jW@Wqm#7Z z(>7F=*y0tm`dfv`jxi|48}*0`SG{v5@24&rgLqj09;`4hYWCNv6OzIBpw<(qux=W{ zYhNpH0LjC3zG!x@XZ=lYBiY^p&untt!k6`NgLaB%oWHcymHU<0oOHyn$)YfVpM} zgIYW<-HEpWdzpi*Qzb6&#ss?)qn0V0JsTC~iPtcrVYxqR!L4H9Zo`GZ?-DI3(x3TE z;aSl5`MI`Vkv4|a^ah2c^n#F|oqI3g1Q|e%A?JI#kZfFsG4$xEM@wJ=m)y>&wDJ&- zY;mx2UjG)n2qu4B(Nhjhc^4-9{=qh>{lgC2-Py^64K>UOr`~CtUIygOcC3a8G{=f$FUv?AH3(!b3 z&mAfhsdiKjO5`MgQqmkT$TOl(#bncdDE@6|{bEV@fTqOv^rL9ap(u)~2-V{VaWUo_ zgCZjKEKH1EQpVNX$8#DWTJm6NXP+sD`Xx$B`gyA+i*F_;M~ydkd?+4Kh&cc_PcN07 zBLF4_u9vyf?5(oT#+4cRy6Vmr(QIC}E}MD)`%dn91H4`9P3UEZr|o;;*k|?Yr04SM zKxBAcNqE^pcJR*^ab`fU%oIn*!3y$lMfo2A%TZo3W?qOw6Vto24@m)zwsyWML!cD^ zhj!&%rs2+Bv_OMZA6hrohMf)7JanPUi2ZwmW1`Zha+MWLi$x!8K7 z^R>p{{#&iZ?Q(*DVipkl%btHv%E-Wt`F!(R5i0WyfbsL2RqgBYDvx`|Eg2IA)7W%` zk3+*A4zyDppX=?QNBftJBo5}5%58_Xot%r+edvbV7xa3my4pXRCoF#-JNTF8$zPVk ze}kng|BR#pO*e<064i+C*mK%W0oa`=CP z(|^xj`Ma0&kGL=++rK?-wuH42bJ2YF2MvnRBQbX>StW#mnMI(8AQnZkm@R-;t9h#W zTho%Xon-agz=S4<(^}sMMCN(diCYN6o%k^BbZ*>E;qx8byiUp>3^UsnZ*B5f z2PsajSr|qeDyC0;9vtIuTrX~3H8O47$*OL|(z|lINlW2QZZ;RLIlf=NLStxldvnA# zs=~W|cYZIV?ntEP5c5s7y<9f4&LnQ}?C&%lxjiKD5B*?fdAijWk>zGeWjUPVFZ{ z`h7SrL$oz=GMeta#n)W=HjA`kR_7TZ-50tIH>GYQJLJTA_30Q67g2unxYs#CoKq;w zvtqa>$UOuq{b)kIYcB25aOs9gV%MFn3<`q6?64Oo-(DMQ(v4K9WklgVoZKa9I1rVQ zek-FNs*U&cOZb?2R*Sm1)W+(CfKgF&dPsqL*36@O@pE+<9E|69>A9mr(z+w(CoBH> z!35zoA#?^!mT`?@Ih~vrI%FD1dIsc^l0N=KW9KwopLNM8^0S>377tsGUB28Du}nPf zO>Sm4<*gAp?5%F3ww^ClojSwNrwS(`fkgw&k1eES_+TL_f`Q4-9aNXvs7!X-TN#Bb zB@#ZA8vV4VhO}<#3{BlB8lb?Utj%R|H_a|6L_MK8pgynw^x+?@7V*WQUr;NT~p>5+ zykKlm+I8Cv)YxKoY8SV>_;%5AC=;?`)I-Udu8$1J1wZg4?y4gb6wqeRKRXSULt-#dyzM{x~CmLpLr_T1V8u zbc{Pfh7ncA+eIw=Ks98UL_PF@G~9f|usjKO=E%?`YAsSUj{r|tudKyYI>5ZMqo5;f z<>`U$1uF=?CEJ6AP$52>jiT2QuqA=oajtCVF%LJsRBb(C?z@l#h1)Q*{Y@c`wTwkcypnpfWY-J}M61K5c+p-nD z4bqVyh!P%!;O$uU%ZGh=4vnDO%a}A`EG58dqf_C=S#+4@cY}1=qURS-x!T+`!vmL! z$AW#Xg~@FZ45>?tqvDK>pcFLTi(PL#bTUi22e2kwFq?#E4%(Y>K0*a1v^hWHYAsL0 z8=K}QBn5~ZnXnuvCa97DTC%^JFe2NP_-Y(3h?MG?9%&a zbep{7;D{gqL8?7bNCn+u=re|6N7GD@YvR~oYV1_)%|@shK>xgB^v!oNK=eY*mHAHg zd{SRjjIe|xKtgl^|)s~ygx>G9-rR7bCtIFa8 zjWT3m;>dMMl%;Pw1~%R>jNx_;V8?YrQ$jz$48WlfJ)%1m0#F{)5Rl&{Bzh3apkvyh z=@Vj_I%$LkX|aJxn2q-SrBW`%i;_|(goVoD4-{djZ_W}VM(QVcO1f5{%6|riBrZWq z3>a7#Rdfw2R?@fJhn+-)v>)-xZ*fQ>r_+_OMn*i&d3#CLrGJ}rTlVQm_IYH)*_U>&OW}oLLOFzsfFC3_gOD{E5moUOSeNctoM7 zub8rJNy(BS6+DbDc?5ObC&TT!(QonR?o((OwXncuuGs=vJz^oTAy78j=QqQKGy@&7d~tfb0uC=_HMjz~zNlV2jTxh< zxLx9V#@J3alhCL~zjVn1(e56Y>O5?0z7^->BIBeIBq~hv931+lZgrB1B^V>H>>OPM zr|8f|A~4jtMd$scRQDEn*Kg_lc%ftRRZ!+%MbA29cZ1xPk!EW?D(i&@J;^CAur82_ zPUB1SbI~F`CGS&lm)aTvFyg0etD+h-9_zc3U>)RM+M>IXV{<;)3O@NV?yy=Hr-B)x zw$*HBlZ<5LNveG=Bf)^4Ln{(un(?y4Wt)MV4cr=D9kLpD;&uu142 zmdW4*4gFk5mLjNN_#X@>*U2?^Fw=CLlSWC(KzW3ll~7d@@XXS$26+iKMuhT|R!RDS z*lpPM1))5BOwgAy9k#D=wS6H*zW4V=|*{_gWl2ewvK5}<1@T8=kFeBSV-OILYUwaK;Bf&0{C8eu;F|e07G*g~fi05Ppou)XDRrTsGth)7sdvA%qIsc_ za+i_i9-4J$&BnQbCAZQFwH6+|EC!NK&$F0&uKRf^T)B9ZJ=Z~VrPQEI zQL;Un7VEth8y>L>8o)Ge@XGY(<%U?_nsZ$8rNBl@)yXIbxCgzkA{kfVdf(Qi#5Lj@D`6+s>-vwgl`*mkB#yk{MV$4FioSv-o6(NN+txQm{rn&L9aOnpAE# zmU?*3?$xQ%m{B^6C?wy@gTlAU?Z9NFfs+ZmPnE!1KW4fi1{E%0Ykw8noPs?4XfCkV zpOa2AYQoh{izA>M2+nElmUnpE75mguZn~#aSz09v1;(>@3zh!>u0U6VqG&^xQDZCaF69bOP>GN+U@THAOA=2{XdGazd`W- zEzJH~qV>Oc_@DeMJHa1q_@B9027*7-{6FuR30VJh=v^rzeq1KtC?49GaOf5lF4>?~cY7g9yp~>|_jo6-CM)Xal-!-axfD0T$(X2V zSoEuxR$g44%OHe$co!>Yf&H3ze@bREzqQCF7x1)d9+Gd8ndvQ9b2xgc^sVXX_}Z}5 zE%!5fKUAoR(gF;{^W(H+9k;MFPN*sT&~kHh8$QX^GkXBPu_L+3WdjNeT?5 zMQF`F`7Tg4uTK-SsWHy6!G^ccmx2g3lz1|_nPQ$xc7TMD8rMXU4bhVX{~0IPyhy*p zJPm7zSi*yEq}m^+ncaKMU)TiD+TTCf3C?w>x2fBLjZ`gClq5zBz=|iHCvyIM^F?&KI3`CMMZMtZgrTZ#a}^w{&-ew8lcszbrk%l_ z0ipvSt=Kk@9g{V27A{MBH1MO?vQ$YP?bXc`TjFGv;>YGZQ~s(i6&o-C@@zTGbb0cF ztd<|D!EGuwy`J!zY|{1iy*E6}ezTVFztF=Nei=_rH$*@#c;WaVg=YeX3s*}hLXNZ& z;ZkAe20a*2p33-ZxKLJ|G~?ykcvI$UOiRn5Beff8p@_yCq?DeNCk0c<hZ|n(!1*&jPpeDoPj5fh~=)$ef^o&h~>A3=~lmo9*fNt zWF}3{;Y)}-@Ml{N=vXR%FB=TVpa5_+=Wrnv8f)ZtpFx9dzZrTGI0eJyuJU7NcZ?kE zqyQeL*TB=T=V;Ia7WF-i!OmESOAOLu(~~b>D>mDC+Pt2PJS+O;A$Fdq1&Z#vYksR8 zWsi1QS!3Ce<6>^2Za8xdXNqBTU4Ob!(puiteYimp{RQxi(%vR9TiDGNaLiSk3AkO^ zN-CY#M%|BB(n`FKh??!h)a^J@LjO$qN<$6mC7DqCO9ZY2EEik6Yx9M3tPbMDUD|?~Jvz5ok;ZCIL0a0Bn9#!LV*6gEG z45p0lRi>dptek(S9G6}^Ne-e;xMW=&H?HO(Ho%QYYZHVk4o7J@@ECdO*|f@RBvEmY zSgu^@lwe{8eCqoLQttQZiDT76_zc4QhGV6`EYi^opE3Sb+Z%`hV_93_V!1#l7w5aleC-!Twzp zRs~r{uMcxMZ#^x8=>lAUlUhpYgnS||cv%>2TpSDF`tYlw(?(`~83oro=5&~;kg3%x zvlzOR6CnpDKzd|I1LJA&wDk%eoJzw19$UZsn(8M&e7jWMq=^QGJwvfM66lV>bHU+P zHnS?8VIagAPLyU_`KX+qEuv1XJRheP>}S@%sLnjN#ZoiPE(K{hCNDLBeXg{JlD;2@ zrX{&n-q7 zYi*9<-sl5DVSSrgqj~K9+orrIMQq@g8^_}4m3F5Z1*hYx3P*)0!hBeVA!49*wwqPJ zEQcHoQ82*ICS!&UMSvf%F=AZeEtXChjNvRqp#;}V38NtVIxHQAb=0X_zjT9Pexqd_ z%#T#_Kps3MXz~ZAWWHh!b3*?#ROU`|qCURR3e9nk!egcZ!UHZv>i|Pi9Oi&JceowW zV>G*6P4pDciHMjUO$%OUf^$3%VbJ?Hl8@m60Zg3kOHm?FzZn<4vgo%@ZU; z38}MY{)t@Sx2TYyU7N2uGlTD_hAr<(u7HNE%8aF&n6+mMr>vHHiDKR)-6M{ZTl-s% z2XIt-=`9UuYO7L?iXP?cp$VCY=qC$Oq!N(1-`H(U=K({!SQ}kL%w1)7DQ|uuF9f-A zMvz9;w=T|ku88$B4xMr150kc`VLbX5UFRj=WyU)$mfs^1+0?Z|RNQyEx3a9$%*!0= z<{cJl`qH5-&JbzW4f5T@v_FYl+UmXF6}J{xsr=2SQD8aPUV-B21TlY@Q)7ZT*Xvm~ zWt&u0%CO#sSyNK5sGU6UZ6wgQCqbTCQI?7>2}V;%%nG;yjz=YWjJG}_{a!kpKkQTc zdBg7yUzVfaTHqBWAsQJwfucQWSdJ+>oKFLXUawE?H&$M!$0b)_=`h$hB><5RFyM5k z-roRRDEonZwZ)G&5}7w%e*o|JA_QIsOm@Xa7gF1n=j!o;Xjbb?#9)o`Q(^1gY1Bj8 zs*VjD?Rpun$w+r=k-rH1nipkD9<`};Y8jM79Ny`al(Vlq0rXXtM-SK1r8?hg{kVeC zb%Gd5@Ve=3+VOHBq5ZQSBU@irQ1#2I6pi$ zH~;qdwtyiU$q?O9BsY>BApWk9`NWt@r4%3CL*gusjQK z8zyVs-Q&*l8`lnrZv*rzO9TowKefP3yIwAO$#|NhipaHrdWH^xDIEJLvQ^(3g&mR| z;kk>Q9y8cNvfImx?gFzwbo6&I74U(v4`F%13EG_b_6ekD#fja$L0EE@oua?>QSnoH;9K#EOr&BC4aadCZH+;rWOGR8+=^N`BL3 z9E?{$4OO(jBz*_Ln$uOUK*$6#CaY_hG|zUO1I+%m5vDU`iefozq1Yci4WG{PvmvW9 z3xi%LacvG~Aq<6IKSuzFqAUlJk4C&~oR4iiy_ke?z3%nZj9lfI_!s;68=7a3XI`d8LFurj>HeoaK7(%et7c8@&=a;wtX7w!{QU#CTNZ;ydV=4xOZ4>v}Ygon7#5f9h{imi`0uBTH($a05xZh z!tSuEu}=HTO=C>#8*PuWdH(7$te1?0o*dx}KeLuS zN7tb+VmqzXPz$&Xb~=2Jrvl1zmy@o7{T6mE2OvBFXj>*}tInXIAKa-2A7# z8x;?3@ROSIr+}9Rz zUsI|#UbnefA-fyMmZO5rT6*CPLkkiDG-Qx=&{Gv_npXo}qYET2qPN6ILu3NzWhP>;#FhX?OsuKTVkD2!& zPHUwsP4ZC;ob+2NwAyLZkCbr;Q)+LpjyVM8GR7&523(l{*;R$O;Z`+|NRV+V>mHQ@ zF{s$j^CS&Pz$j%cCt-|u_rx2@cS13|M#)9mBVab3cYlYCLV3J(BBj=9=MHeRehp9_ z@hi&UvFQ89*Kp8dj@izy+PRv(wClWsJ4z<=vdIq_{~G4QD-` z@oMa8HR*#FJq^tl=&EqW1}Vy9W?Czjt=8A{$!E7ar=d0zE@p@DIOd`Hp|OeKhmb z?Aw=31Z>cHGCs;g>jFo1C@>bA*lcZf{sWuN!$f@hDcC4#eBRs1QwMk>W)@Y5Uj<4V zkN9rKHFN*$!La^4kpC||n7{0Y|HjW*|0)6h-}Cdo&i%v4_%9FUU-R?-);;)J+4%1) z{qHu-|EDT3>)$=8e^iM%*_i&_D)A83n!_gB{g!UNa4eEc6C!0 zkJ|$PEF%^djzd3j!pGAFx?2=Oigsp&cN)pUI6et-X~@)N7@hTI_d)Va9wTa*r^&oGF=#oNy~zPqKs#K0~oH~`t~c2 zQ@|UeVJNf+z&4*?dMZOckLXwU`oY-sPtn7z1le0d!7)%ygd5Aj26(-7o4|RMbN5!* zAgDVlOgHN+?YBt)0G@=vf#X5yVB@SkIb2L^GkzWePvxAMUE@vWv6Ij_wmQ_Q?RAp) zJw3XVH6KHD)VVUl!TdUeesErbut#zPHR!eu%cZqpdN4W#fQUEMJHlLLE@X=-9fpmJ z<4)xGtsKxmWX*qXp9U<)y^wBVSqmLXvJ2?$&T+5s5+&qUzCO$!VQ+-kn{vPsaBvC^ z%YEJ^g)*tLYwNmnLk)(A-wSH=KjDg5` z(BbL_Q>%&{QGvc`>;-7NM%0!@NNBz>dN!zLlw+4Y5`^c3q5k+>({PxdfvticcW31ccMB{j4->}^2adV1p5SBwG;g>TO#rrN=Qh{i%?Ir@s{wOV zUdGQ2nqp?TtDyoNET=lH{CMI0k-^$(4N945k7#7#fiG%XNRybM<~? z*g}73vTEv=7(%juClbkJ-|jmjj8ESM2G~#aB2eJI==wIRG1GWlh`}5ppL@w!pO<4` z_Uq>*65CT3Fe`-g!==TuUN(pL)L{uLvfSb<#&okN8MsX$;HZ=5>u6rJyNdlM#iLSx zk19=5X`zpgiHOUh+U)~izovcypYyCzK-X((bU~7rO|AFCuJ2*v(d8DGgm5lXx?JV6 zo;E9?UGlx6U+}V`f$roxKA?rBS8s`-FKcy@$0rJ3mlLmReZYzoU#-lZ^YdRfJUkq* zO%Y4w`OU*`@eMCZtalIS;H-}^J}6?ACsozBCwT~(j;lz4`E$VAwoG@cL!%(z(b?rw zeY2zaBN!-g--Fsfbtni2x6`M1+PyNLy%0Jng3bE90g}Dg z*t!~f)Yx;$R!x#Z`kD6WFK(3Ijy7Z;-yN77%X<4tFLcBu1d58fNb?cHxQBXhCMxHF zRXJgFy&a_KxQ2xzxJATBtk+g{)aHX@SmvkXy3LLV`6zegN}#l(33gZ2Rcg_RgBLHf zA;?M43JwV*Z0{0-D#H@v;a~vrClx*jQ${%DFhuZi-jel`uU0Ju32yZ6{Trf8K%UtU zPpfSaIleu%m9&tQh;2hsKM3%HEzyLKKA1}&lwjZ#izr(hodG?v>iicmbszj&jV7s~z&fSGubV*7~jxrHzNwM0Zd+gRm zu@yB05tlkc+x7yNo~ycYyZ>;72uupvB$9Nk_|6x;bSBNWtoVlENrx)xB(D`%I_=V_ zHTXpYjN!B>*xI0h^F%Vr;p@6X92kd4`VB-|C#TZTTcCQ7 zI-xp?Fz1iT$|Q(zIMf)oz6@5)xv;VzX_7&5z~bw%pmMdUrOn5M8qr7sO`cy5XOyVU zj7aTuw%c$!sKN*nAly~v0UT5XjAT=eMK-%V8bs+k)rt_d!>t7}Lc>-_laj|g*CiT6 zbI`ilii5u~^m!6|apww5Pp$h_-ucoRll9!^majWrxeK*acFPjF0p+v@hw zo9%PDew>n&OwPJ#;0PC;`l0{n&x%!^vTNzr(9g>`?14B}MW@Bhrijmiz_GKa($fMu zfIYF^K-2rW@fK6b0v9Z=-5ErW{YGftuafI|IC zD_w(?Ik+J;p%6J3)u%g^)%o?BAkA_JB43d{pfxL!zyMAln=^nXW%7v!sBHj{*|psS zCS7v#8Sw(YUUMsf);ZTaSWzjzlzc{{1x29h8B3Q%T8vT8?`=YS--2fs!5x-Ja6A$N z9#dV$M`=t2HH}AVH-c9V<5~M*6b4uV zCo&5WG?yHQ80qV0A=2)b^5nY^RB!l`K2W(4DlhE>Z2eYPZImA9ml`9o@cAhdTn2FV z%6@KN1{=)WQ+3-JOR#wSOV{;yMc)Idw&6h`sS{V^=KA%ts7}i1hagIj(lupcg$e3< z{xUl(&I#u`jP|GJrRM;qpYu4GvKN# z7<;0nJ|nIQse9H(Uia4vU*cP=vsk6+x01bfy81qK?M+t{f}%mtMLsxM_TaZtif$iR ze3V%>mJKCBjNbSFnmDc@31!bfI+z_10PUOimu9WG#C|Lq*H{r6 z3NNIe(?reB@p{|K0A!k(b2AI{8q#m$(73!AHldcAb)2JwItkmJmsff^^B1$LPF7g3 zq!DL@kaZf^+!%%DB`4ub_6ny=1~(G=lP-*`Y2W4d50w)7P#ZE8qUej7y02S5$)JCK z#NoW!@MvrRiYausqg-|4b+OB3qnjbWIS?A^ds%-MR!s7z|NaKls@hahgDRjTcROy9 zF>l{epEw*2c`P%+zZ3xp`#{z6uFL0^Mg)5n)$oeb3-IK=dfdwhQff%d`I2%%ETP0~ zmw{Q~igL5Ur~&)@d>irw^m$@K`xlDm?SN~Vtn)R=g?*D`0`Hyq|ta$#1 zy7hlan|~|o%lh}7sDEUA+5b!@{dN5t)4-ZrwujA#zB9UeK%las4H3U(bP_^~x-5|z zR|-yq@aX`lZpMF-b|g@nJDz-ZGvi1S8P{9^D>l-15Q)SO?0J2dgbWQ`iP+zr%s_pA zUoDyHcBVWB)O9LH=xT3iGY~oyUInX?oe1h^U(s!w@}#C>54Voj&`G7MTwUdF>(~S- zthrIDyZC~`rYv<^>bidN^6Kj7%n2=BALqEH^67lu4q2-HOmZ)88+MM2gl%Z6C9VGL z?b)`MV0`l=mphP1$E2D9g|8A0y{nb;sm|a&R__CF?uYau;*9m8BRA9GvHCp4%3>7) z((&@RveL2OV#U=X>nil^W0BJ3F7v%ngPWmWWgm>TyuLrc+tqQ=aUtYAxW(~?iyr<} zCsc9t;oi|z3fF@0q4voB6UcnDJ6w>K>`Nnl&nJ2+W^47squfa~nnl!P<(k{$`a-u( zI=7O;y^_K8EgH0V!@_3&{E(y&`f7o?(CYqf!JWGVF`(? zTa9sP)fwjAP=*AB_kr%U{jx4wkGEU*lcS5-Eq{JVRTF2_7}B}ROsFKnz6lu;ARl7< zg;45=@M73|nG7qAtu0(EQ|qGXA1ntsZ`5y*kD_E|*c4Dsg0j!Fr;281L=@ zWY|~Ocw2gSKcS_$v(7b0A+SYxH{il|gI1kgSlE%xbyc(Hq>IFBRqtPYy@QZBD8iw} zQMvu3ySGbRWn`F{1_tBv^Jhr`i$^9}vROZ^-$<@hYB_4bpS(ogA~u4etIO!nRR~i;sY3 z%wN?`4AL?IVPL@EqJKrr_SZ-2b$SwJrc`;Vl0K0DE=0?iNT0!V^%w{o7gy`EQNIws z$!&%K_-U&E%hG~lo;E{K^{|pI?rAdfGWiKlr{oJIs3H}+AkVak^$8$KYp*7rG+Bu< z5xt-m_@@66X1i<9jcF76rpP4N6078i47MQPy;`PBv4Bz~`J` z5Da((s?mKS+f~iisWdhegXHTcOYjH=#g9<{GgWYUn-vfWcsj1%x7w$!XzP|g91jNY zRFIOC-AFt*tY!(gk@6d`I*4~wN+0QdS3>UPrQ({2L-jM#J_wGD@N1_JjL86Z%W|{T znVoshSKfhAbQ4$*S>7R(L=e%Fyyx~UM*9K0Ux4Uj9Z7zp?>;P8Jvi-Y1Og@4@CS`X zCi}Qa#P_aBP>_fpAV7eOkMM6v*0}2fy+~{M@(pNrq}ANK*G(HzavDiJSZ(W5Do3WfItpMbh8N>k%N^a+NAlL2Usy z+crSoTLylcb4@%cghUP?6YAZ{ssewg#Oymzf&K8s>hQ&mncqIb7>o%2Q`ilJtR_z1 zEr=P3than@r&>+B0N)C94t}qse$+osoH>*$!lNK9zOff!tKY`x>G5dl9w(^LfjE=W=8BY*19vS8c@i%Qm)l1nP$db(pO|A@wu2xu$ z8XzIrv?vt)2%)}xQBWX?)NL-*JA*oOKgJ-gZhMp&Q*y5{%43{f@SZ17Wu~^}6GV-F zlU_`zUrZxsZuF`hR3I^YwSN?WcGzz{ep?e_J*8df0Hh|i?YiT9eJw^RT1Q0@9*+c zg~8jlN;jEiqBB^Z7-)??1&_x#5T{3vO=5DN3g5u`XrQASP{`g3Tf%g{`>!^kMX!L& zCfla6AML6}EZ`h!uO5KD3{#^+Z?vb5<<)puyXN}twsv!~u#3udb^!;FHpv`goPP0a zC4G^r662KgoMCEtHfoofv5fVftFhsOHgjf7F)m=E(dE`ra;FcDgKG7TE$0TNy z|av`zJ3<#bVV!awm^L;!ZKTW81NWdQKk|KjW%qcaWHEFD&C+qP}nc2coz+fK!{?TT$y zY}?jk&U8;#uRgQ-O#l5>-tR}&^R4&U_rCVNP2hy}oqGloqT3}7_oc9m!KP9nfMYxl zC&WzgCNx$S`~nJyKhmVTwMFQu#(owm3@Rn&{#sfQ)VvkOKStW|Nvp93&QNm0J#Wxx zzP&*~#VY+Dj3I)=(~Zn)u)F>=0GiTSAEQ-<|_Pr=I!+2 zgr4=G*1;UBR^kVZQyS9@m9HoH34QNJawaX6aw0g-B^JlvmA_>#E*cj9GBTG~C#R7& zEASR9PINXcYbzZ+NZ*tNy6o`l4!|$ybgmAc0ChCML(SDfB1L6z#iB%c$#N$}YmtYWi$iW@nmIhU_kD(Jcvd=2SP%1qzbt%IQMx*7AMGz3tAxzE;-*c=+jH z`xKErFrrVF(-VVgKK%lVnEP!Iy}1X}liu;=oaTA<*T|r(6qy;fhetrpdsnvfbe-<-#KQDQ}l$GWjQyaaoFid~TYF0S*Cw)O8fQpGT#G;cfOa2vjI zq}&RroFbV}lHPHXNkQ4%WePX|XdYUFx3{e4{8J~$Zq$lwvjjW=Dj82C?=RllJ@^v1 z;nVHYaHlIck3&WL7^!5SjYyIY;dvDzo?a{F$y`mk;ZFCB}Jp%DUm;y`PpI-yqp?ZdF2E;AW zB3Z5~e6Q~$tS9A!3_K!%Kej4!r230t=5sPqU9=D_4 zEe$R+K906WB(+hDZ^4lEeY`~CoQgR$1z219^89VCUItx1v zQU4lGPH!|jx!w&12APu;nGH4mX<|Zfy0*s5|A*u)NsBYPfHDTv=@{AF!j{xj3U}v_ zqDMQk?QJLkD=zF!Pw{Zqc!p7lvp{CU3wYz8x2iCo9m$H0azZgUEbh;m>3~L<5`d&{ zR@X`A^OIyrox)f3go$gAZS&d-Z~o{}jrA{iyAv zuUOsc;&N$m)^aWJzkLe&NKLn?Hz?m~GhC0U_%4v~6RcfnTx0 zQHve?pUC;YyMO<=oc}*1Xmo$c`G3R8|9>HJmcP@r|DA#PcL4bR)sXxbL;h_%ezW8M z2N3@oBLAyv?Qcu;+qeDx(tqR0|L@YFe`#*O`u9-c-{%JO9RIS#*@QWou-E*+t2YaV zx15Y1;|GFP;#FJ0r~%9CmNaI-4b~Wzg055;BIVJ3d*=?tkBGd;qjR7wybTDl)g>^y zaYNhwcGh9`@b3O~`39HYO4Uc0e6sO*BU@;nI&ey>qCvjXMt8*v+ATuK*%RCPodF)c zzuhRwipbwCIn+Juz5Ad|p*#+)=7eUMOvtr>&6@p={$G^8Fs2{sU#DL2iJy40L5dLX z=)W3HYjH2s*M=Fk(b=zB8cr%VDbH2xm3qA(Dz-eL`T zlE%%P+PwV8sN!ePPci@P{*!qMFOSbkPY+IYLVA*q{y~{8Pw^aRDQ2mDkn`mNSJhDV zM;YY9feUsGDQ`^zj-L~8R$4E6+|)mB!N`4YRS(3dd145IoDj&{szS!I@a>YnFr-3vknYBEvP%(V$j_$~Fo+?{1yy z%dc1;=qI4;y(30?2_vbeG_XZ70~QqHIpehpX!Gf#2RCf$F6u5)Nsyx)#OgwOWQ%t> zQ#bI*;2JnG$7DW96d06{iU{xlF70D=$0cA?MhKNLzE=&5^#V))wrxHD%Q-pgT544G zCm2Y9)E3MyC7{%|;uvq(lzi%}^2lT`CAP(4u9vX9Y|syLPX_ zr>-_#TVla}V}=1I1R~Pged##E^>nNLi+cf>t^psuPoSbIh3si6+g|X!gdLEVOOZbg=MJra6js7Ul=+T)XvYpsXbR-6^sWxJ4D&t>|)_i{6xht znl5VC7}YH9ITL`jwV6PZj@_K23<+nmagMJaYoLMu3Z z*ETtsGe-Ljy|Q(`C0jsASb_Wj)G%FrjaG9~kfKb?M`)Ei?wD7<#Rq$o>RAySY=dqN zjM3$hPou!o8jC3JU~|oyLbv!IJ)&sfZtvI-Gr2F#Cevnd2-38O1?g$%2st z4$eA5re+~hD3nf5StKBNE6k;RmhQlrJV2ZZdF`qyu~HJ6KtETGc3}|1G49oA6fM;$ zKj6LDd0sl6E;^MJI`A{$o!c~ghOQNu2bNB0jf!2A@H;uc&d3={kJow0@09Bbbai6O zXhVHt^Q=wFdwLfSCQywOxj0e)5{Vc_Ms!ex3n{XsVN*eJ1qLauv}nLk>{&E8zkx0|j5EKvbcWBVX`5zt@?0X}z!b2@Yo8smpB7jbh+~9mDH;+pG0TN72rVkGCxUO( zLz5Pv9Wu*k-$kIzJcY(1gn7v5-5}2fJJ#>kh5F*$Ak(mXt>{COqReBfghF=8QjS`l zE}SuGdd}~zj4)odLpHEZkpiiUSn;P7EjMxGaks$PGFKlB3~IcKaEfdiU~fv>!dpK& z_+){jKm%^<$hUtJM>xCPik&SchLJ9ync!$r3_lms;|H~1W^i18D9yeZhYV1u3I5`C zwL$=Z^%kaPwi023Pw&FRlr5tp_Ye#e=BDi-q~m}%y=MhEOpkJ%ZXp6sKk1zeVx7Zh zqb|>F!Y{&QR|<^b-rTmWx$ApnoQoEj`53W@3wi?yC`nZ|`r?6@`jin9NakZvwW&Vn z^+1P9g5B!a7SEl2yVEyN5c#luwPmTDo}BQax$K|d8_bnAN*gb8!^_Nf4b zddVMOooPcq4Vd-t-`jPH$CPPnux_k?-3->ChWT!R1MWm2GD26Z#@BcZIi3di1lkU) zu&!7M>tM^48Iq>vh&9Zr+N1&-EbIYS4Mwge^rc|pK#@IJnrN*=4Y#i08pDaAItLJ1 z9^V(dw1LT*u&=N44VGeQ*qPmiBK6av-e;aA}YYdw5 zA#~HJ`X&^hLJgw`P<4x~a@T_*fW3mLKA}t6$}qM5xMr-j%}H zUYX{(zWkQ>*;n|od@e9JqW-Nc3zq2pX+ZzH(A-_?OVBY5zdS_9%#CAo%Q+9sMQo58&WBhP$D-n zG81a6_GMn465-43-HjvKLG({Np-c%>oA_b%(Gw^I8VnmNIt6NB@}e~?*z@N7gllNYL(ypMh$g9 zVG4C`HN#rjyPl(Tj7C)R-Q6xw(NHWsIh9q+o6fc-wCk-_sc`Ha8#%JAFF9g~qdd8K6vo}P76=&!;RcC2G1V-cT>7i1-p8X)2GOCSJ09OUU@J>DA zFrqZHoz{E2`UD&8+j{t~s*LsT%<4Z?W&cni{|PJohAhAJ%ztaLewP{j??3yNI>t6X z|F^gLkLUgeChOk|YW_9h^taUfcQ%yuyC&*iG+Y-kbsWEgxEtMq?vOm;>Occv?n^GD z5@)RLt&JQydI?S;Dfp2rB9!l?(_dY0fQp4cIcK_@=6KZ9Xpw`4bsg%|nU$BSqo;Ce z;kMoD+8>9a`xV?%(aaT-J|y+Tf85&{SBDrED<*9oyce>nmlz|p?e+e+=IGTZ#f!l$ zg$XPRhXV0^a`ZDhKa9+jSx;qg4gG$2Zw~7$$$p%VdDC2iQJKE(GDn!1J-j#!6(+md z7PDJ2UH7sdm~A?*Wk#3q?g$P9w{)OGHmW{cy?>S+UI^Qo=c zLan{VRP4FW0luc(`c51whX9kE&xedl$u(VBj-J{GVs~No0dUi9cbf+TF~u2HXSqt5 zJ5$#bv8v5LKzV>ym;`$AWSK=gJL#MvYV8=xXYv{|vHd~vO!Ti1@huTnZ;$i0|v0LaOJ$uHZ`Ul2X(%aod*(=PZ|wb72Y z#g4W)rdDEAV^f{%2d)ilwK>iuqSdb`63Y8Nis)#O1mJn|d7Y&f81mjfxbC4Yfp;Ct zc5l%Y{#K2#QU*OSNtvy*RTqMO)TpA-Nwzkd?n0+-n{gtU7->I;%xG?jo5O|ir@rfk zx*L};t>S$i@sNp8>VkA061-rV%X=^s;FJ9d7ANgo^|4O@w4OfYH&b|!kfXR*_b0g2 z7%+_hcG)r}J5qaF`XK_7qSL49ZVNL<2?XFRFWjXHhwRPoJ*|}QCG^oq%n-P}=AKrU ziCW!VYQxApA#985GCM!h>0S#{1Ij+oRL6>`yUZro@ z`iC`di*?CKE>`~3(C zFG{xrh$hkx%DseQ(_RIp550cL^e?4Oc{GhFM`K`_wT~DBnw~Zo)+mLiW0x6R|C3$I z#s!Cer6;5vQ038w%a6sG%v8L~0qld5Bt3dgqU$G?9X^#0$_BYkm{p@@#~QfmgR;ti zB=psI8Al;Nh)+u+LEBf(nXy`f&19W<044X~$-hlK)yP4`(zw5WGdGFbifBjnbrNX6-hh|+rw6s#_C zUF_}yYz@W)FYfDFO~dicj{L)2EC;y{ft|1^Lnli6dr$6sf^jSn9!E4JDP5ctO z_zPds2SI5y`*{7Al%7iOb)f-EL)z)K1hKx!t$q@;kX0ePIG$dO9G^?DXm3w zL7sCm*A$&(=IOpDUG(*uKP3pN1IaKylB5#@$H)R*evTd?lko0}balvt*%_y9&k~EV zSwlh;iR)0xt|TNIL$#MYZTK^TdhbJ+jhG4>MWAL^1Zj$Py^RN3J=HrX<@nAa<*)WE z3r5uH36hkbR+zo|L)r`VmEAH#)_dIqeO>LkmSqJF)1{%75kerY)o_QXoPShlX`}MA z(v%b1zG%HDkXDeFcp-+R+?(g~AJ6(rO*qP<$Id?-vfE@$AkkNk3L4o%>+||?poQtf z#z;Li-ra9MBS2FzHu}#WBIGe?cF0jCq zZ{VzJrh9N0njg-?kQ5k#B07bdl)6A~y#hxCmue$WgT3ZwF3zfj78mxB^n@0#I$Ndf zi@IpT0UQZ+8G%TEC3WKRv;P6s8uWXR6p#&XZ1Gn3qg>Hg5N=tGneQ7le>&I*SO=w- zfkTB^NO}*eXYM5P7Dgf&69{yRQ+q#sn8!aCUi5N5z%SCl%(xm zD#RX3wDS>c^sZyik%@G6Gw7gup>|j-I5M7A7cUWL#B7{!XKz@cluL?1(L0V2>dJ}@ zSi;29Nah_y8r1Z6CjUHlGkGnaY!;A74*e#>WGqpmFHEmg>HL9{q)(wFtAWG=%!dK2Iw9L^IpJsQSk3Jf1J6W6W3bO!@|R6E?@w%B3kDoew$od zVz7W0u0l&~5#_It*S!J`Q1a`I? zQPj0TE4d4yxE{3Vk$n&QTbp~41$0ue9aa=`^pkrFEMq)-0=DqGz;e)K0Z1eWcy~i_ z77%FAZw$83Buz*TdH_xAT8v#VFy6L35Bd#wlX+DD0J-8R+}_r~})nwQYoDlVL`+vx5XE zBs&_2TtO4_Yi+`QZiAlp8XRB~G}pxNky{2fKak;203cL%0be;~A7$f>02mH>orVfI z0Wmr#BxnD!^)~(_jJgfX#!dt-qh*9VxdZ0N?g5D7GwP71G1MK1UaJo!ZyqKmoeVWH zIl~ujLH@B5pn2{>Ql5aCzN_Jm>6Ojc@oF@U90_n(i2*Q`?*H6%XeumPa4^yR!UHLL z1Bk~d`>tzDzKslR=pcGk;rWTXMy429#2bZYdJGzhP#Jf|f}%iSG6FWHK#>bEm6?@etLQ{Ou9*yiIbtCUOR;2o{0%~`eI_>nN5VqO!egv5oIagl% z+GU*~;dx)`bpo_&B|N>F%9iRV9P9G*vJP4(wXOTbA6bJ0<>bckOmpG^eJKyy2bT`k z7)cJ>NHXr1Q3LpSP%3pCZy6zpSE@j6Tahw0l3zr~h?$r5om9So4{BV1IXy>j0yOsB z;wMY-;%64zYx_$ej)4brfBq31b5xID%)v&lXSU+#3$~g$t~JGU-?uu+)?-ggK~44m z++Krf*%@48yt@d zI78IF3y+avL_*1|{sIzj=U4bAckaL4iGP0Q{x5rEzG=b#*`53EnACqbA%B65fB6=F z+ZlhmB7eCbe_I>>pBNPG#uClndV70Y z`}+NLwe?ACSbm$qwZn7(ReV&_a!nj#b2q8vPW5p(U*+_XTwQKQPsMr=y2jPI5<nXE-ei|^WpW362|9mF5I!h zI?ns6bJ;f|Fk;IhwkJ81*-W{z4V8&x@3&j-1h8o&3dq8fvfaR=6!8rePaplzqZo#8;$z{Mm!d1I z4*5lI!vO-+MQx`V^5Z^`y7%V_M-ugs_aUA8FJjbyL_p2Coec(K)W-bt zvl%_)11Clja_0JZdXb6t2iD5z49_B6FQdjadQS+1m^n*U8s*3~Y$gt_x{iSXqwS$| zws^!SWZ5){F(VtiS6Qe6NOy-RSZZ)gO`K7C0A=W_d;AqGl1v zf408jRUv>JOtyXfcPv^?YW%RpT5%ohia|58vCF+9-=;Q9_0@KktH(q~%sdQ*p|#vnnzrh29*`|k?N4!QdVXf)B-YPPk< z7h^qJV6Yq2t3+VVy-+wnfTYlC-$I0vqtlt}zPp?o$h@8!K-f6IATFdgWPsjuTq+0; zgY^-rJj6=BJniB`Qd$5~uMXD=+d0YxUPQ>ec~wY2LpN{*Q9%fq!_G{3Xi`BdpV;MD zn&?UZr!VGl~u(x&sKhRLKQrV4ox%T-zqEgu=V1$M?j2-s%HI?Uf(#+)d zJ9U=a$2ZI$FJzir+n`cvuw%xPRtRFhD$fT<`pvOYkg|JbR}aDB9Ks}d6AKGde(bBk zo;}h2?$don@7#`*{LC8#5b;md_YO-49XR85D_+kIEK5^*Fx>w06s}-JYRF%VxD!m6 zfdqzjm7qFIg$0Jze~vi50&5UF9i{46IAukGMa5?2bTFYamkjnP1Ky2-Bn(lh7Wn2~ zt<)RO|4vX%pYe(qs8g)dn2jz*0wMy8Dp}PoTh&e_Nc_y{!g_J(J5$YBsog_h zXM7RTGUXR25COl#tk4pFFx5+pQd!~|G=t&I8vC3bl{B9b>0kLNb3}8mhA5_} z;rmoEVPN$TZ`0)$%3i^TI2q4XT4cDJ>+Z;z(*^@f^Nk08eDmwlZGmUS!UaInTqZ@^ zh2~geZ;xvGVcJS7orFjQoSjmppemJ4inJhKt2Mbg`iEgA6s%+cz4{B&$4YWN%SXuI zKbodDDAnHeb;$wwg?{O&hBW&<`~ji^*l__lp|8bMqLnl}W`&BRc#Ezto3Hcl1Bv%0 z(zflrnzHBVY~9BLR~*4;t0mvdy4zplXZWZ-+@wzZpjtLeid0%$f`;j_c8WzyB_sra z^mD#L63r<@78Ga|*9d-HHXQ>w026e`WJ;vWIazAv#y-~I4<=)z8$8@`0#LY!a>CCN4jkFGretFle#yD4&d@=CW;~=1*nOjAGo)Z~QeE`~~S=;^lN1UMq5twiHh$ z&xx@~VWb+*{S1Z1Wx%=yOkg*&29--;PN$vCaj->MnTj89_0mL;5%f6mQ}*>FLhS&R zEDNJQf(CX7~pNmw_ zrhT3rgPo{~_jXi?PkmI#pJmy9cS(JY*ENc9SaBSm2v4aY59pN*a(3U?bZ2{**fBZ- zQ>#0sAHLE*A&tUBQ{5eoI_ho;F{&II^6@UdD6Nw4Jw*U6Hnjc+lAi!mM4CQTl+<`E z4z3(RNFQK&nvb2u%S>Ht0F-tNRFOJ2xEauwx$e}E<-wMDkiLo=A`*lzdn1J#zQ4Z> zjd5!13)XGj9C~I4NU7usa2I1S+>NNX&M*s8mp@bgu<5+`ipQ_EWkDJ@2|6O89R8g& zRJ4jV(rRWqUfh$!aB0+Z*sz-(cPOsKa0xEq;!2rgVO(Q4eQ+_(_#=mMr1^<7mQtjC zA-wq!O#yCrga;$c{d9zVnzH&1-Q1W<+H)${DNXurO+xjzk%1^oh)C= zJ@^LvntG=B_E<(y0WX7bv*hvXh5W%|5`a$V-%9l;;safyNe~6iw}XH*8s=fMQyVg; zPMc(iZ#hAsw-qo$?R^j=6cp{4TYI}n4iD?sCqZ3c;~3J?;NQ(bv&7qeXbKatNEj?A z%50*^$jDm$^5JcACrYYMEC+|KxGOD0Pi_u;S-+}iJ(j}Qyi~>;hkK($jxmh^tf5Ku zHi&42cgk}kBIU3PexUmeLAP)6tL|r2z7=A&ik>d&Edx-}q-<+`;+5;27q4u1d+b8k z0a=1BKQYhFe&6ynHZ(5N-LkHDqH_tF?((A_%1dA99L|H%2B7%rdl}E4wTP>_xm^S# zEw_3A^r9lgF957b7I7~g^&bgM@%D}DruR+?Rx_7L;zK1n`C_C++;HS*>H^xhjzu~W zT(yQ1;XYBXpoWQn2=aMDn@P%uI%@&$&e?}r6H#4lu^Ih~gt|vb{^`GAK$rQcGaaV= z`p=iI9x&&eBkt7}&*z9K9%%c)G=pRccl}p&XJT zoi>@H9Nnin4J<9dophGr?gfA@-WfqDaDv4c5069kzkG?$-TjQ`KUDHY#|+e{YQp9J zf$MtUsJ;~!PW&_5AsHXjkcKOY2ZU%J7D?oNf2!RyUz{b2S#_#Xv~LWS?u{RVib60n z3fjB#T1tT$ae||gd=)XH`qOmL0F(cemv3mPf*w5W4CH4sJZntMyBeIY=`0;9nU&QX zO?uszJ;GTBTVo(o`y$34uxvC7!dj*dYIb~pP{*b=d>?1$2AK2R^|bRu^aLitBf5@6 z)ZBu!!S0HRYuc3yRFys6-C}^IWrOfQ7;OZFyBsG_4h?24dNA7RrPKwXA8KFhHwFyN z`!a52J*D9-cF>QL*nt|3(1w#t=%?*z`^a{H{Nb}m+xC$kc3$G|Lrs!*SQX+%*-sX{ zdPdGAw3x*|NmZY)NC@u@!O=@o4-3_$z2K4X285yJBO!1}2Mc?4%YB93x4&wx1G^FV z48F4H1S83+g}$&{q|TqIg{9UK0+9?}hsK`uYDuC#lV5H478i6S#@|WKuOMLZQvK6K zfbdRZJ7ap+djqREN$<3PghwOTdOt*dydw0^24i+kccN}Z`7Ua_ zMdF`zgDcNmR)lX1ql)f?mInPQIYo?`mm=v%f| z5kdW~xI71hkVmR5s^rwAc>!}vDw298{W=8A0Lxs}?Io1W?L>*($Bd-^u1lsSv>Jp; zS?=^>BM;UJI@HjX{*mfLF(r@-H_cMO>eB^FWQPQJxQfjZKc%I3O~I!k_s%wEGE>!l za;oEY^zq?6r1o~GUFnTeJ*08}~(?ChkVok32qkC%|lwh&YD$LX7)=;rebq**gOC(acy7;%NA0#l+iJQR* zwdQaGFTH*I=KUos$$I4qc`}f(YE?_K1{Vg+1{$T(2G!E+C0QCK-w&5=gp=ASHzXus zm72@|BQYEfbS8UTXe)j+R36Ce!xW_|l3lT@E;Hx@bwH19c?T9FuaV<$Dq}-bl)dC} zz!MzkOUi4O@fm`_96jTnu1`I&L+#yJD~=7Xo%J>9VfWyGLp zQRy``Yqg^C5env!bnprXCr=3NsYbt&j9AAVS@g)4g*hw=>ubX^schN#fg!Y5dmPTa+$kx?K-IN z6qhJ@?a7WO|B(%{9hW5*^GmA zQd6%f$DRAGWr*Qj36|O07K;4YTEp1e23*$Kdu_l)-8IPT^0D2$V}vQV01qzUOcT6 zLb}QU6G+5W*K+8dohivT2=e>b^DPYD>+S}y3T^bpvRJ0UQ+2I$4mTRWy;GV$!{nCY zm>Ya|hLjVQ{Gsyw(ZZ>0thiH)?GA=P;)Z0!Iw@ z!U8zFTT`fWdhvanRrje#-L$OEN;Ukz#>9#hP6sDD!EPOsmNhAI9x?-e?db6uDF0MwJzf-;MX8wW!ryr7%yp8(Yi-yi;~ zT!4z)IBXw2eCHF@A1v$$ZjjZA@N~DsV%#wA_~rbWp{ z^%wEU@(GIepv8csAhYEFBrH3E0cG0(UV)ATAh$}-0XU~TQ*ELuAL3pt=thXOd9sq& z7xF9eMGwi6ub1mMcRo($3Ol*|LKsh{SQ%(e?0f^2l77-$^ShW{}RT* z_V=9p-}!gO?==0th;dY5u6*&8vG|B^PpVzFYg8ll6wc;Dtpdnfkph zztG$rtfr4p4Ituyr^-QC9a|sIYzH$tH@=(s4n-uiyunPDCXuKY2+Odn8bD_9!oAn- zg-r*Y?^$r?ArUbR`EpQ!rUsy`W! zEc9NO;(=EZo_CZ99^A7Rx>O`K=3Dbk{E?#gGEYBLHMhwGc$i34hR<-#p)-@*ihM4& z(aSmRog$6^s%^PB{H?>leElgxF0xEDPH)gCX_5^Ip%HGT3T!Z(Sh z6(%-p$qlI4-Ky@uUvrU!%ysXXa%y3JF)D8G1$xDw^?8piw+C6|;`XTn@dJ(KTj&o* zRTlC*F|WTcgXC*g({&fd)=NU+&bARTws0-A?y*^PEUjv^NVp_2 z865|pOOQc19A9JHI9{@e(IZ(61!6g~eAwf92s9)X7wHt3NWDlR=E!Z8JX`Rv4E2#W zTQwYDCcw}v@g17*f};&jwDOtXmNReOW5B0sjY=p^7O7dkee1d%*bXBOi{H*-nPoXi z4S~*B6Ve&ZJ`0oL5c-F68pCqROG2+d>rr@uY6GU>)gzXJx@ICs#fc1?OqKBJ)xNb| zd?xs=uqe8?rJID59oclQUQ4zGU;j`V0E@VQ9v_R_i_c1U-s|Zus%F2-pAXj7;@AvB z(l?w-ZI6nu$#u`|<#~vU{{DWfQyfi;(c0&tBh)LH4sTEUg^CRCqw+4??pD3(>XnXz zW+>f)zGh%G`HMwETi;5FSNQ;7gF{5^{l@kRPtmYW%_)wyUI5~&5D|-j8XYSY7BI}20 z2MX+n4TT`I$y9fB*JinfCbzoB*PSqfu%0!!d8~j1=tPpE$`(ur$y6bT{F3H(KzYjP zz!S2C<;oz>tb!hCsCF$(xl{f{7dUAf2sEcb+x57j{idQVJc2hchQC_tMYjaQDoD?b zaeHy43%qbVxrvi&-(UwMFc>r}%|~es$I~ehbEBdOW${jZd@nq&Q0${%-8cM!g<$tq z3MuV#guI%?-C#uYB7{=n@3uN%pEaSv@#u0vB3x@v3uhW<^7qZ^ zsa&;S2T|2Cfh#)8EsYaf`zQ?leuR{q(we-VyvvO%1NGNH*Tz#q4?j%c)F-lqSn9dL zP*4=xP-Eylf4n%rV4n3?3}E)C>)RM*MtAyl-9Z59A^a)2 z&PVtPo@Y?4c1r$`0Ab8PS^2?e(sQf4vWqlPbLZGQETY{XfY&FP@lAj8~r)VJPpdZLHWyHbIKS>pW0o-(>-A$R$ z3NmTk32l_{vfkw7!NyV7XXJ6gQ9;|c!aTCl?H+!~59@uaX#_Hty;d@+_Y1<~Ii|tb zAr$m>Up|!BzA6RC(7+tk17hT4|7jULQ(mEE_zZO*Br;AtByG4p-ciQl-q#c)KDj&6 z3W9f(yyKe8FZ?=bd6z_zeuZ(5AaRBW<^#or!4og7FHW1uY2DVD&yHD3o{ zyfXg?5?u@M13>}cl_&o&sU&5{%?>NR!^L;G>iA2~)0+!A&=>n@DR3;gptceps*qZ; z{7=Xz;;Z*xgD#R~!o@Ehfx*%mkPsThn<7H;VW^S2Hp-;<-02REo%4NMY*s0~2A3$w zz%+dMeqGzk=vt(iqK;|)2FsZTzYh!FCpNpN=cQLkI;P=S+t{=X_s7$3crmYx%V=$Z zW(^PPsNGm3a3f<85QfynH`$m{%VSem@%fXV)~(Xg4I4ebsU-M`X@rC0QaWd(4kCJv z18&|)!(v*R%68Xz;YaEbn4&*I)IRiOtU05D=b*F^Uop{iL|>#PDf8!|Gidf>G+oX? zln`C|6AE1sqo5!n#wM!7?y_BW41I-$ln7q976-cl3JRwDpRl$P_yTS+ohX?cTj$kf z0n*S(^Xkp&q$YI^RqtF=I*~<6T9rj(KcxbTN|d9#)={C~{eQ=K4#b!!RV48ERC2;0 zQcs^dO6isMIV$M@#8h*;SK8zj7d|K{UnxD_+*qnkAgS@0+>MTCMVe$ExeJpR9Q&aa;PKBT({TPiVv4Q`V z`T@`dA&chN<6&slRQ>4Hsqw4vSRLb+W7PG+=JL`YDpVxenm~!i*!3s+Q93Hon(%}L zP$;8P7a@Mna+P!B%ap9W}il~IuV z1Ih@EQE?6FON`xPeSXOkqoHa%GyVscEu5_qDW6+f?;`MwV$5nC=i=VogQg@R>aNbA zAVBG&Ni^8n@bur>wA}b4*R3~3iyius^#05_FQfpo6P?Ikd=!hOp-zM){8+1TW3PQ- zJ*Dn;I6~!x9*+rUbGCN?CIqi5$V`a<>!oc-fYG0BINNCj5?vsA>Sn#Yr&08wz zNZGKuA1kq~4SoHo*WG799$U+nhoPfV&|MMR3Vww@RJ0(~JEVeC$oLG-m4qU7`1fri45IDP{!W-$s8RXDAKIiq5M}&Cmddz=y>cgRmYe}r(C!oM`eHS=x zVUXPfo8AzW{|a~V21S{m$XKWTALQd~mK^yZ?5B;Jk8*0zCyy5Os9onmRN{g&HA4*r zq4zzC%3>b40<)z_NgKSAkG&72P}^Sh!C!>#p1fd-Gnfv|?U2onmv}Rq3ZyNS!F!>W zSL{^hHScnv&3nETRh2u>rYIbnB)-23`!#=EUn!(}Qe zuxC8_#4*Bjc#Hy<11}FJqJeZUViX;Jz#!yUF+ZN$XC<6s5{|FnMrGb6cXl=k#tJeI zG>?z3vF#}|ie(Dtqae~mLzV6cc(o&%sZKX^?Qx+}>Nke_U6JBlW4$B@_9o0=s6OX? zxvw4>CwD&;oj{$X#HxylZCpJKc9j%nTVeFx^sP9aBnnLVjCMsn`d2D-O|#7rW*An}V$tT*w+5QH2U`@<7%hYbG$k z3WB?Sa>PftRDmQi8t=Cr(Fvop3O^P__<9v$OjCa+SgM_PsDYV2ss^0v@uAriq{)Cd z=_&e>eNJ5{Vzs`Wywr>mn0m>gy<-JYIYKRoF+B-?DC7#8=?|+^r`OY&?H?2E42mH2 zw1)eC8SVU$vNJtZ#=q~)j(oV?`S4eO<8Y_3%2P_YjbAennhC)m8iJAAY%fOYaGZ_D z7$FADOT*%7Ri6o+A#Kk7+A^DY`*bEO>a_|q8EY2k=q+|u(C6ZvCy@_Oy;21aC zSwZaGJg`|;RnudK(|9gkC)gFu@mM=$1Hd>&E&v>H4uE4>zAF;?H4fRe5&{5mpfiK?$>z|yUyfJsI3?gJEYhbiCL7j*% zJQf8n0MEIs%64z(nLP4*M=N8bb>YUH>sl)8em6|wYkj`%27f7_u#4zU`Z$y}^e6-d z@}V!PEQUm6ZC6DTII~U9!3m_)=CMZV5T}4k!}>dE&pW#kO8beN;)((soj7WOp2D`W zuiqkNp!(gmE{`eAt?dJr|ARv!kw$RhXQE;EO7s1J00mi>uGjN&Ziz;*%`xCEtr1{u zVwZmjN_bS68gk0(hhCj3WI+|DY%T&>ofg zag-E0)2TI7j`X4XtKxOxRT|+@z_!FzACkjTi@$_;MXtU!H}1DTB1BgZnAn zj&g&c%xQ3$A6!>42!nA*x*n_gmQ*r*fqXCgFrzG&-p+}xfTUwxo>85|o|IP0Q9gy{ zKs%rlQpyJDj`!&Ysalco?Kn>L-!5*hQ&xFN%71 z!F0Sv&z%KU6I-qkog4t|sFrW`&ELwnp5ccPnjw8y^(`R!a9rvCBJG``EZwrM-LP%j zwr$(CZD-hy$Z%vJ!?tbPwr%I1Ro_=tyISpYYX9e4toE*TG244L*XUzBy$?lmOpn>w zJ}=0xB?WX}d}I$e#WvVr`rY8we9H?!WUU6>ZNmC~ywdS+on!RPI&s2KNxwA5TJ4RK zX~(nD*9op{^tpT>;v)_TJp<&_Te_&@P}m&;qwQ<=&#{<8$dk`JDJX4ozdt9Fqq(j` zp5)6QFZ~$0KzYL}it|WvB_gW0!rUYI(|w->ASD{(%j!)4PVkgvX?N11W~J* z3`CbMBKA92r+=7)tCtADG`?Dl-p?AAf5eQyyEOk9{#P4eKmx-d!X3f47GWaL>Y=n7 zGDwdDk{gy!VG{p#ov*K`m$D(QDawAP5sYL&C5N=sli%C>URV(0xdj4)5GiE|He2=D zmtwzzWC_0a+cI1m7TZj*%*KNBZJF;SDy1i(_bk^EX8|T1IR$fk`=-|LX}lXbXHZ30EjclFQRg)su#d5 zqPCV)^_U2hr|;w|?d8~mQIldnN!i1(F3S?Y&&2nCc$*i9+iGw(F8EoUXt4+xHc>>U z-V|6Yw|h&-BZ7m(<=ljXI@24|`1^U>s+-<=GQMv#vOc!$alGQjM*RvtmQufJ?g`xU zKNx*E3ErY{X8}t;(BrA8No0@i?6_5y;0HXVvL_{fJ18m>AP1Qh{-pv`?29T!TIjt( zTR|N)1)hu2Wf697Dh*tovGk^UL@igJaa@*ESUA*%7n^3KGS8P|&>yP28>@?XCWIH9 zPaB2%otBeJ5|ZsI=tv`Tf7igmI^GYz2t-f-+tN}M7^CR&7yHlio7?TMCU}O-GwiV-t)*B2=p~aNODfBX7 z`N+h}21%##alLrJEy@c@GDgY~wrvQwKEzFK;N%>Pqs$hCS>{bp zB@MZ16`MaZUb*3xz;}@dQ%t$<{Fp~*_^>h7)Ij0LlK@@(s-n2D#ZF91W%Rp}`tzddj~g}qH68hDh14JC0RL#KGjsgq zLh2G**M6hrmbcqT8^?huLv?^Y;%*nJLBM%A-yObkmXCx}VD)>a)za@cTH|9sUvrM1 z^3MEO6+zx7L9~%XVg0W^2-&qZXz~Z)>52TlUe5;0m)GcmA(V{|_RhQrlcADU=!}wr zmC^?ny>7|k^IA2a2xV`I?~E*6uuR}ZT{9a8t8dg>`LI=%A1=>w)E6A}8?ev3upxEP zY`Z>1uA4PI^Gtf|ZT;FiJlr3fLn8YymUN&{i@5R{ubVV8*)JmetGG1-y(g1%Z>QA1uh2x6b5+M}0RWG|Cje+-zf%t3@x81-{=8!{ z()M=-rluogi8$3rlQs^W*Fk=+MF}`WT@l)&2rd?p$8}n$?(%9`HV{H@T+J13LL=Rn zJ!aN?cGae=y<0BvZJ7X}Y~T~=!;qvyH)U3fZO4fDh;?D0Z3v2rlsnIawAZJC8pnGV zjOI6qOZ`r?Qwi%}Fxz<;ZnBkMVv1srU=HW`nwJ@&dQ3hmdU>tL?hETc7lMAfEjjwk zFa$lrdgi&m_gC0iLL^wHB|n(d$J#7}NhvhM!i+=q$-opJ0C6NGSnaV8wwdk-tNpe( zcCH^a+dy+g=WWx%O`q;`z+90da52Q|4ejb}jkuRg(ks3o za1un-K|-a}1IqSZ<4M9&)!jfbZ8`*0^^Hne0f|}anB?P_ zJSX!;0M+7@QgO{h>@_Gu5(Evc|MD>0%O%b|8^F^B7La>R+hV9x$y1J5e%^HB;abIb_;X$ZP6&}YxD7z7AS}V5YCel&0U+r&ygxR?L!|!b))uj_V<4`!9$ zq-~gej|DN?>U|MHK~kMfwyQnFn6j*?(%vQrZw)J%CWDd`ww5`eS*AEmtJLkJql4b! zH8nq?An>znnGQ{oLj&{MIWM1^8cYH^FE-bfHgjJ^S?4Z#M)BU~6LNXWQoj496cB2Y zYzS?5s=z&%XhPXfriQvJ%{%8Qrcs(8`>741pb6Thp(C^~E@x=AX>)e3sP{yZsJv)e zk!v!XqbunlH`AI{IhEm*?~@?V(MmRY9&&S&hTObru@!{1tyv)wUN}U(Yy}VjnAwDu z30J5dnm4Y=BNXFDPj?0tpbH9ET@L{Ov3`$Q8M6eaYXdIEH1P310m)d(@NWcw$;MX{ zhV!uB+hWJEHlVeAtEjy%ZlaIdACDDppqnfL-`8KXTs>!y8P~+yDCNV z!Y>&wnVAugNs0(!Bfk_6UqhRGPW#zFL!sgO5Bapc!GiHSAc_^?chTWNu(h1!NaU9K zlO7O>Y8hs;`Ly782#hw5XisyTE9iu{DuUR+meQR)_pfndU=0XA%h561r)-vc)vv<5h^2%JK9C6=bbU8CsGU5a&8 zE~VZPFy&K{K1*H(J@HyJH>2Sk?bzucfMy`lN8M&4tA(q@NG)~*FA5C!Jcin$6uGf` z$`k@J$I@eV$poNYd)(J5+n$IKJHd~(7<=5R0hm~bF()FC;?na|1Hox}s9-2&RdA=^ z?m{+1Y>4~?`;%nUtN=TXLvkjm7w;lT;#CwWqKonr%%JJwrGQAm>1WaC2_O&^0@p5K zP6z?(@1ZL1s|p76QTt8qPvPvIyZ&6}InClxfn&&bQ;hW&nGN=wAkSs+OPvQA3t_qp9^Zo0Td?roUi4tK~uP^7*0k?~wQ z9QXE?Ber!-AKSQ#6;yWk7?Yw@DE7%i5>A(4h^G}rIAQy~S}tr{V>ID-BQK_eo~sk) zGJb!^^s$t4^c1+dV)hvytMy!C$xiQ(nMA_DL^9-<2ZS9TT{b0kHdCvI5!1b~i3nq_ zUfh5hu-(T3O^u|V6*hVL6O2)a@w#( z46LTJ3In;=s=UuB?p68HO5dSn2YQctf8BI+fjYfrX#=v zPfX>2y8Kz;hGc+bES|SNcD@%fn*_joPd>Xda``%NViAm0=Zox!QJNlbURld2L5LgI zI7|;NEQ?c}?^&K}nTQjcfV7#3eGC@8LB3vtna)?eyWtMPJjtUl7=LKiZE(WCLqJRVB@6ZppqF#CoYuhY7^dbZ zsQ7)i44WsjX(}=^#wuH0}VgIxXLLWfh=>1HHKR={Ade!VqG#4g2Nf;l0O zch|Wr_Ld88BVKwj0dDh+lp#w5!_7#l$X6`xuZ>U{(v zUGoQv#Q~?(gR~_QL;BTj5V>fYgd>GXW=n+ccRWUp{n)Q8&~!;Olc!hiq)@U=@#E4g zxswgmw3wXSzjijM(w}S+;?3Y} zdYgT17_Tt)5yf)H0=y$SJ&{Rb*wmEqcBwS)EgCf&RSJV%uJ`AV;Xv$S8Q-|S#ptaS zAK(#tk$mwewIiQs+6JcIDXTIg+ubo$Gk+0+>D@>t?ds(iW12@Z3H_`t8kXry8T4+H zF|zqOF_`1K21FM}I4mC;) zdY3hQTX4ocg$+D05$r-&xdcc0rVTMb879B6{M9;R^Mf{J<0L<7 z!tebOTh6^6 z?8NhGFTbWey2>PcJ81fG6lusPesw+e_Q^ibRSwp+&x&cz@++fD%Uj*l^){(l3rR4M zX>_N67|5=lER6uv8HWCh2czO75XA zUhU9H#)t?AQqAoSf(iV#7;GOR$*Jo)5w}z+sf*031oG*9Fwqc8K4S?y>HFNPWT!q& zgiU(pZ(>m#R1!jnD1V&omn2M?ApO`YZX)l96p(F3Z+nFRfu#qJJcw2KBG~c1D6}Z zpyy1tJxH}r=sGZIk{ld0xFHR>65N^xyrUkXrI)1fasSRp>4P#uq>uFv#X98dlhRcx?y@#V_aL(9Szifg+t&D^aU`n#;3OKAtu? zU0Y~easBdz3PL3kaz6zKmPljub;~CYL1AY#wRAm+Ha6jC2El1z&L*)mVCUug<2QJTo`V*%$Bwl^oPZL%SOQARI>p53VQG3vO`}NyRtJd~I#;5IhilOMyaB7vpDdHI#*v2tTPPWw8o>>>dHO z)vTI-TMq2WAR-$XM38wSNP7~jIm-mT4A|iVs2U!ZBYWR({QjBU?W`JJRAGUO9Id1r z_|vJ^gq*`_Gn1DlBo0lw_vYhTQX#iTPPMvd9!*wV4?gW2(uf}Rl0i+EWebBz8z_Dj zAqN!onTSqd;gqTtBAG&et%DXl_Z-HN4YXuU=ze9!=pY=0oy62g(iVB|ApBIRyo=a! zxUzDRJOneOGViDXigN^wH3cTrY`U$Z?cHn%THHAUN@rD zVbw-F&3El1%2R{S@4^r2aLe0EGAR|Pi{(y`Ip*Cs>Y0y(Wd#>?vhe^MYK*^}+Z&O< zpsF8E4#kd?!?-KPd)zWlBH97+MNXvd&!I!}qJJm1tyLPf?14&dL(m1(5n@+?*|e~b z*V_qVWilt4muUiD$bw2(Huq9uSB3*m=WxuMV3?F>Z46?L?qnc*1R;%lN=i0GEOUe{JFJXp2+a&_7=X%=$C6}zV&!8iGC z&Gc*OwVS;QJFPW<;t?1uno~c-(>MVO%3Q#|CAIH2oavCpBIi^~-1Dp~q|Bu1VXX_>-)W{qF{^ny7H)2=4el~t~mC#u+i?nr~ zW+-T&(|zu$?XA@MI%N1a%G&}hu|8Moa?NhFgH+HV)jUZ$3XST8$?fZupAQ^rW&4wg zD~%u&jGR=c5Jia?R?XEb^Xi+&ml&t)X!WT z$sEv4$BTFNwcAeLM+|>dUpBdyLl*7&Rz-8OVS8lremD^90PMGeDBM@S?j}|w_Z~yr z#;t%dZUmqbs)LX2EkiVMiaQ57qf8&iL}K5J-fCuK<-nmk2cH#_CIykfk2AXUw<>N0 z9qR&_Vp2#ElS(5j3V5*j+@_a^#;%P4iW+n_-mh^t{HS9YXLda65DO^0+5}#lI!UdD9hbgaSV+f(0t;hMyMGW%7upv zz&%MTu)%Qk9d4RRCLdqd)!DJTE@>A+M8ZRvt9gIw$CVA)b-m@-;ew|(c7xj|{GASm zY7TCnFk8Nguj4IFm}Ww|(I7Y-{bTW8Bn@t=IxQ~^ZG0d#VLQU?`XO-QWqWPap!(mM zV8a`KT{L;@+9lcB*Xz~+Z4EkKY{l+#K0N;3D6J(&tcY67*Onc3;mG$Oq*^d99IfjP zJs|OOYIQNC$MTL>+EhX0Van>Q5;~}a$ykY-c0qm&a3Rj}H7krn4uc6_nZmRmy0CxH zC6O)u=aWr133z7`Fe52BO%2Svr@Loe287aIV zWra2$GQ2NcT`xU3Hml4vF?Nx+{;7$H@kSF^U0yh(N&l6T2-}6NC|efPfJuL&TelYo zdaO;bc=?I&G=I2|49ja+%)=Q?&@hd$O6ZXR^s78V_u96}Eoz>uT@LS?zNMzN)PCSj zz<0m>0=`4)mF{C8MX6O5W?%c%`zm#GE8Y$p%HxlHoH$zhHWmKwEctwDA3p@|*k@Q+ zle#hI?)8SEzAPq2;fMWufj67F`x+bgF@=RCWF0FP^{ci%@WHCFHU30L{Z~GU<3IQ) zj=#o7{ilxl+qpl{QJe&Sf5pFRr$36Me-lstR7U>}Nc~~l$H-2=@((q}^iR{%UlLNB zf5J*JGqbV(bs_c7jgtVr8b6z(Unu89_17LE(FF07etNbP_;*lyhg6ZO&uwL2S6|-< zBb64aX?b5K0(f#%izpI1@%d$8!qK;SwMbQceW^0NeU4wMZ+DoUNfDBUx3qP3_a*16 zj8OL~i%@j8ZR&Mu+ur9OO^oH!mfan_9j||T0_pOM`fTPDk7n>N(tE$vnp5@bEJAVr zonQFGZV&pTXM`gu+Lmh9U9St&#vv%H--TXuSPI1 ziYtG@dEb+>PgVx%>YPj6`6bQQ`1Q;)NDj(f!=m1OYhh|YBAni4;be&c2vVUcpav2j z47$83WMH+DWT|q-tb!YLgRMvDtcu!)H%JkQIC2guKwi}xgd!WcB}OvokbV zHP*9&u*oa-@xw_%Ff z&kzlouk>TdM$kJJZ_HMYJ6AyqS(s5%bY^7+Qgxdt3eGYN&fdn@ob)H4B*`GqJv#Ix ze>UT{yx5CxeK!UMJWO>vQR2kJ=$~hpH+Hs?7TWo6VYQd{YQVR7V490sNE*FVB_Thn z<%Q}&B#qlN*o<0jI$HPr(eS#|#lrm;kkMoM6zSF#MXnK}JWF*9-OU z`2fb!>P!qsfA>7?0b&FNrv8az9NcAL5{0@ow$oMi2uk7HG%N5MP01|VSn$kTH#c3v zJF~f_5uqf(gg2ZZINeqJ zA0++t8oXP?X$UjX{AwC?m=4tuZmO@vSy>ifpO46Yh5|g@^!jdne!$ZTTGs#{DSob_ z?wZ*u%D3n2F6a4WQhmiz!Vh0bv6mEz_ZH$aho5g)i$18qI!m~gV;rC!$sm6WM9+jC zoD&ZAs`Bu#9?3hZa}m*PbI~eu#k~8?ro?&zsQ?L$;=CC=oc2fKD~AcL23`rrcZ%N$ z6Nbz1h&8jygI(v%5l+0j#LLtD;lz=Y%FZaDC6N#mVlhw(_)*UFn8i%mQ87}TDqMu2|yF^h#9+dy@16``yokKTLa^*(=x#J{{_HdFv1x)5Z6hP4uMQR_#? z{GN7;wX*UYvz}}ky=*@uHAqDL-5G_K8nwD{Zo2NFbUU?cnci2tOd74MDosh3ukn_V zyP93tCn?Qlt;WS~1=ZJOpkQ*ZmM#h$-62kW^=JF|#y%v60;SQ1lLZ0&;M{nA01r6q z0?r@`X;hB^!gG|G&5ciJXDW6!)4;q20Y-K|5L*x^4I%x@+QkB&2>Yl8Q`4;_6l1O- z!qX>Jle-C(+`Q|57yyU)b`@7Eb|4oF zZ~Je$cWISPi^ginpZyX<0Vf5rUMcK+y{Lw6y}r+!<-?p8Mg2-c2)pwdP{Q;X26O@g zdnK~&Ig!fAH?!AKt*SnyQ#T<3Z{9ceIWDSz5oiMc?(@`S(Ae-_!(uJ>E<1)H>jat-&CYQ z6jB>25l=J)YzgPyWFi3M%!fvR7|tW7_M;GG=Ds2@UlStM-piZ%l9YLbi;#YAMTSs8 z8|ICJ#Dd{lARTajAG(ATt|}%d3d^ux$ajNrqV(GKorE;gA?IXFVV67Cg@8v7#{fp3 z$SV;~%Xm2VuuY1-hpU2&m6*Foy@}0s4Uj_XA0KPzNTNd1<)5oa_2>B~Stean7gcI{ z?5{=ZV|#RT2u&~1?Q29W9%ZsAcfPfg%}u5&XM4c2#a!R?Rl~lAtDu6wQUOr(#ANH@SAMyZ7jFiDV98fV)v0gbuxa_V(>aZ;r7apkbdKNv z>>6(c|AZw9I4)U?H)Ja*cL93lS0rb%16R&VDoTv*|4<~^Z{6e%`!bFu>aEclxsRq# z0l9sqej95@u=9Fk(1Ld0vCS+%Zv^U&j3}Z2ysC(x6G)uWXZv0rt#N1;TrpPG2)mfq zg#Mfk7-?Pau6ObVzjv=cbtrlArxA*YgSxyDPXgBTjA9N?QiDN$#Hc>hD*5DToUpcu}<`b_8q} zpSnL;`txj~Q%CRad}WcAda5Syy6S-d9*w zN(~;|?N7PLJbtAf<#ef)GqK|YFE!P5Yd>4R!1Hq1ZS%ML0sDiZ0nLhY0W5qh39(1b0P+-aj|20w2Wktv~`IIYi=)fT=MPBp!# z%fW-jMw!nEADgm^qlK_F!rFUXaioRLUzcQ+mM>3F{h-KbvHouGN);3_<;wJfqu(fS zBEwife5Iu! zQ;eRfIQ5oeNB&w3u|T550SuJjlMCXe;k+Z8?{;k%Dem|7o{K;MX;to;d5rdH{xrQ97A@>(Q$Ruu9jh6(_JcQFv20mDrHPT zO{v{^Ws9wv@u6bzP5@rWx`Yuax`p+@OMkVM+f-KZ1puemerUc}%0~9#21QhsLaA)H zCuooaj87WE*+WX^3*y5%*SGH(rY_rIa9=*IQ!@(~$;0rrEA45lfW6SnkBsz@A`nGr z;>rcc51_~29vL$Dw)!=U{n*nimox8{4UjqehP}Z9x&6^}_F}jvVGw@n?3%Q>Rs{zj z-DI_WDK$Fl81THTQ&HD8a`n{e1|QOp$4$`~GV`g&T~O-KjxyuNpVb{;hMWcIZq;ih z#HFv^^?)Vi82I(dn69y<(>CB@O>w3M;B^fdhG6O(ZMu;}A$GL-} z`qz23dG|NSW!JB6VMX^s6~N79PdjkMWJZRZRUkIGU6aFvw1B@ZNJX4&){q7NNr zP-ORuCJn3V4PkDPRQ*&i$3BCZ;F8fXynT-)aAra~TUefRH+)H*Y4T<>fpWf=vUQyL zU8*q~8WJKuJOe#e*%4{=Ulz2hX6m?4+T3l1cQ*$0VU8}*zY zG!0s*%!}opM=5(XE^j&w?08FN4+qmZWl!A`T~@`k_b8n-}O7 z8wo%s--j-VUZrYEr80dYN%0loi$d>r!Fr%^K2ZA?sKAXb+GL z)x3HcqW<=4u#cvRWWtCZqP_@k*-TePhq)f~NzlU-EGavlFRiu9cow6|hBYOjiUd+a2wl^{T+vX5w7bjCgTPTmUOWgm>a$xj~Eb7RQz}6XtcT{C_q&jr6 zE!qReS6v7vo-H?)QRL?SdUFBZ0Yplsh%xJMyF`|R0O{#!pM@P%k1BsT%gGtMdV8ES z*Y6-4RYf9A94pUkr|#1zDCkNQ5>1XM&wO2kPg-SNOd39?EOcR-_KSwxKF9>+s~_ds zJXkhy>eeqb?b^JsIqzrc9!yPnDs*XF+uINF-DuZ4T;iL4dbP5%ch_uf|2jR|*6+y6 zZ=@O93#Zno*PPD2+@;MDk04VG!#753SF|XHk7__t&4IT=cv+%QlraWJ91Yf$l^j5} z^G@htz)77uyFYwPmSFXaLARtYYxA+h-ZV*WAp1!*H<4qD{KA0fIJP$5JB$dBGRGkP z%`sR^WE2cRrcG|+eJWTIAdIB$485K}A*3tA>vIa61|L`>{bMWs5*gnQx4O#?5yN6E zINF59Kn#hr&r!Ck^+%mXlP4g40Q!Y&>%_(6yEWjX=#MG2)hSo14g2+WxntcnH}^wU z)udr>k`PHWU3t!=r0Z(doR)3;$c_mhg(4ksnJDOl@JJF_9xTBsHtJ1!wAHGLrJR(> z)E)+PWhz7szKN@*K`cYiIT8^wBBi_#Z|FJ1W!9z(gBA!Vh9AA6#2zE7(zEF7*!m1c5iK0{JBg7)CNsiL6VKjde@{%``|6 zcOz`@KDoh$BAGVbP!RzfNFqPjR_S|3QBp5Q@3MiXtKUC97mN}IdmJDY01*@7C){Mz zSHTQJEX<*Lu>?w@8s3+`5qMt@{7GMk66RT^bgq{0)DZqH#(a^Xzzz`D-Vq+o3 z%jO!w&^_}IFD8;E2hm%?#@Z0yugFPm#{~r-0wrNy#5|D;K7|Vd#3oexraUj z(D1h;B_nAm9HfM2CIjA)P%Pw!lNoz8*?{hf6@^BoQbpxG6oGY1_oYYBtQ7sH^Whw43$wK@=nIggE}V@~%7D zzSHsj>RE_94oW0~z@o2Iw`QkkE#qVH;Bb8KKk1RaUV}s^#fHAgy^Y1f3#4;Rj^miG z+5^2@`tB2zBxvZ&3z$~hn44zUS8U-ESd9{4EsK20IwXi7^-zQ69aYxKJ_#5$pn8{x zgn(FA^^Z-d;n-Aixofj(4X_FXLXCm z`7sM3)OoXm936vZ1Fln}_F!T_glkFoL(@kQv;weRPO ziXZv`?jV3QK0BuoojjDkp9pkKd8D0W3*Dk)hVAX1X-A{(L1(c!?wKU`8q=QtmIT1B z@1KKu5W$L1+Ot?Y`eFY;>c2w<=Of}@&lZWVwk}F>P)#J%FT{fa3%VWCNRz1*4nFvZ z;sOz_xI1hRI>3fY-1G=hs~eQ&VWb_Pne-COMbjiK#%ggI{BVpP8+$0YyZshEExE#i zh9zrU__p`Wq1-)uQeJ5fzdna^sN0iF<-_x1RUfFvBmoOh(i0|85~Q@ z`=X=Mn$81A30%AW_`+b^9O@MtpVq#;nX@I6IeD8(^O|p+_qR&eHm(yBKlsZxq+VH{ z*O4xJSxtUb!O&p9kC$SCQ_{eKBc`4g5PveOG?F~qeu)|^g7;^_??chrn)YGA!#k-G z&YYb0<`-wdkat#`pk=L+VzBpHSdzO|k|@VQO+`JWO-T+;*y0%9c^l`Ls~4Vod& z7516DG&G@w_0w#9?XN15@REfeyuTWod1L1anJPtfn8KUEdA=822foj?A-d(v_b_l- zk(|x2QHUQW%tReZ!yel@(#xPKMdccknxaqOq7yp}=g_+R4D)H5K8*)K|JHT$0jM8| z_f%L0FhkI|qH;YR0^qkTu?-y`#RZGt;;(bS3Gf4(Md_B&_)V++nuscGlC&E=LGJ=gR|GR}%f zr44eV4;h!#2q;pUcWKu*S7^r5l$x2gNC4+)e`3??qbXM-?$ZgZ{kzaBC`jQJnf`5BF)Ho2$L|??(L2YP*%*#sb#Nq)9vk~--8F` zj)o{q<`qo+`h~M!dFw%a$50;9bHEmWP#v}v?44-BpDXDoFsBn|_QW*QD7$&#h%Y_7Rsh#N}ng!gj_(&Uw-R%-vrI>&l)+N@Lfo z3(d8G%{FbIrnip^KVc;dRHO01At_r>&9JPwP$_e>65i*rR^AWR5pj5I*hmjsAtlLk zmEx$5ni*WuAjL>=eKW2>FJ*g#&`7p(5*{Jxu7~w}#F>);npcpkaKw%UeNvxKt8S1o zA*||v)Y5r_f>dP>At>&(lZZX^nKi!MwZx%xa4hOklj*cT>p?hxXnRY>TWs3nvE{C4 zJkQP754IRS4XUlboig^r)ZSkZ_@I!kCI#^=pj0;F7)py5PpR^18n7nEPmkP-bq*`k z+o`%slWi*Lxk=GR>tRFT8?1tfu$2Kiz{NTfX^Ma{WpooF=qODfa8s&&!`4Vqo~wEv zrV~rplRC~tf3{Y3{_!)AonLJ|{$&Qe;6-cw#`Cbwp(a1(WyVsk%Ns}aJNdpu>{b?6 zO;jG>^bdL?SrCn$PrhK-o(hvY1aa&Banxd<5ttT-0Zl8Zv8~QB=0ck_>(!^ns0u0S z@ZRI(?Br6aP$IIZ58p~FUFG4T`WS2OQ>JZ`!JoEFW>h-17(-j^L>i4j^nIZEBB(_H znmWZc&Y7)zYSQi#a^Uj9yB2$ubCX6nbQ?*W{{H8qli%!ZfSLG~_A&cwY34$sWuo56 zvKD+9*?wZ0(@q2>`MeLkzUHaVEJ=^&PHI}x3uX&aN}&3r--*b7Ei!pl_^J@t-ExE$ zdQV>r7E{05)kLDNHMSh%5QV@Zc_KB z_h+-}pRi;i_?LvEDAT(iK?Sy{&AR?*XD$oaRy|=sLsUm~5TFiSn;Y{9&B@Ax<8O5^ zmsP%+oY=z1Au~}k%8!x_gc#Qhgtr59C2=P-u(yZ!F5+_+}wzr zjoq+n)=g3DeK&nAXwl#Oap$TDZG!;ipM}9dOlUoaT7PtA6)Qieb*q)qB7fbb?wkrr zrMIl0zz0_n?8>;qbmpCsm~h{akuf71yB_~A3bMx)6m~wKvc_+XY-^ZXMugx2^YXC$m3u z)1D|7n+WOigTKm>=%7!1JLTQ*5-Q@qH*Ot$-Y5bn|qqI<8D%Z9KY z)I207-|q4}Y%rXi`)*|ISCNFk}OVU>*}{J z!qs{`6U4@5u!A|;P?7J|OTX=Q!?ml?ED*cP>lU@isXf64jEy@6>b};#S=G3WK2^KE zR`*xsAZm#*a&y*P0p&;j!udm7=JXf*YV%gue>R{v|0_<;`5!nr=l@5X{O{-f6NC5z zH~w$D!yj^D{wpm0n<4)v@9_KkAG%I|WFr39)M8{JVEH@mPVm?Gh(F>Y|7(Hf{Joy` zuksPDYSKwR*%1DgB}1V;NFzj$>mI2t;Ey>8NE^PsS#K56R9=rhk|)%EVk zfo456Bw`Ak1lxR?|J1IZ{$`eSLLNF`3fn($_&UY%{C%}Qgqb@=q#euruD=!u^c^c4 z1#lVIe4fW*?hYQ0=9NLN*CH^qT*_@B9FNrg2ee)cTU!5iG5=1j_|$!s96Z#K8$QZS zEGm7PSN*&!=sW$#Okvr{iVNA+=`=E;mlKHPi9~WU?d%WmMzm@e(Ok3|7sMTSD3lH4=h|>x}NLR$h9aG`BUDU(`3oY4Vs5Xt0h^sL<^4etA}-AD6UK4r_ZrWI2KwUp z!v>_(>mPQyNu}Y&ZYG0Qc9EzNZMR)n@V%%?13PS)J4lbH5o7a%u_U&+0l}xhn+?9T zSln>*Xm3s;m=*fTo(_ewbm8vmX#Sq{d>AtQdaXGLZ>Q3lcH~IYtrmb-gwvvw5Ceu1 zhq}Nt01+Kv4I`xTy_y2+t7?beFY5Ne9w$Ua1xEP++M9G}eso=y?17$mJ(tqC;h=l2 zFF+sJic4mXSFKU()*_M?5Kr>08^>2m(3U3b`dIXk2v@?}M6#gcmj@QBbO1~J&W>Jk z5t$48?VX?DF^Z{@nZS&0%Tiw)o(T92i!u>YT{Mmx2vs?16QmnzddDKX*u2Kddn zs5`d|(FNK6PFEpESBFrT>j`Uq743BsHq_nYiHUA^>V3M;O>AWro%r#7k(kQo#wE~r>&^t?qxDTd)v?7l4!0x=FGfB(ZXTV|(L3;>qfBP$ z+uWs%9%Qbp530+toV=idw=+E6c|oaCwgi^HkQ5a)rKM>PH*D>DFNL|zo~($9i>uga zh$w7V1r&h~v*Y|o7;Ga(z{KY@1+oz{zY^!FVkU=MO@WHm^@vA|sJ}^O?$k#bEsJV~@&7*)to&P#<5n^{ht{ zqkV?uS#?srD(R$bch%;7P*vXkxPO}7_A#;BWh!nRV!a=Xte0j=z^B_wT zH_!h+l)Y1wU|pKE8@6rRw(W=v+qP}nwryqDwvk~g!}iIlKHc@z=;~4R@B6jay4hpw z`K&qT>#|GH<}t!l21NN**t3&@olZ2=*t=)?`T=l_+1nFuU*2euXIHIl%1%wWd{-Bi zN_IWj15wm-$q#SmJl#{A+u7Q-lg4`0TE^&yhVeQo{`-TFc%NwWBlSfDh|eqLd)5=bg(_1Pr1;L;Mhxmp>7n7P(~R-P zd|L1P|9xyzq>IhZkn#Q_BzU+upx%iXq?>OTy& z`~)U0On%rY;?U&%nU12MPE$4u0ZsI>`FNDe#k;)s%8b0A6!pZhF}B*Ldvte1Ydid` z*~_b4WiG9mU&(%ygpOwJeaC#}CWw57)45e?!EU0p{4C;7OB4y6U^XMg5wi0+%b8|? zrgb`nY2c7L9_?&DBg4fhgTmA=fIyywNvLm|D>)rHPStCL&C{!z&$*1{)(Sf<=)*$A zb=MA86No49I3b<(RLxjHd}|IrRUzZRjdS+Xjx%nW1v$z*_k_kek^`C_Oa5iFlGAzK z18NqQgI!n*ihY6!uaNe7Vr3EzgRWltY7C5}IOV8TWZYC*aXr=(Jf{TKAIUD0cN`lw zw=vxzi_xl9zo9#pWV1b;M05>v!fC)bAX(Lle*SAHnp<7pcRzuHNYU9^`-@ERj^Fah^`#vj-1N?X^I-A!D(g8jN^-6iQsDb03-24VRIn;1T~8M3!OLgmHqs z`f?qk`l_NHE2$xX*(dNQc%-y$aI_C7|h-uYRO|DK}b1Z_4j-44=Unt$@hJ$jq8c)=8- zFfxr6$S1uAI537o>)Ga2S``jZXrj4=FmoyK$$j@F z7{;_=2Y|d>PM#YdV}$X|ON2c<7Iiy~saX^!itH?z%gD#wMe?VHG_qo@5bJdi0Bs&` z3p$IwXC}#>1e?%09Dh%4~eFPi$(<+lVa>&qe;_K@Pk`Dokbv#04JQp zIUN!lfIvg;QpiBQntZ)MA;x*pbUPm~K+6-RJ2B!_VDl}EVa5TvDA-~3pC17G&IM8d zP&;&A$`km_p|?#MQ#AeCn4Att)HFIGEy6IKV&e3^3p58H2?_CNV`zjx5&c|h*x-sb z)5-XXXu7>uUPCq)lX1%3;l!-X$O&;>IX4lKfZbQslGC11&>lg#-j_PIoUd3J4mib; zyxy+4y>JD*wJXR2P+(PLPh4Wi;AWL2NDaIURitB>`b;8NyPKk(y z(C5Veb6i#$-$F|$RnR#43gW`kEQyDG*>KBJ{$RDCcA#o!GMymv@6#14F zR&Z+kAi_0_(`CoD_fE@pO1ing2#BMCbukjcf_8^GzDX>tKvO4FnU6kF?{_i{3Ak>O zXJ9QJ@@{6j&TeX1BCoxDNa!?%j@Lx^2jhlKn2{)=<;*B9$t@&0P&1nW;S{WH$I0~E zOId;XysPcb|Gp*Lr)k!y-Rh@do*0UtE z+f=CKJS8FV;}o<%kuauu~lC{aOIbjf-2M_}hAZPio zDnH2(83%V^22%cv$z+<^A=P`n@>G3WcgoN(c;I)Vm0~tf2*WX#n9c+2;YpbW$^c=K zVjieK->bw`84LeQ`RPUB(;1q!T{$ER-$Yn!4G2G=ZvRo8|9d;mWb&p({ANF(ca)f>cnC6y5^!s8Nk$V)GrqJK=Py%h#b*}o zM`h{=^|g67F+8r|!z+$gt`rvt1IX?!1!tkzB9M`q#C=sKq=dou4KSPECz+YNTT}?Z zD9FIN$fE!>Q!R}3thK*898LqKV zpleRG3W`d&%DLnYLI7=J=_+aGRQjVOnIHs9QzkUg6cr1w?;7Y~bO6VOP?&N9phAOe z;7$(8`5r1Wcs~x0w&WwbMvvfnl&QqML}KQ>!Vbpu!S_aGK$J*WGG>;&+U|MwrcLZk z@7A)Uiy%?(G?m}sCGBdN371^}horTPnz}(bajL8b(%b(S!4@%)R8!Bv~sl?j@slc}<@ zqh1+RzdD|8#Gzb>#G<}t@DgD25P9oIrtVC_a=Rtd9vIbbpc}DAJ)kpY32EffUyelT zMoCaiy=ClPMC6>-Y);kVRGO$yLyIDD@LQ_5^a=c9w&iB7$ZRH)E<*L2XVqSLAOK@R z(Vr-M^T@oHwi$@XQ_rYT@b*$|+V8#2PHFXIgUNM{haep||D@&K_ELH2)Rwk@AL8@N z5~*>B>=+4y%Rs=Zdw;UgcT8JTjx}bJ>%LvXQQ}3&P@s|P<|YN!9dy!+d-nY{mGcAa zHG)&s%|c$dU71laD+FOX(x1oRf>4~sIeNh+@xW6_7f9b!hsZGFr=i#u#q(e1JL*sP zsQQ>x^N9V^4~l1Y{gpB$>BNqA$?3tuX7lmw&^*|QbBWvbl#Rkk_v%b(Qc|M+1+bF; zEBR6%U118Uk(kdl^UA)HF}n~=REYzh(S)} z6r6hfW$UuAI5FNsu!gWgK<}Upf*VfYYtLAFadR+tF6Y%Yj9b5U11FNW8e2{f0JeoI z9EC6$O%I54Co~Iw9Kr7oh#s@>(_;2tM?KVTLwO8*zzd29@go6{VGv$$8vX(pCaHcF zZ;l^ARM|e}leN{W6v)me@5-vESywu~X*BT$F8Yr`pt@$8Q;HYY3X$%xxttxuj7*w3 z69-Ogmg&9hQ%4s}tLoR|dI^tvo~}n(Rq>oh3s%^CCyv2N-f}sU6ruhjQKB3nE>~{! zz&mN7hxbf?2||bhPZkf!@jKn(pI*3m5RK9 z^cDl6s9jaYHrVC>vcqLUEW(RJKWZ7BFgp)gpVl~yqMRiE}usG8?L`Q5Fn zyri1<{{%Cy*I0}3MtWTWp3LDT`a#Uv;U1kknAqgr4*uB4Ky{6t{r`m){j0U>Uu)67 z_bmUD7XAO@P5;kY^ski*|FRU~{{nh{=_UM&TK$JY{R8g)nsNFcK=;pZ?;kAiKT@=e z41Xn@|1D|Rn3?}mN!zXYUoFtrb#t`Ym8h~j;iFt~DM@RTorWh3Qb+X{z~cMSrxN=# zlpbzhJ{|J}5RL>EWV$B|!Vu;FTLRBvS74FDpM~llM=E>0e%jq{`&y>xY(FEbhR<#L zgU4E!pjFPZqZ}K4(QKQH+W0h~kWRi?UQ6**@#9_y?=*v3n%lLF`}X^}h=ZWAZn7(1 zoVmu{9Kf#T#+!&&dw92L5UpEPE3Ma56+QV}WU@_f89B8*`+$XNQoK3Mm=PH^Kr3$>lA+z>>5D0KpQb$AB3Ik@WfuhJzM2CZrxtJ zE#}dxQ60Ks8ou6vvqe;Ht%XzOcQ%nJ*9DD51Z`_9Ye1V4!}-bKkb#Q>Y`M8(xr)>6tMBz#(SIbE z*cmHDN{g!s%N>|97F)&LL|k`U)pTA@_(r**e!y0gF(^DCz37ukeBYjHU{he$2Xkcpqb!O)TgqO_XJ|M(yw(Q+gm6Es2P!Y zd-~#rDl3m7yK}X1Ww250bF%V`vwMSz4Sr+a%AOjIEs#f`?r9r&ZiDuzYd-L7E%&oR%XL$L*735Jr zE;N1)LFZQEC7X-*G4L{60B+8zI}P`R2L`;Bil>TSp;|rld86StPPJFQ{U|8hPwDdt z07LB1jj|F{;{0OLkWZ^8)PcxEB@Mdp#>2#udcvd_NhsyRj_5wS3V^C_A0rSrdT50n z)1O6&z*K6`r}OVz`fvS)hTmt#ZbVMDdyU`eur;x2& zE@9Uo3+0w4CY5eJQsTwo>-=Qu3mz6gft+f68C|>iaLjhrTdq1=iw~Cu2kXG_Soy_{ zlX%>Paz4m34s%3^xP?S5g$$f+)VGnjd$@D#L{ivLv(OL-k<^x`%HOa8DCQ`%T;LV* zI&oh;hao%pbM+hXOEc8NTxQ_v%(alSrdKQ;oum*}N60d=jdd?3Ptxi&eLYI9!+8`@ zfyfwaHkX^?eO14ooJl4KP?GUK_MpqP-Fih}gMyp}yEGQ#M{O3xiZmE9KepA(8H6=JsOQfmWkHshe%A+a1mY+RETrE^-UR;2)K-T@ z3}aIRaOO!LA9O&}{dU@DyI*pO7_~c?jLAdJaSWfsNwe=;xO2vyHNIHx10YdnRslYB zKP`af;?m~Y0p~-`gZ1V1L+^3kw&XFmEz<+XM3WJNHXR5A9dNX5teu&pA|&BZG@xt7 zF-{+?qcdLQgP7xb0ZvNZV& z(+|Yr`Z!pt879|%D}m#(o0JlQ%l4!M^g`>-16b@X3a5Rw{0%q9a84N;TR9nS?)cISHZ&kvA{&~p+9zJ9X{&zk%S=MWP* zA|)1bGXbeD76#7bh`p`C!BXEI81lODw14NlC3!*b>qhZzNS-m(4*MC=E=$*knfD@5 zCa4CrJB3BoRgUIKvuCu7YEc}TgLS4z34kINbf$4|$&4z!`}?DbYS_pTf$mkw+BYc{ zD`Tap-?UycnvOxfI(7ne3hfn-ALh&V&?LKurxX_=T7tMs>g-TtbT9lk+wA(($t}&* zy`RdDJMJubYE42%4yP1_?C>aEpJTq1NP+NTdvVGUAJC(snn zn)a09$4>hNqy5RxPgGw&&(T*#*NQ@{2q zQMZg`cxE_l{gnth3)AeEOwVYi?s_a$KfG;)C-pc=hYv>iG=Y@frW7RPgXR838=niC z7hbehHn^zBBl^h4wO+v@Vm31}1pdRbVpaJsE(#lFP zokWJovjn4>ja~K3u-9=Y9#A%;S|k*m+rM<%*fmo_&Ge9$Nx+dGb!$}XDnvBkxu-qX zek^O#OC_lPDmnE5ibHnmeI$UHP0-Y5}&HFXB#;qG5dkN=|oIb#L4RYYfKjZBN?G0A7KP1;puHqdX~aN zAqhe@v{A!6Cj3^UZnR3U&wCDHvmi(|GuuY#HUA2a{bF$Zq zQhR8U^-uTrbNnVm2Hkxq9NhS$0fds-&0Jid^m_Z^4|!n#H`Oln*db(6NMirG$&hi` zJ@~tyHJvFyur+MOl*Q!B-AWh!UzQRz(%y86msVjHHqZEes?IJP8L@-oBBo(SpCq6Q zj~mAUW1XIAxM!#KRJv@IP|F5M&aA!&N5_M3PzU?SfF~eIevCvHFal~GF*T1S)y$?*T1q; z)b5`{yuVnBqf_ZHYlWLxBixa_;;Sap;KU=JA3h3hAv2QZm9Y^-Z3B zy*^td&zT4io5qRkkETtP*6m3_#JrX$L-?PV<1{^Ib=_DN=Vhx#Jgy>Kh+@VT7gND4 zIf;xDX}!YKJzhiCvxJJnbo1F8V>vQtI8zUw!s2+7UE_P~b*pBzVf#AD<{yxpH(gH( zb}@OZg18rZqnS9)5B)BoW~SWQ?tPHbKQt^n{pIn3%r)cZQ~5ZI_?;mN6vLd9-+SAs z;vrhgc4*ZRMt53K*aWRP(}<7`}U(51mhI?S5SHD0WgLGUBMR zD}4S}gbQX-|1-_RtgoOwZqY3&p&?5YgC<Yq>$3#giquGsmu8&ym z$N>{y;H-p7s>w$y=t;S&j*bnUWTh~4UzDjTSj~`?4cr@ZCx(MO3zYP{x&gTOlA7(s z`i0pWXHtE-fh*Iy#b)*@$N`bNWB>ULs_W%ULOSX9OQ^0|ot8)zgta1$|B{T}iqZIQ z6<)M+_O4SdCk`IT_MQj(wnzkvDKk??Gel*{K0`}p=vW4|v?(ua#H};t5d8{(8NvC7 z_KNn<5`$aj=|d~P+aVe~Z&|L6yxE=|2O*v#4K7!r4vVG6IRUEv50aO!scT|-a+aNH z-A{DI!wj|mEzTJk{^pnY@7vpdsm}jPr2bRNi;>~)xhbfBcUR2F@L&F%KVsO#*7$F` z{MX9=-tQj@{V%foFa3=FG&$fevizT{IDb*@|5l;@hpPNv_-U9q{~Yn}&%aN1b!+{X zDt}j_V6SKlj9{;Ch0lu2k+QrjPOO;dm#b{Unt^FTY9}kfwfkeL0gMOX$S+h+7|2(TA(*Cx;UtZ;hXevxrr(8cjwiV?h*UU&s%w(WbWB*x|x0+o) zovKK->UUA;<5Qm1SXJfQbfj6k!R^P(r|esAmG!lj<2u@5!}i_rI=RZP(AhXdReA$G zY$*-9H}clvXURTQjlZW7iH>o=q+EAlI{5Im){;f5Z71J3F?+ic04W=#clxO#4!UVA zpM&2;-D%X#eK|QJFHw%gw_7_J#zo_}ni4iKKj&%(xxm*5^}@0fOcV;)8^N#Ii=xcZ zqNi;SM{|(TZ6#Knf79x9ktT!&zL~4Bqv~axE7TYeYP9@#ll(@SNRKVL+h0GFJ$7gn z3c)7ht%Lh%7%j@YOOURL%qwFW-YOESw9R2jEpK&3Pk|uLZ{4XCAH%zDU2;6nZt^iL zgitB+@B`6wK7~lt>3~C&#o9|cqTVrmOf-~Bm<6WL12Tew=4J*eRt?FBrTWx(OCHp* z3a+f_k)RUNt1ZB7Na=~>eZH9Dh2g|(4q3JO+LtntNSKD&KkdLcQ$rTPYDBnmHUeSZ zmFH_T%rk8NZI}I4;i;XJ)FA)xfUYsw!#6It{YanH4b-O&{)lhW+IDcar>c^n2$at) z&PDGvFYb|1;V>B$yzC2vx~(Wb8}UyBiG;&k?u$fUT^mW6!(akw+TV#je1*tcCTAH` zc4{b4lE$n@KEf z2$w(qWbNHM@bm8V?!K4bHKLA`yD!CO&nzOOm@X3ZL2#NooWO-o3UO*+V?+i56%%)i zpDheN$%#S_ZWkVo&0?t0_50$Uj=k#3hP0L!)ZJb;!GvlHeca>wG)bh-r`}1{9%1(5 zqLB$q^ptVPjKrHeU-<)OOhd5M8=};BF==%==7A`@sA%;Im2_3%Q-vl~9j`s$><-(r zFHajah8Pq?Z}#$pg1@dnQ?QN}9MD5eFU{OgpS(P_UxJ1@BH=XX2~ZisyK|@j6y6wL znCMJsoR%vwz5H0xieSbNU0(#Ge+U3K5_e__U3yz#IuI{V{KvyT(Qdk+3o$DO{po&eP;e%}8GXwRDz{n$1eCkL zMr@)-3X`29RX_j{aVEboqMx~Pgl1uVV-VE2O{IE+BKnE}Ee3cpktm)GAfAvWYV*Yr z_1Q2=a;GHt0SuJrkX6hSYKWwY17LS8!hy+N$eMj=KS3K*Ne{^%Ai^t_BKs9REF=pd z!ou27P6jY+8KMOR$8lT4g!PSLF66Jf&Mv!-AbL}QFe5jFRrlYo9(KfO-N-AL2Vzxj9<)_kk&>FbbheP?A5uMW( z1Sv79iarBu^36D4B38b5c-K~N-h7!TUWJ6l_|<-E{gpE~3{Y2O^CLlH7{D6mD8U2` zuqlgmSc=&6jePU z?iZf8O?U~>PcGnt{#P1?y!N>8ZhB_&W)n0K>8gA!>oGrEMv>!m0b!D%HYiNWuAf%$ z*H61y?|XvjURmmvT|ovqOeXy}VPSNruIE(W3kY?4MNIAMu67qAHmgTnL|s=4W)KZt zey}7efPa2H-Yq5CDV@oGlTvsPmdfC7+Kiy&BVB-_r*`k~^xqt$4qn!FRCQFYhvd20 zq(!;F4C!j?>|v+%Yf0>S+wfoCt)G_ zQv^%MFB6LYICb&40a|n&T{vO>@R_Q5OOPf(5&l9EuTbt#*+f1t;dbHyCGFVFJN`M{ z;`?452XYFf9rwXTwz!GMkUK*TPFaEugo{cJ-rodC*cHm9>bg90G<5?GF-AC~2_*xW zl{2YWO`86xzW3EtJ_@iybk&~Rp>LI!Y4Kip+w;8k_HN>HVHb>mVq3BhGz(xLJl6uM z4(G^OovzL-lL#n{k8hb~73AjV7*$sQElVS>9Gwu*?;-Uy`Yh1~Uh6sWJ zE%8)I;rC|ByW;uLCV7??LGdi99!n_yN8?cr&_mZ5Yc}sNDYIHWIrw2P1_kve=#bT& ztE^585cKR@SSz&f35~R$tNoxm?Et4qcBiaAk4TsQo0-MaMdCN6?J#nW4#jG^M)kn( zfRts*R2IP6qKja)_uFF;8k$BFPXEw7V`Cw~;+=I#92SEjmEM_B;OOm-$BhOc9he() zx*96;bD?@`)E_e1n6&q2gLPoR%gSMHgas%1sRwX6@b*#w+TM$5g!GwiY%uDhXQC3b zWL%8Kh-SiQyeX@-5E@MBnL*eq%*1%wk%)YsA)S17 z3Nn583G@JVdM@B@rwnviGLf@^0I*e{nElmzv;#oyxW*zK-Z>P-=m|LP3Bj^^7^!+S zn%}QQUX65lv_UW03jQ1o9 zcN_~P-r>$k+U&zjzsivadh$qDKdCwm5Y^C(|j4Nnq|cTQq6q5M`0tD`c^^&Ds6XsIu;s&p8tf-EJPzgSAHHnSLi~?d3Ro%nThf?L?~<5LLt;9k!T1^KR(^1% zum*f`E&&7f8+%-LpcOzST^RY450uAT&#~qb4o>NMb@)NV;Z?%>9vhb}R21%vP71LGkcJ9@o*` zq&N2s?$uZafXfh~TRiz!4Y-&}w4_gfvuU}qRtvJ&6iY{k$_ZV9@Yz6OU0%%17lnbq zlPV~6CucXlJ+gh=> z(OGS;{9Lv%Pw{1D8RZkZTD|2@=J#d=<*wT>T~!&atavLpyVO~eYX_g4ou7KfVyeyfIhYdf)FBrh&C8JN}wezYN8PLm+m>Fx#Eg zGSd#d;{g_Ya*%75pUv4Ft6&hx2qCjTJo^DBc#0wOoenGq^kJuMOm}B0FQ0#1782SE zS!w*e9B7EZC-*8(XCT>}iJawIVjt6rJXW+0N5Yr#;WzONn^z``h|KyRoxeIoC0!9&2pai|6b$ZsRq4|gn4xSl z%oW#mpqIAUKnlAOTHPqK#MQ81EdA(}Uzx&nMHL{q(1}zYrfkPCu&{h0G(5bl(Bm{H zS;tbi@CWtlK!25m*cm&L4R7_8SIyd7&209nO(pJ4&+o3P;HEHY!$|OFjs+_L%ilT5-!}Sdi|YU2j{gvA{0sj)3*-Nbe_q<@ z@XyHU>$-GemGy#K-=UfQ+B-7W5^c#pW0KV0`*I3Yo5hQH4%MqZ{*=}bKq~I?ka$po zTSy=b73Jx<1sOkDh^qSe37hur==8px=hRbYX$>!(znO}1&bBa7le)~bY3taj;WzqS zX1!OjnrSSm>MSqW+qjQ7CFy-SejYIVQoAeuiIus>#nk?ExFqH%wRa;mL;p_H0!!nN*ng=uIi}W{CRIeiPYUvilqv-YE|hN zW#b#AmS`ID?&jpIm3^D`l(a zSMb;JY_KDNN;f2KX4XyVH)IkIDdu7yBjembo@5}Slz5@k0%xhf=yIk~4mGSuL3>KT zb%-BF7Q|R-H19MvvkdAQ5VNB3pGk$D*mNKAUTVKx_wH^QXu17hwd7@HWoipd((|I` zq^tc4GO>S?I>L3TFKVl=yOEI4EQ#Q%%&ZZZvos(lK>tyD0W6JR z0QL$tm5n`yWYF-PbM4(W^^b(j+h|+KaB5bWvTkvPmQKLYIrXJAUs;DS(;+D29!3$r z-!}_I948yG(#$PfS2-So(bRQw(g*9akz7V_2Dv<+2GVo8^9!s*ZJunh@bE#75^uwJ zt+DdE%b^iCNbZYv5{Q|2wo*hlNXeQB6bN7rf{7RlK#W%0JfM*TlvUBNvyc8;EA1819IC}e4&2jk{F^W=15H`QGmwtel_RuhC=CpLPq|P+zuQP zqJqS%qG*Oxy=rUK*t)^~NWRltb(Ov6e=OUuqe{>;#!5x5$V#3@knb7P^44TQYNYvU z0xrwE{q>TQY-6s~h@P)|m`tz6NyxK8pD(iUaNv3BpZuF1Ab5@j5*Nmt>S%Uftxl|5 z7_Sn<>Bufo(@L2xqTAR_?|r`VS5W@D;f_kyVC~vq?Dkvh6{LFL`o*CuC3r~EIZXM( z5RUvaIa)Q+bWC@+7ap&V-{qo_%xm!Q1GFq2?fW|alP9q;NGhe z7$Sl*!`uj*K8|uUrF}Z9I_U#8w)c9F7vLiC`Or@7^%?GY_hNjbEEEv~*-9{A+B^## zvXA)0A{?GN>Z8*PG};}byXzlaoAqS-T<^+q8Xdh+Wf`s(sk0{46|@9aJf5O*0xW&Y zq;HW87zx(#_yrz~3|w5h1QUJzWYQoiLF`hmY@+eLVRL3L-wp~SQQ73CCg#rRz|iMr z*_9s$4Bc2hZd_xqY>4W+gun0Q>&uk4G71@aa&g%*Qv^;wDoXs^D1dWE; z??sEvtK3v}c43ab97s{=n=IpK?mV+CGz&PqQ$l-tEYT|hb)al z%50(LbdqpHgrd$_v%$L+v|k^{<`o~L_jFg9&Dv#d&4_CYLPWTEU^hD(%uQg*m=O_w z@ocIBhSjw18;FpKNxexf1JUFY=uLGMvKkZ2Fk6Ku+5MUAS{KM^e-0muLotbKQZQI+ z*=Ydn_C=Ks-9|OQ059?27>1E-mFUA0ea#a}kz8Q7UIrP+8l>;8_IYfKL;$t9xXrh> z^n!u7+%rsoQEIW-RO5HIyBc`i)~;%5NjLTkl zgX8$;?j<-g&IdJ-m^3Lj+4qARcji>a*88Rd;m)(qD0oU1;O}9vFp#~e!5@BOJs^n( zk4>NM?0|KYmhj>$#pWdm2t+G{m!xJ#odg^>GeH6Qui>%) z647N;F~e#!Rcu2+qJk7bK{to=YDk4p2z|2myVfzs*6cbOtkU>p9w}-s|Iq@_>heQz z$u3;R9#^S&TvUSVjSK7;V7$|F#jU zVL!wVuUHE;r%Nu|;KQZnNyxG#>fl<(#1%A2LGZr9QeRbt6EntKJ^Lz{RvY8rsS3UX*Lj6)Y&|?HE-v*XU9dMmFox5si!fv(ack zwHpIjRBlblLkxr_?#Eqx{`W0_*#lXw{%-Fx{1Sz>pnO^p8ErF%;u?q| z9eb;3K0u|Lc%cwLGKlKfDN@mC?6P^$cmihn+N}H2czH9f!DE%+?O9g}zg^>czRUa_ zFZ6QLaZ<4dg2sQKr{ml@CIPQ@%aE-BaQHU{PsmSogozS`sV_gjPa=^mRIvhRmc(`F zL`qt%Q4lhvYO9<7cpjE(%P{5CQ39QRK0#>(hTFgpE$ik*O_ErVb;J(cX6f8Qu}*Kv2BJ z+`E0i9u?N>#PUM@Q9TWySRC-4Vdp z%Z)@_^J_#BjuaU7Z_?zNa-OYv?mm;Cj*MaUBQSpFz2kT78aaL=$W6!cN+P01q(m@~ zV03gMpeA#FGw_k87Di2!7>=sz<609DLpd(W#7hGi1NVdQqW*|EHYk7tClJh`#j|^F z^6ta0ExSEI=tpv(Ve_9`rtoM@FRw@sCpHv%2~2-crtB1ur4!pW>?gyxDcx_+`efpA zST|+V5sVwc)ZY_-xgp(;hF%m^2RLGS-<^RssB|ySL&h9v>M;dDH~QQZwht23RM2A0{Ua+{@4Amacys2h}6ds)nXQBM0@(A2&>O9`z(f z^hhkvpE%5HG&80;jABNe3RagEu67B@V6i?RT#ZqqllR}6;MbP3`aZS0%>vyqy3GRG z#9$qC^pgq`b(KNn+K3fS<*R6tCoKvA$dV!V2xE?Pfq5Y~AYPlg`^qP=9bLXLI3D=M zIX{0E)`I~6s9pa3d%&S=WS*gXeZ=e}hY{IHj0!+LMRvxPhLehJ=~d%!(Mb*}_|iba zmTr~RpV3%mmc~YthDIN(yf_2L)=SXmmKB;ZS{@Gd>(cngZP~+FY{Rc_5-Z6*X@^G` zqkLUkn44${RjExg3HwFYW!{ncJq-pZdsH|KmfN35Yq4dxzZevd!8jE)jmsw;n)6V= z?5T{}oI<6wITVGD4i8G4R>%Pe&n;pJbZlBjQ^CXka6yki`j8)|r{6npqg-f~IS7H` zqA#R8{qhKLJ*vMJU|O~`D(15m`ONVBmPfXp$)R1uqhUFg>l~m2zb#C@>d@ij*A56_ zF=K`#sXW+4Y-)pZ(^OL>!YT&T3bJ_ydn%nStGHCkOOe&ouJPVy(F+%O_lo5k9?do* zb)2D2d+14ThwnPk{H1z^##5tsW=)dML`!YYk)Ag3J!NsGfH;Kv_jtf{&(rX^e}Jqj zcKizDF3vE9^sTEpQ@Y_VC`0bN4tURH|{S7JYg- z9{#mIw7L$VQqon-Jgg`X|LGZbl$v0E@$F&^P<~vvKrZ#=YJo+lp|uctn08b+;22_OfI%UGh5``)tt1 z;S7321KM)49mXaudorFFZV(E8jsyp`{Q8OBG0F%X(*=CF z%2v7x0YV2Oo5{pkx3OEe?~ph9uEp7WfrMEo=X4nazd9ptdTjvvz0-ZP2`8Vs;+}ZmD`#12Z7pTp@LN)(3{K3fZztSI!4F6gD<6ohg|04kMZ>QP( z6~z2g(u0G5>F=lc8+`d|>f;{_=dW&*|6xM^8It+)#($8d|IUA~v$FiBPLn^C22Ka9 zsDCOA=Csbvp!z=-is8>>7S?B)={uQy)(!(&&9f?KF2faFpLd>d07w9_P)xj5lhBcY z^bz{neNKcrI<)4O`Fo3!PWZR|oKo8PWeP*t2-(3Vv2>(pJ$ zJE~Z#F`31W!v zCuDnC%|w&{9di}d_yX0nrQJs!sBF2Ef$yO4ItfrSfWtgb82~v6%UpuHwR%Wf?U^6ot8$C(8v8MIsl77E3rzV&1L@K@=y^EsP_9 z{`RBHSrQ-@lMV)2DgA9Iq@m+7ipF`{Toczoo(QcOpgos9#`G{1KZ#ItdDQ5gs~u}^ zs=D6wrQ5h_`piT;6N_;&6Tw{1@lzhb%mF}Ed^b3vw%hlMft4VMmCM?#tq{yn1FG%!&z^3J0cCxe9Y3#MTfwM!Nx{&P%9eoc z@-|sF6$DVF(gUpU_g|X&rX89=j4P%A3ApK2f)qYeW0tuI7Lo(7jE=iXs_G!*Bv?t4 zOik3K%%#E7M$2)1dLvT}{NO}XtcU=J4+p^>IHX{)ziSkzx*v%btn15@3)fj=mHUJm@@(Fc+oQVQ>w<CLswz6@@WBI_#oN7exx1N=}C^`JAahc}I-G$)ucCOEEN>qJ*9ajH1EvhvDUF z+L}@SL-4)4eKJ)CH;l3+({=U>b2<+wr`)@&Z--q_3#^U{3ej$xe=;lEPaCK3gRPf3 z(4{^Qa1Bg|mlf?}w--{o=UZHWjZS|g9HDhAMlS)en>x5T&Cn^q5}ZuH-~*Cih~*`Cy5r6ZSgauRV9Y$di-AvJ-G{ zA;ltCAgzw9Ov7$k;MbzoQz@wSjeC}t&JwtA02k|Z&t3>^X_8aUJ?D_T*dxpacgVte&-+B|yVn?PpOdYR_Vc|uPUhe6^TSaIMbdWWZh z-hVoeB)Z_?EsL1^B{^`u9cPrI6PZ3tP5A**r%gfGfK8lj#)5qv+9i~+L#NM zC|cQSxuX`D?^9=ZHN|JZKR zB$W?C#K;!V!m8l@lOGbZY%4`xlUeRH3`~ml zf#G0jVCw#a3ZL~}H@TE;wZY3KAcc_9g$Y_(2HuQi!{P%LuR!JY=@I{|*w{I|zLJ?j zC(k|`XGOcCJJ&^YX!7!<(78Nla_9k5y7)7MS-OdA&x%SYhp>?pq0$0X8cIGPz^q*M zNX1_NmMA~hygV_JGnF}l{xwacNeZ1~!ZifwZ-3FjmNH^vN&zWCc#PlnR8Ed^$yDuo zq{)ypFHOgiOO2hBFsFwy_V!|d$lodO<_%|j!hpox%(#lIhmM%Vd+lE!at9wWOGaT0 zUzKrclLPPJdnRpKnBI;?)~psk?I7sIOoR~5SZtaJ!kZ^{z>h=LHV%e^Gt+L!i*!WEEbCiWedp#oWfz} z;c~VYu<#l1)Cj72{Zw>4&~hn)gGNa(U=+xZ>=k&4>(Vz~E{|S#aFo#I_Oi%MaQ_t^ zMK4@kFu!0jiU^7rR(0Q?LLc7Aa7>QP!MK#}t*x6aZR;(j)(Di169sDbaK0uF zmG>yMMeOb07Z5q~HnZ7EI3UzX%d-!$vJ45%n)=8R8KFbnB%PF0yu_dKmYN%RAH>W9 z(rvh!%jf*LC`}orUG-H6CuPa4+cID{>8e#wp#?S{sE($da*>DpgA%Nu6_sc3lgJO| z?;siaSnMz7s3dxae(b;K^=_@NMWY)(UaUMN{%e?2p`cI zJtG_5A-7dH0PFN8_-v1R10{?&As5|GeMlHtUwSmK+74A}ENtN#v=kBYSXX!BK1ggw z5x#t%i&QRKOA}V%Uax0`71paf0x#%I zUUrGpL^5oMdwx|+QPb5MGW0Xhzng;H2}E0Hv#o)+c(RlhcZ1NppQ{3f!+VT%fBJ1`C;0#BhrMt1Ll;=yB{?O&ZRK-e!Hj2$W4a zVGdNIclO6hNBpLi4p(AaE^$}o%#j>b7{QeqELcwmrdbO;FbUF8erxFOZ`rPA4gRuz z=H|Jl!IrVWu`I6Td_}UDS@tOMPtI~t%%;f;xL?L{{E!ssQAHJ5#TeKitY7VLU~y#0 zIpsS-Y~pJgtr4H1p3*3riOKKHlYCTu5bYA>EbwK3su_xBlq z9xq6q`#fTp4 zYL7?b<32KoD=1LW|J>tI*%$25`9G{m-A=@n?I6Dxqo z3i@ovq0Z&YK4E6Kk8oKu$5d>C0+9N7Kh-q|EdgCF2!?(fL+QlyTG4dUu5I$j4IOlw z^#1c5vIV*3D9cei3e(M`e|xeYuRV1SUB!@Y#v$CAS5>|zosRqUZ))ZK_)FwqblcT9 zO-k9gGm7%%5lqU^G^^ryY^&1r-Lx@MuynT1Qdv;7%JO{uHC&4z9Ct zwWMG>;5pz0GyUjakOAiZUOf4a>-c{aPniF&#gqSd@_!F;{A=;#e@Slq>r4Ni35|aO zga1A4! zM3?co2iGs#g34-!nDimSs-6HNwlcq$uSY}wd-P*wa2<uz&%x=uJGsP`x>lgjUD7$;)A09o+$US`Gg(p;Byw|6 zuUMuwX>gYL%G|Tfml~~9L*;%^vl_jnEL|w*nziN;k-yE`~jpn8@ z18+AZkqS_z-hwUPK`eU_w6)9%!RzH1v!t(Jz>E@rsClL5oX}A{4Gu_9_xN8c(nX#7xp66-534RlOxbTYf9_@xY-wB<--;{w z?1X|+vi@~(#_bk&g@~6r8wXN)?P!@m6#W(#Rv48g$uyJ>yhD-Qe*GHgl-Gc5j z)>}ZE-k+lFmq{^j(pd8ACc4f&C}|b7;g6R(W(*CQ;X(Atw=K^j5BKu} z5MGc219@a3sgxz6GAJgqMgbR0)5&wM$*ZmuhWr$dny1QuZ#ihJCxZl#p-mAI*thw- zEmw2G69xG?+p^NG0h*J;A~os9>A?w_!ruybK(MOoBLcK2%qy1m7vw1e{hn0#>&L!x zCT5P3CJd_K!xkzPgB%QSh?;u@;}LHu(8fl#`O^4mzixE0fA$tiI3o7=ZK84&+NJjO z&Y>K+lYJ#SVaolTL|9bE5T*>Q`=MvH!JlBYj}S4|0Zz)A1CKjIVlInoD@3-mRhM{H zB?7o*VK^eQO1PI}_Ir%ImAhGqJX+kZ$5c=BeJwg0Au>b6r5=29Fdk{){;mJYk}22U zgl9WAVHPfpr@Jg~2u6DdvKP2j_GE#jQ(o)oLRGoR$ri1Kz|#d!PX7})bg__q&HIN( zIc2k@#ir|_^Tv-b*gm_h2d}Dop;`*(=SkybFN(vr^Rl`Y^3@Bbgx0nGuY?aWcm1}J zr%y5024|duNOR~*@Gt(Qfa(gmKxJeeORkdt^Rz!BQJM_kIrlB@)ZJ= z5W*k@XIy|CxYM$dN;Kb4wxXHAem(+r6TQw7U%&W~0x4tisk(v@$4z2_rUXjSWkOah zk9FCaIvAqEJaLRCj*z6=9PkptJQ2Ni3ens21q5|cN)1%3Uf5ZjOfiKw;oXEHfgFn~ zBxPGNQINv29M>Y))KQ7LBB}~-)Ps6*u~{xbvTqE4^4-btew(V3k_;YmW?-4Yfq*%s ziAHLbbnGSv(LGD^mFck*a@8lzwlSj8p2;Z|y+j-+Ko3}?Kdmt&NdpC%9Fj=&cDXTm zHVP2VA)l1+VfM$Wzx87H1=k;Y0RiAop3nNlAtkjg+y(GxL_XAAH&3}Be(a$PnMznp zd^uc??PQ#nF$9@68%%SOj=@JrMd^Cb*MlWO2a%7fvI()et8%w@m*EP4=e~GWwa%jA zXi)>9Ae=T8hb=+qLdKT83y>`W&CN;`;0!o)R{8r-`4GzOvwG_Z7COXdh-lQ_%dvWB z&O{^7sQLz(NM8RfH84rYhh-Ubpoz_%_neuW^W8qwBWo7vYn0t7h#?z8W*PcSuyY|( zIe`LV7GN48K$MzMelY`c6;rB#eR%&x>W^l3`A~DK8?$!;QZYde=H?E3pE43}IUz^<-ElpqbDpoqg=M&zn{>8;U13*`tgi3!1pJ z3kpH=IC}%q#fiirS#_z{QW*BRpPyC_giBu;bxV5{=pwaXC9F95&Hb#}Cv7*xACC!( zzCJ9E+@L)+C8_IPV`raxvYmBUK)^rsR{Od&epc&O;DvIEOtLF{kgzG}Cj%&Pi9ekr zPQE3O8MT$YTG6{h@^i_Bn@3*hWdT=AbPE_9Zv#y9v32oi9ME7!#@ce zR9$wsyF4GTZ-6F(26Bwe##5KeZ!BpDsorAgqkx0;ppjH96 za*n?jB1S0_fRZLWhCSYy#yL;f?{4rpg4xdhFh%G8)1=!x=Fomllr-eeidg6 ztk@T;vM?tY?Sv&56$)NZxvR6gy}C90^bsH!?*VVRdiOv-Y8-3%)p{r!8{laKZAcJ9 z`8HBs*M-?BEjNa_tS(X2=BHGR?6lHG4$ zu8V5BR`P*ovIK^ho;mS6uw*4=EAf;jAj^!seti;XPhv);=mpd5zQ`3V36XYH`fkl; zOy&&mZVZL8Cef(wH3@^HSOJmDwqYF-NxM!pXfF|+)l3tCXgXN9UMsbjb`u(0lcKH% z64;8Q+F;SOReXDtX5jt0**#SXB_scFX5_siFFb~!<~$;!9YEJ%EPNz0fs2_6s_F%+V53MWCSu+6VYna7*I z<*KHy?tCI>2+zOn&b{uQa=y`9&V>AHy}}fJB&N3ky1Ueocx9!|$-V}ExTYs=G1)C` zm&o46(kGFe3_1o$yzEi^W(tvvvK(inSeZM9msE(^?a4hlZ;Ry^p5|e_l6Wz_8)WCs zWJ>kf-DshnROe|zW%#D>!)i-uwI>uy>qtN!0t9o@&W#DmYEJ$69@|il1nsQ^0`EGr zvW%w+Oo7bTfn$g@5Jr>wjh;xk`5iKqm2%IoPIyuHdxr@Fgn(r16bC&t<>vHi-hshM zhKVv|gT`gz5B8BR#y&H2z+$Squ;~X1JiDPo|GFm76jCY;5X*3&(OUjOTW_M;lll2* zcOH3~DQa-p4~*Ipd_4qj^kaSrG%(jV%)pP7=|WRefaePvB4%WPx2C^TF%(4f_=Ps` zy@30j`|8!?#~QoIR55_DX#zm*^w=cb1?zNi|?Q0}?JO31K_e%N_g+kPOBm90P* zX-)V01eIpRL_6&1@3esZ$i%F-I^tk)oY7MLU}&rqPRI2Pz!_%OT^hnP1zX?d=Ii1{fW!f@q)Gn_nCA}|-)^45v^ z>9)tTly<=*h?0{qPyO6na~M7Ohf7RqR$wRjSR8l*8)M}oMM|!H770=Z#?2nKyS@X2#jt;Y7sUTM65^Y z=&ECqRP0;e15ar-za%W>wwhCpKB`6+_eX)Z#}nYW1js%#Xj zK!7wT!ck#D8yZ_e?9W|^dqD+sJ9jit)SiZcs8Jo{c^3&7FfLdw#q3T=cW_aalN{C* zUym1MhEVYfW7l6!9CxTP4IQ3+jXcy=v7_Sx7zzJ!0sIIX?%Tn0>USoQ6Txo(+kMz( zh1cksOr)$?p`zPf|1|;Bwf@fDUqDM-o!-}y1jb~6cGrXm)eZ(9dHz@sz*T^U zfIfwK7aTrL>)O0srzF!v3nGOZT>#pS)6JHgm>cLQQzH!g*yh?JvJ;xYIM2+zBkfkr zd%X7uu?ekM&6H$KPdWWbN7(~H%Z-=bME{#EreY-E274Ll^^iTb_cGeSeX^kfzu?>%4aNizC8m#z#@m9<}47EQhXb*HQWPm zF+8F0ekD;k1Dl zdb34qvo!yplM1ZR0?yqt7M0JPG{`dlE0Ze#nObW3sz2#sM~xC8~#4&&BfvMANEx2zECu*OMD{61BucJuXaz8RQi@GbC;V zLHLl~%#tiiGzL9QQym{f@G~GFA}!Xd^z;WoH-293e}y&v>5Ba8J`Lvoaq|Cvu*Uzp zWAoqiUH*%}1M~lQ^8XiW{2MIepZwyVT;m@u%RloGf0dEH6_x)voXpBZ#QGm%&EI^) z-#3|=|5J(iH{%cg!boA|X8X4n9X9o}Q`U!&{g>-@blcFK_@0S}Yh`GhWTK1OlLN_j=kqQ=te^-8SGCOw1Z2TPOqr)&9q;G)Lwl?5*!iEI*jK(^hm%cp zJ){;EiAicxTN@Klm?MtNDI&yUe=a7ipWGE@78xDBX15*}JyOeBl}fNab{Ial44^S1 z4?se|G$+9ytcBC^w?oexgSbq>T_s6aqhd|g42YBFn!trO90O*jGpnk@G6OzYDew>? zc~QQWY>iWigcs=ApT&(~K%lkQ6d)~gC%z9T;VI3G{ZdIMtz4Gh0R!AD9r`Qxa+&pb zvB*E+5OyGN#1zV7@GJ%atZpQ<;b3|biDbqjg5j0-2PAyDQlY{X#$*#PO&LrO1uG{K7azxy_6~?QzU|$`)?bx3bmU2WHR@e7eK4tVD0Gc;vCtAc z@pGJqc;1#EmRkPGbWu@Sdxki&A4v^=c+Vz>n4u&sEirF4L?kA3nZS{dAxZSXk`5wo zo~Xa61Eoj-#pnEl{X}7-Y9kptO-5kNQ)rR#M5KSd%N3Jz$+%z|3Lz!2Oo9fIum+K{ z%$I-DBKZl?giX@5r7{r-WzP?!r1djyVwL{tk|rqDA}F?Szy#R`G8_W&#U>1{6BElm z>Mz)F1_<{Yw-JL-*Ym_zka0UoA>a|wtFWH~NhpEvh5Tj-?LU2{e+`qg#L3ZhaFMk@pd_UVs@ZkI!R`=stT0b{U5<(G6yErM`cdN86 z>e1c`>(6+v!v8evTqAz^dpD>Ji)O^$x{iP+fw(SdNd_(&(pKNt`Tg?H#gbC4#}t8O zRe`xBn}GFgt;1LxHvP@tS2OOmVECjqh(t+|;>gl}0gZFftA8(8$Ck4`sKR0R%H83> zCWWuy;9)$sAic@2yC?U)!>n_&aajknxSA{L2{aJ1(4oV~M8yQf0TXdokhXdJ8&IDy7P@X)~beBz-S+s}WM# z1{$5h9l%_vJMN4GC!;_h<%Otg7WI?zaAd4WE3nVXnC1I^iT00uDIlzYT6<^VHM)=cV&u0KN0JSyJJvBp}nQ4|LD(SYoj;X4@wRQ2|=U@!QUR5BLhGP;HcE8(s zy$w#MxEfa(@MGnJ@Bier%}t95b7jNnM2J9~BcJvWiEKayG*)O?t(1z#aA{cHk$_a@ zLOAE{rD1}CCY7ju0{I`ff=p1;fW;no6{^d#7#&aT@!Q!e(T7mdR)ngMv66aEq`3u7 z7ef(G1?8o}rlQe_<>k0huB(LVX~11bzzFf1C6Q5%72u{i<4{4fQd7nF)5;=9s4i)S zL9-9>nv3u;o`qj@jf}A{Wj4HBH$tILteAE2i&@?^fMkI{8q0(^%(mVrkAA4ZSu)3A z)7SLUMDWr-c=k61*5ps{rj3idO>}~h$WDNDH&?WNyuqjls-r<9?Wm}o(fQ2X&_Q|% zTF@}UB!F~ww*@T)OG-kbI~3wm>*I_thLa~MckYmqA2c&gH8|h3+St_mUf(^;APwl0VJnVrr7Xcb29uV7=S?IF7I4lqGI~|G z8b|g|ldpdJ-|AnUolVj2JB+U$PnR5@&Ks}ibsjmLs;nguKzJ9n*4Kd6sy~YgF|2`rRojy?Bgv7~e=L0DdFU*U&-d4A zy$9PAiOD6(SdD~!u#x}}_1LgSl@Bfub&BXIW?jRk0<7}A%F_f7U65O~0@5;<*VX;H z`7|O5sRsIiQwl4Q5=r!IjlGYJ33g5B0Y0%MwwpUc-bomo1XJWp%?8lreS^+l>uInI zkCT+&rhPo=yULE%t%mKA#xcf!+en1aYAahO_0t3!f@iLo&Pt?@?3{4M8;dJ|D1|4n z)>V$TyTZtj;@on$DWhVq%D+2W`2?MP2)x^?yNdV?f;|M-ODOV`pot zR@gchckGEC5;@yJ1dPd(}QoW z5|RQW!&RdUGX!ttE;;%Y@Q7u#tu;=ELF+2^LpVxF$VjnlD&*hnZSjKlfG-;}zw>9ktJ8 zo3hkBU`fi)c$rY-CCXL9k*`Qfs6YGj zM1U2MMoK^Gw(1_wi3fL82uj;&r34gV=RQiyjquAZM`KoB75G5bl?K8wc|7;Cx9gOc zd;r}*;AxM)^Bj6h^DmW~%ta9>xBFT>`bs9j>*;p|O3#hfrJ#es$QLDDyrjh74tEO>n_+ zi;%mno$LWDX|1FR5CLs*H#Lw?a}APIdt+W=oEvvJ=t&al#TiL$v}rGwISAUiqg?{; z?wY~!+7hf3MqKRkW%XgdCZ8oNsWAB7Mjo(kqC9`Gd5oPrY&<}`YLawwmBD5wpM7P) zAJ*%$pFqoovUbmOeMUdAHKV3F?(;XjEd~)0HVU&s4{f%Q+=e$4D>|uV}5nVhwCwkHB8f;Q<7HU}b z-*ci3>nZ7naL6+SXh8rZJo+Rz%4J9}jaCB;R&1FIj6N;owG1?+0*uQ(OlbwOZv_#5 z0I``T6_m~XG+-CM*59%`l9WV2Cl?py^~}fFuXN|4P876qS_(eX-~bmG>xmzK?IY&b zAl7y=vbds*A4}p69XJK#{lbXVfq$?Qe6rssOQ+$Lh_r^_X2GiGGnv_Jblwn$75E^n zDq2~jWYbfwuVcc*P1Y9z8qs!}QF;U}_ryL9GQdIU_HXO2P z#BbVtPFg3@D`j>-2Nj`V@qUS%(J`g(dnFU6=Xh&xP+iFOVr#u?@nTjmXizW) z&;oD##9Cj(v}&KeBONrYPhILnQo`m!>U~%7J%m<`gutJE6dk>EDPh93u_BiGWWdoe zz}#*#FRLS2x4J%U9uL3DB=p&G?SGZk6v_&-?8KYP7_e7;RgJ1XSv89s{XTCbV;gPM z;Jny%J$|M`jB``$a!q3eBLSB8IzkJQdV3$W;yrX6pJQcU<4d;k+ zTu)(pw#f0;bx5}{%dk6QvaYRAFVXUW8`O8^Oo|_zBS)R^hwzC_O^?o=jGySarY1(OXj2hrY6380b zlF=i5ZKIt>cXhvqV?Al*HNoYXi!4A!)31b~)3pQ9GXmH$ywps4+eZ;YKL$&_r2KZb zx1({tL>XKUUuhm!h;_kh(`f%S4b`ykbL!fJTCBXl-_a+qZ@$^N>5s{L#@9~P3vyR0 zURTRX5gaCz37b~kcZQ}1w;7LgvrnUq<%I@_ms|<+^!&JbGDn0u zBj)`NdH24aj#lfYBlnHWhS0;Q3W;1$A{$p9k5<Oms^j!;y%XZC1NQSFS+ady$QtTaZry<`3V>IR3Alj=!B3|0jrpo#-#|_)j>&@;{>+|HK;q z#2x<IDhOhEUDMX%vj@5_bF zDF%aE_W9taMSrMNTnlWC+*p{-MjfUg#W$7zSSDYpoi_eedT@hSiQLww@AsvpVbkrh zM7f@m)>^=mY8ea2o-Y`gij5iM{qqP7ootpn{vUyW;4rLy`Kd9ls=SjOmCzIB974K9 z>~o^to+gsYvrckO?PS8MHtBrRW3|duccJi8pb`pL+Ii9m(&{!f3;X8CNTLgs^ehAl z!C$v#blgA<+A16L+KmC$*KJ{{Z={^V5oJG2eMZ$r^NGA-g>M!>)o|A$m;8f+!Y)Zd zcPjr*bcIAC0m|kcJkLg!w4d+llIQ~uqfb?J6g3hnC)FVDQGhXIiJKOr+qGEIdC(6Y zFY|`Ys6*wJ$U2$3N`N3bv&fuVW-3_$DD7m99-}I!2WdZ{fpYuwGd{6G)W#ko5s01x z!=&ygM4W4bez-Rr1oC{mDRMCLsapDA`=JZZmtiA4L9oe>h2s8v<(5grH?5u;?TN{i zE0uY`^TW)bnY8aQU=9YcFD`#MPNJu<OkxeZ(P39%C+YN- zP2 zwtvv-xgEMkTCouhux4eiQ)Si)26=+YEYUg~rkDuakeK>Gho?N@y0Y<#%K-J_4^N-r zlWm5f@G0A1JwP2)g@acdUj?+RiY`PrLP10Iy;Q0--=vh51vLFl#yo zL!RswML>u*mC{x!JtwFr))0OKPzL?vTj1bZc->9vBikB-+K!XKR?Ucn!LV+#7E{xE zvs<DO}Aolr%3`IIhqQ|RNlzghS7e%qe#(4Ba9g)M4o%?DMX?b~;JaY&23S-lp9rq!{ zQBCCTly}*W`$~T8A3;sTsjk(#BIOIpSh_?_8QpA#P6=d(&QD%8Lb?Ac0$wHIp5qM% z6jP9Yz=wJu;A^eKK;k}BS^Gqd^E+X0QsIo|!18FfPZRRm*x+w;Q5PgQYM-z4V3;`h z;hH`Yb_#)-KCbuxiHp#I4TjmnO+JR&A0fY!wHXH6So#`8$icVy8)^#q^`}%pk3xZ4 z>jeTC#(v>LLKYqORl_)7Ui*@JQXmhs=lUPTLO`kMdWlXS5+8_0Z?gK;6UI`-?uh5L z8i*|$LwKzqp$=HtTkZ|F=M{=PJa|u8RW(5exYD#|8gyKr^A0ADeYducp!BNUG_& zU1YK$?ifE7h49Q`YfSBP7!~!1jam4K=EOK(8)~&I`4eX&8q1CwOV;$;S4`{E` zUIlzc6~~e!I<1jY;{GhzGswdI0*#u{GH|hnFHn069GWB`X(o1WgoP;CRP#Xl2YZs` z#CMjH(v`Ma-Y=XVZoJS$l@6-L8%?Q=7;f*jft4AXw z(L;OBBHaE~s2R>qd9JM()C=O1H6P@8efrB7h{`xFtVM7`)q45A!B}w5x7)y?lugEt zeVaXoSovR0g&eNS_w{}!@Yr&&yQ|ruvSgEE%1oZ3PY=jMu1h!y7@|lcLnGM0aCXaC z!i2l$hJW(Au~@F4C#VJexl!Iz4s!Jmff2GyMc2aj@cLx2pdv;|Tb66V`rE!E$){Py zR1UW@rb(^FM}0!H)F$uxF6#%U9!+RM3qqKggAF+u42l@aLu!oTicjbs$+7|u$WA5byw=tb-_y~^H-;;fqnbeNsBctV^7 z)g@`;&oxS>U1=G3nCXW*f{A-~*@u4Um=Kzu=_YF4eZw>^&BO+_9QXXdk(O#UD5U&3 zE6|JQR8b(PwfR@9!Tf=N*a8@oDkDw6xlG^YE#(u=My#Adaa*rg;sk~)d{JO$WZ@G< zUWgxNYfjy>`TH**?rK_n6{-p>w@}A3yxl;Pvv7^b1V;4jLH2rO+aq}CTIL{pP0lfW zmX`(n1?-O&YIocYI$gQOUD2(yLOijkzTPOO(%cGCOMBu>K(fX zG=}`y2%Hl#69#KV#_bJiM<@5;;BWy-@Iv)&2E^CeC}nk%qZ?GI@Gctc54H&rSsZB? zqewFU=S#JWY~|Xgh(F-U@H{Ve?d!9r5w;|7?&9;VfQtTwNj`oWDwyi`Jq!WJ{Plyj z@+js3;}dNAMe%T(e4T1R@?nR#YTzPPILsZ*3dCd|;A4X`8#qX(1JS7`YrP20#rDM7 zQaQ+*lEN9D03i3PdZ`81k4aIe=`h(zzEH$&oDFk<@ZEUw16(uw3@ac7&mKk{XY~3B z$OIw=t!Tiq{>pW4d1a5tQtwGIN$*Rzzl%3}wZTpfupplw2kj z;8^$$o@vJqKMqtR`LzT!&V_V&5pS8A8?pfJwKORXKF(;D_99Fzg~wiCO2oD?LU(Z} zO=7d33bLWrG{HP-Z23w#G{2B`N4=~&O@n5V?VHK~A?Yp{JGj>rdz}K7NCuVbhh*P(wx=V;k){Ij1StBxMae#No~mOpr>U!1x{5&pKZOKk&-Scz zkKq?PSTTbA3`5B4-)^}M=A0~C?LHv|G;X0A7aM9juU6f(!d<=D%LM$@!w=u5z&s5y zCeKzvoo`O4imJ{1L*gUuT1}mVSeYxep52ZZbX)QBs5Rg|k3VC!4VVf*jbN=B)j%M{ zhg88ioPGz~?oY3pz%%ZGRRVeWo(n(UD3(K{9@^i&4F*`q7HX2PsH|b8EA`oTO&@3M zRJQv@-^=!$=6VK*)jn6cjQ5wvw^V|D3QL}P=5%B=Q(5p6-fd=CxHwX_xBXt-fUB9& zM}@QAr68nsw3fZGeivd*QJF1V_91mFUe;EDXf;;JHkWyOaOUcVYW;y&s=5O*+2Q58 zjk3lkTeX0rQp)5Hf?V4T$2d&ugEdzHwE=OWT@K!Z>!w2#>hW@FnoZS#z$VB8h8g|* zsmC6qN@3!UDp@smQnH*fl)IQR6(l((pdIB`8B4@}s;GT6Tg>k2i-PP+bGOCM9KHZs zybRG-+YLgT#M-S<)NV)6%w)QAb(i&?9kB+aKC>ju>h zgPoCI)+A^lI$(>fW^K`x*R_%cXrePOEa(H4OEWuOQwim$@Rg%;C>6pSV;w6m;q{k* zw6cwy;XEa>^|}7N*sZ8p}95FOsadeq5HIoDkE z^j^Cbs#_%YFj&=t5cVSh&Z)xVu%QJGrK2`LDxAh_f%5m%{Sn)5n*Gy&S7I<*93{7a zI^_sKL27?qlc-x2Qut{yspxzUp3feIY=;~7#+iP$`n>7Ysi?~qQ(i%1-U8k#rhRpA z07AovnH^4imQ7^)1a8BZ(LBLjV82*w6+;RQbyvK_-Y|5fO_v5?^s@DY4WHrZWGhVa zb*B&)PxSNyk7u4|h$9y{jeo|q`$H90rJW#wH;I!}09H66npu39O~XQA!ULV`Q=Eed zS~n9G8bod;6sSUMSU;#-D6oysybGzE0^^OdX;i^#+`hcuj{&44U z#8?u)$rb5QyQ@#7jPK0!XRqs!=3yegtWc?o~*wl2=r$vxvOgD~5l?^n4Daf933ET)Hdj@2oDuFZH5>DVvK z#RfzJmx1#xhp=5E@2t=VwIA!hR)0rI6d7xTAwZ`_&q5;wXM6id z(KdT9SUEL#zj}v-*nRf$f*;rP^=kt@GPeFKHtQ=Vci$fenpbtK>=RN4lD;1{V7iLQ zJW-QcUm9ZC8C-=61iYvZtk+s@+u#=P4XNE;#U1Zu2j1^w?%y|1FEO5i7HkA=2M3-X zyUWUf*7Ga;{hJe+x~?)SQ@CI0{i z|8PkDm$1dZCK3On5C5bR|9!&Z-^3FCYQ2Q(@2CIA>)%-~(N5UsK=Cgy+-+4SZ6Mh? zFl*|gdm015HA(`$OFR&^8#g5v;7R7=|GaLE7MD(yBjm?DFdjmYP8u}9H&kzk8H^Bb zcsb4?`S^PL%&Gh8-vAscxO98=YBLc#|GX5TO>rs0xL%GSY}!9ErY;>JAWYvd8@7KZ z@5&*uIUlGhu65gVf7~6Yv~OL+$??=6SX%JlB1pIVB&il~TP&(ch~S8I0O;wzo`be( zyA>|WyKD%4e0*&S-6l6|R0^TXy^c2s?95ylQ=?65bT-;mV;E*q;sorbnU_PR^S7W2 zxHo+vPoz&FWtWqHP} zQ1=yhVv~EuRmGo~!gXQl1gA_!-1=%w(4t8wT9qzp6JdGAdTJk^#8}P+`fy7oJQV^RLwK z+*)DbM;_g=OnCS5zS*-mk;N@w>>+4~>9MW|gAnv$uLTIGPrwbiFuab$8K>M5$k~_R zazx<>HwotR6t`Yg5DN(Z*vbvYqi?rp2SS)JKF#8alk7lqT$m*;PA_7@2bA3&Vl^Y0 zQ)(RIWq98|KRfvQ3ob%0sQ&k_2qX=HL!tj%DgWOGDlc zgrHOX(8I*WT9_B$OG$py;F9`g`Ypc#V)3Xqnwi*6t)eqzp;IO`ZYG#G8VXdUht(cA z^jUd%YF*|0DZ)t0B&YA9lIw`JDRfm-HV!R{#(xjEeHP0p1fJpRh4xYtmiLyQ zY3Cfjdve~Qz>j{lv2GHk$)7+dp%mH9Hg&P zAL9sd{+8tNwa0BBx5BNN(3E9l(lOR@A>jmvg?a2`I1Z^k;vc!IuXiJ*Xp5lD==~IrXoqZ!w zL7-_BGQ2(Gpk!N5bc3p$Xbfc(p&AGg(ryEd`G7nl_m&Q7H8TYI7yuid5GtetJruW! z#^l`Ik~CIbY=}{V%)%(%2&n`uPBqgAuVt(7gr^>V-XjadyVJaMfuLt;xucFb3$!yS zHPg7g4l2g$9{>P+p{=^IoOVwEZ>#9Qt(0IzR;?RMjQAC^VuzCDibeYk1Qk@LOCUt! zt{5Dm3_&?QkTzoqr@MsX)ZPQua_YDBLO!wN&cT0#BeR|4pvllU4^H40jcl0u8c>l0 zWv~1M+t_1UVP`*l?-Y&J(~1$-Xp68$O`7GN&ma%KH82s9dio416Az=twb2k6=_kT{ ztXd&Aj|XN%%z0x4AmLxyVbB9FE$s*Em9>T9#hWo%{bmm(Z{Q6v$ERe3=q3Lo3lnSr z&eFvcwM%zJRX`9cCFaHJ-SIdE)B*B&eSq`KW!-an3W7B9FBfvwS=u65CqSc5k7hgq{40=&!DDb>j}pY zK0r*c&rK#&Mzw=_UiS4BY!qCBPEmC1TXq~07$C!<*a^)iN5zQ!=nsd=Vg>ta&Z862 zPZxY73(F^M6yu^%#IWcU-mvIeP}56vjYuWN518cu@(n{C;PnU!G`NokWlQ2F1L*+ZBxff$4UBC{W;Km*PN%J674)n#8$ z`M0KNGMGZS6>S|?Ph4=woL$F%q>LGGtAQ(5frwY65duqpYLhR3LF`+o2L1$^8q+L# zS#eW3TLd1su+#c9H{pdT9wz~&w*c|=e=C5^j*A&IHI&fa9Zvl7#Hc(tavYSf&{d0| zWh|wwm`7V_A4~@I65(>XX5D(KK8(?>#>((@e8Ot}YeYaT0tTzcr$6&a)>gH@Pv|(a z%R(FjWc)_o$J@3#6&Cyg_N>|xc`FOe$_;jo8N(R3HhD?+6qx863K(x^dlFoE|3}Ew zOmhbsv%eHiCsoS5o`>$mzG>oz@vx{vs!tB@o!`VAUSr%wn+F{$aZQHhOJHxhZ+g65cM`VU=+m7h0`&V^k z|8;BB?S4ED`;7f?&KhIRHRrb~Rv-xn0TZFQap=ZOjInT^SG4 z*X1}OiNK3}>r8RU)=88@LJp5R7_%ZU-E?VFelf0Y7hgss+@q~*8PXTPm^zK? z<2UQ52q9DN?uf?w_ebqW2XjG9=Afa2LPQ@oDc>v&#)Jv2BwrA}xTI(Eto7HF5lc z{xleKB%{ud-P4X8?I3=ET2H56FA2>ul3TH$5aK+lxkm!yXLM+aEteic;J0DChEVV+ zlB70aRCzH|1)JBU<$D!Mk5DUB#nU|XRz(e4nQn9rD2A|~`M4h##Tv9o`#CjJ8QcPc z;uIvcAO3MwaHmQ|LgR_O59((_VE(JtY-Y~`D!S%_TNF-e@Sw?jGM>vDv|hRl+)vx@ zOOV)S2tL6__v?PxpL$_n@O}VU$oKVFqOvNIuE^Tq*XXX3vWQuvIIAkgE**I&)M_sd z`=Lp>DmY<6`-^94jy1I<&H*kp3%KBuPI@O8bfnec%||YWw9V3IwRfq&5`(p=tuG63 zTRCt1)b_)nNY)dpS1&kE#~TV;9cmQ>rg23c)_a9$O&_s^YDg%e0y|P;R`#F)7)Kwm zqNVD?H^w6xFw0+sA6Xc8_9pHC{xpIg{VOE4b%BTAh;MY`aRZ`?21Lo(#R1pjl4Z!5 z$g7fyKtxpH+soKTcQ$#vr)EM|9(84i{If?XS=-%w0W* zS`OGCl9#LnEdPyuc__`~BOd~P1Bg6u`GWI2lZ4e1K zgzFmKu?0|uiREsUfjM=~Lk>=luO*@EuqkeA+1e$X*Ck;U)tJza-S-E*8A&dxlAs!F z-`X4YiokKvOn2A!Tj2{Y#6Rrp3y-CBhP7^!Q8%G*7wHZ!KTbT#Iy(M1VqY- zZj|Yp=>Rmzts##E2CEr2o(S`>Joc^z;(h+GfiZ<qJVd^kA zY9^aj>H+Y<<0Z7B^?yJjwzyPfZTt(kT_mEwwNM)eOi9DH0!cpcmm6)O8WjoZ->9Oqx-n##Jp1_>eng08G!msxD)u1p>+?f)wsy3_-7PUKpgt-S1CmHq~ z8y!OguvuLD;FbmSyUPI?vDNCD4u(K8%-(x!=GER<3Nn%t5=L0CGX(2JKA@sFwZj0j z0Qk5CmP#TP{CH$t{7b`U_aFnS%AT0r^;Y{{J`yzJ8;-s3WDFo3 zdheNzGBR6W!)=4$dLs0SW7>Ugh&4jWCeJR_XHhA=hOr7$ntBJ7U9Re>Ck+|s5s^R| zoV6Q_tB;AVnYxSbHHh4?<>#e%@6Vmlt~$4q^V`1e@SR`yO5(7$Nk){)NcIAUHZX@h zFwHop&zwX(>q}w!VWX+Jp7LFyR+-(;gFC3Dh$kTu&K0O*@WEnG^?#s${l@|aemN^9 zL;uW#_#4~s-Hm*d#Q#+D_$MaB-?fteG$H;w=iz@}2KfW6{0m_DH>vWk zY{Xwy#{Z^Q(2M=;N3i`lzWTp0nEyik<4+fa<`HFwp!;t>*$HVA3Rxf`dQKtd3_aC1jRPJn2^;!|$tHdGWbRh8@iov5x!1DU~ zbp5weC9=FcGkP?90z7}tuP(!;PxH;LTRn!Uv_SixlLQl zaBtKKg+6<3%K+ntIe~xVg}~JWI<#&%roi2l3Wi!d0cg;;L|?u3CH{rNPWv3 zhW;-8q3X-^)jz)pq>taSa<+oP@r{3tCROpe|Am0HJbD&8o3%F|ssns78pxnY^c2E& zpLd0}fzic22g`onJE*X<3oKf#90-d4cmA$I&u^>Jn1+c`$ z{FQPtY%<~!d-LZ4Ca(iniV=L45cH2q-1;6Bz{uvO&LY>!;kTe)8z!CuQ7^PcM zeepkLX~B1yO6iTtFgV{`LMM;;yDJuZL=KfRcgTKRU`d~Oz9*cR5++ZyG5ylE)Q1v#N&<4o3880zBabN36CGa+-vNDbd8n%Nj%k<4b;CfgdV+{Ce@g-Qx9H-BCpq1EyWvf^%Z!53Jrd zy&Z?|=5MK4-+sZndT*Irn#vDgXZ{F*6KMFRO_SY(#n{4u2VReW_Ta+f>a>a3-Q6u< zMftW;wd(?O=D7`nr&7g^B14?M#TVT9b%SDVArx(-O^1Aw?`D(g2`M8;PEz{(-oGMe zKH$p1n|oxy0kKqV{mKlw$YU&&yH;+P#CAqr?U7wKeJt&_+_8C@nKM;ff0`Ll&jfW6 zjiP6!DlT8Xa?rPnw15%`C&#&8MvVu`neqGWoGY=|tL)eBCLP=36!udIqI((OQ!EXO zvtENFQCx$HaPNk4xLqrvsTCX~biP<-er3lIGtV)NE8$r}f#OtFZH^So!%&T}(Ia*g zM1|OfSJ+W-%sV<9FNVSRAomi0QoT&4);py>0oEaWZ2Cm*7KXi7WWDu1v|=` zfM*IXSgL2Z7KK<3&2J?-Xcz+ynV~Pcj*h%q^=bp6c`E*>0z#M&R)60=wf~yRO$$iR zou+t~Cz7M+CTD@cPJzsmBEA;qt}N5VI+BRuI5|lnif?aB;W_8KZ9@ok28h zb7g0{3i(vt;*`QsEV&6#q<78V39VfHN2D4G9uUi-FBODt8_BW~4L=IVnrH%Y4<}(NAG;0Bo+!x;B znu`*!>KKcw5bZlO>7#vJVgbKj1SBgd`OzuJiHd-Tw$do+M8s^lcHV15I~^5((2uUj zGUDZSnmbWs+(Xrmi;&90$E!Slvj>-WkjrX`9KhW| zyLChiSm+lYfeU!JZPR{oHV&8KRKW73n-%4JT3y^X?2U0`TheL)JZMn+p`qGIw8i3u z)a~ES;f6ekugI4-B=V*b)@NqLZ5;Eury=h5W#AQ zM}s#=l}RLYIi#nwB6H%K(W2^42$O+3ir$U`2i=;m>^!XFN#kSubeeE<2IYIgh;Pu# zmJPHp{)#n>9mVS-0Ifg=&_C(?GG_7x3mB*mvYt+i!}*B=TN6z$>zBX^cTBy7cUw#* z2Gjn2sv$s`r0(AgvO}YB>33I@sU+!u-Yj)3XB@mV`ndxb%>fjbVt78#9g&2ptvT^u zv8Kv=topI1@sf`6qmfOCI6tlk_}akys;f{N0lV%2H6$6gFO4?>!*crJ5wuQaCO=BU z83Td&cle^wmG(Ja&>oIi!C@nB$|;3oyww5eWBPV=%s}xc&{C0MhvpIZwgdL6uB;-^ z`NEcau7Hulul<*g{8{}%u{z8WqWVNPQDoa=z*NJ`dm3xFdFqTBW8;9B1EXZyH_>i) zUH!tl4S5aJY0GVJZ7i}3S+%F}KX%mMB6-wGvzUc*tC{aT(XnAwN8gRW)#kc|vn(U2 z*$RwE>|&!@p0sdDfXUvY7~E_2$<&3|Ju0*z#?nI4lA#Iv#n`5fF<@m7O>SA z3eX}$yz1E~@WZeCY{-FU9YpVMcqs+u`1E;mpE9 zc0yY(D`1E7$lMEIpl2Q|y7&@PJJ#es5D^u`mMBj21#GadBm_aL^jkp*n#x~**_!`)!8*l*c$E@=_;4D%36zc8A$Z$k5@%PGSs z2bEcsuyDoSf{OP@hEKiso zIH>N~(5gX%^o67e><5o5!j^AnyqyqMh8$x*fNvmRk@rv{ua)_4?*rY=CfRomk%5mR zk#H;wv$6Zt{7sU~idKXT1-ldU$mwmrnBijGIs044k3EgF-I*jH8imV!HN|LqHshVZ zAS`9;aUtzIWi1#HcVs6iKTbkr;ONrrEl=SWc6BJ5z(Z|_U`BwU+zuKO6>>!>ee-vF z24d#)Uq6%_unu$q0?(W%XCnn+K~sWL{d;wXf$TqS6PT%*nJQ+#L9vRTmJ7&>!iCbX zF8kdoUuC3{_n!{*3-;|ZnmF0bLE~A|@7nO_1>cuetj}(710FgHX#<9`4AJC38ETy|=J--C$zKbMvPe(XYwDk`O> zqO25hb;@N$^n3)6PqkUMp5_3wAgmzd*-sjw(+?6OR)FwjMAjo1#Vj48m@4PWQbIjb zT$F%X0ELiI1a~9~>2SSRY!wD(?1ho;22|`u;L~5l^`BL@a*cYa1Cb{db3^XEpqf$IWe z7Y{N~Z@#omjoEnhwroy@0x@I^oGlk&Eu(mrB(>6y;>-B+=1S)gxXts+Ic{wZ)^v__ z(a*e#(c=K}QdCaK&~H0(iSl9<;*i)Rv`BnHw|Fdc0iA``JSF5zz7nzP^Z<>B z{Q_Zg6#dRBS^+dcHio zAef9~b$pD(L11B&{fU^a{2hm{v>g803p=h_8MBHE#XYEuKgXL^o0yQ<@dfkf;&h(< z@b_FsJLKxcjCt*xpTrXk?wj2BvX;InIM1h^0(}eQ^H1#LNMZxyAj;^oL4Jh zWt7B633;Flwg_}AXYmaDBLWH_@!h?-dBQ}eW&#B>?YUtXoy{elFFXbks`!3Ai*t67 z4fuuROAVx6?^64`X>hz=wq1=CZJD41H_utHZ!L9Sd_Lc*91!F7#(eP$Lw?o46um;T zv7pbS-fTS*;3)sGGHtG~{F_@z(3U^NCmz=Ndb})pS1_-}nF3TqJg5o}yRP6$ELPF- zenN;!z0k7rUGoDIwHZ@;_}amFOyrj;h)8>ZMuuA}4$0+@xf?m;Hmx_JF(ZB0CvD(IK!K>i^}HMp zx_tv)^lj@n1st zZ}t24#{MrQ{4Yw`zny~rXbG@${L3wYOC8A{`y;45@9HNKs#CdJX&Em&#Y~jP@lqZt zUIi(HI^|JS>rr`V{CZR^<=0i0b!ojipZmksM~V6n($TC8 zIrvl%X=&1wQ+wu>C(}oUKI4~0+tu6s%13COVb9m}X*U*4o7V;q(9B0(`KcNeYm|_1 zr!71hn@EeWABOl#7OsvppDk8fo3F54n>PG9PEF-4t-F(-WIF82ou2R5u@(F1Zi_wL zRjsUaz6~Z)$Yz`y40|dh(x^Q?x0(0O&jK71YrLN_?L9hB;=8fqK(Fa!DiN+POhxi9 zgf`vv(WN4ei}dqyaIsrWo!bJ_bREv9Nj? z!jXgVV(!*e=I8dtbq}o!DM!OwamA9$Pu<$g&z`M;XlcpCLalAIQno~i)3v-$OgNLF z6{u{)0;bHmET3cqKz%Ca`1nm=3G_R}8=kszhW8ts1r6AupAxIKkZWn{v%BT)&5BRMnWMhfXRL-IsZPalvDbw#;g!i58)#%GL2 z|F>FHDzvRJ&~Q0-rDPn~#6fc#qhPSMzG<+w279*iHYTR)LERrgo$b(Zd?F@8yZBfp zG<@BHXy7|$m=BP1^H&S@Us_1$k`{HP;kLJPX*AVEXwO;iTiDYOvr z6Azm8!7j;Z7LpM=%E>6z!gMU2Z8fQA>}k>P-Lr1f7irKxq%BUXpun8MtTjvlB&vWH?tda;$!1VceU|@~*prWo8b3>MrFNc`8-5x|_byy)}ZIADDs^%a=_)*<(%k zJ=lt%aBP8VmUj1eznU&_X2Pogao|~;oQ+oHH=N{JvW10dN$P#@b9*+c)v$G*2kCgi zwJ5yW44|)rBu;NP{C;i)pMREqPRv&bKtE7LKZc?eGT z)s;d*M7ToU{ET28@Vpl;Mnz9_P{^^k9F(EKY&HpYtS9jQUc*_WXJCW!b!}+w%K#w@ zmJpE|8?HMSIC6P`(>3nWYYoL7b?*-hBMuz)PhXRTMw5_^{0xae5ka5>hSNwZ;2w;@ zyq9kWLYFi{1fG-Bc3Au60iNOJ6AeJd@f)!A85ghpE5sK(s(QS-0PvMl-FXMjte@KOB}LMOa3-B%QOXxKi-lBQ6}9S${Y6nvCMO(Eq%%~ zB?owY#U}j$gIQUyV)f@)SH{kvgQH|$7cH@lde5*Y?bzcw4!{Lk^dZO@(6-zox|=SB z#bi>jB6a+#Dy%$a>rfe_|K1?;Nq2P5Tu@pb!Tik zt0CkRmhPZ!5yfLbyBtu<_r0^^DglyJsoI+xCr183&!tVsorOWiGFUpvw80mWEJlRo zS@whnB3FU^2jgu{SYROA2)y|&9?#X{Qe-BM-z?MI)2$AbZGIIxR=YjaHc)J`x?yg^ zJn#l;;t%HoC84$X}PW;#>ryVMuG6>No_N%PA*p7IlraM7z>mk2#m|! z!73t0E+p>{)T96*L*WTGb~kL4=&5!xcrp_V#jDhzlmZ}Ns2E}01Uz#mpD=V7fP^ z<2Nf=yN;RzD%WF%E2Wj7z+& zUvK3ZV@jeEaAI60E#_%%2|BdNgV!#N4Ky~jRim3-_L0Mk{)xR3fMKEaxeflXVZ2w3 z!Vmdky2x z$=Y8&{S%ojO|ft#K$zdidhxVH&4)=_Tg}@;<~B`7!HAG7)FoVvvCR9k9$pET0RU#6 z?m)%p%N@OG2$v!~o(gRzAT@tY@Z)MINf7Ypl126@GZilx>4=%UZO$>m+)v^|o#wX8 ze?MI_r}HFf>g%>`B>3B1w|J zn<@y;vU>R+v|UDG`t5yq#v4*Nc^QKItN;(EKvxwLW%F3q31R}XZA&GnhJm#WJ(@POZbQ(>tMYhXA@3pbiB%B9k+p>%B4-Q0DH%?rd_q`{GEP8@@UvyVZs@jbSp5k# z2%_dMEn!0{`HthQeO9jn+13bQusd%DLUWh%|qyWd8^R+zz$0GTZq^vAYcRqU8+Bqs0pprGw)%kK}lE{;R}83mnl_0b8u zZN=l|;XAmTB%7M_bC#zT1j2z?Fq?mP5c`cFVkviBf;X+O2~6K9-Ci|gbDXaA>S#g!q}@++!>{1MmoE7q&-$(&82?W>&G#NxJSga2|9m- z`(~Es$TxRj^&l%eOxvNZL0?Te42;2SY|ij0Q?O=A<)gbnU-j3)DWw+%Isxy<9*|)9 zK^{9@eAy`IUG~67$|~k-@fE^%N1W!zF_OD>E6oUduOedU*7yiI1}J`)><_5>ZwGom z`YThRvt*_nL#A--;5woltcioVEbGGRA?V9@|H#Y`dqGM-yx4`kYPfj#E73A&p*ao6 z^G!4?E5(hF#!uXzX>Ca~m!lBvomi=ghI@$(mQ3H5}~SL%1q=uo7W(2-MXX(|%F zvzHVeoR|AD9D(4vsg2$64ZA>|wKvad~_> zB|RY42g-}@{;Xzn)@H?6;9Y`+G2<+=Z$`QD9E@2G%&hKaW~w>U%J0ph*B-f@w`tT^etzveZ@aWVpvAL~JRNLy(g^3V*6#O&bHpzp<5e_ zu=>ene=BA7EN$0B#8VS#B%F$0_uXQU$U%utJrb_$nCiD++dh&IX=?kT=h#M-Mq@o7 z+f?J&@qTn${<7P#g%(z*_1wBxYBSjZ)q414r;aB3Ec=oPtDpA%(Q*S)tAv7ACF|&) z5N+mx>gU!e@H;V!<{PB=%7JdAvGWiL4>gRphqJ|_7^tVhey?@+_)4KVlHOL4m4RqG zBy6~L1s!!}Lyo^PE+Md#7ianMRv~!3@z!~sa=58|mXZI$h!p3p$Yx-%k72n98-II8 zgum<1yBcc&k(48T$9!rZffdUr;>V}|x6+LAJOfb-78oQZctZ%;3`A5A38KI&R4CUX ztO*rN_DK~{^zE?4M%JN}QV3BUQWUh*N&U;LV=zvQjXzfpf=H9Eq166>D~lZRj4V5% zv;tYgf?Y%ARIx=QnNdu(qf3i;?PDLqaA15Sz3IHzufs($saj+ktLG7Ynl4Oo~r8bCY;}NsY@xRBr7ThnlN{0>mTlz)i@R@XZ(J!n?XN$0g5+kde*A zG7*zDx0a-H@)QB>D&Plh6~IRgaLI~a!`I^Ysym9>+IOh>Fp(9o4LXQ;#Au9xQyXwoBesDCEFuSw!|xn6 zv-a)Kw_@VKZve%3XliZ{HGWrD?q_~;vpJH7t0@ifq08|!%| z{Z5h)L_LORoo=w{_9QLd?8AeOQ>pXq?s@x!^1;`w4`E4`Fhi5VD6G+`epbil`#lV% zH-IC;(b@Ja{Crau0eH}^-PQYcYy;&CEG0DnXqKHJ6tF|1lamcpUa!_=1Cx;?D3_p?+(Rx1Y_)w66Hp9^%9b55 z;}@51QaPX27xt$tqMFs(-BlYfK7w7)?0#kem%JroE}FLz`902fIL7svQ#pw;Parin zWIFoptX-{#@30qLNg}m432p!n84`$PeIsuBeW z@R=~UK0nH$tdB<6Z=enMiwukKq~J&CZex}PB;_F`zO6NJcxh2^X<2(%N{)$ewKvjn z#mMnkhl0^@MZ8vQYecg9BZcPO5pkd)C*vQI;pk3uOVs0O4;_`}f?C~}ifUv}l;jQy zf!A4Jya_wt4uOIT+5z|g>h7_G`37i8{OuY6v0Qk<{f;qSn}x{CK3!SFk~jW3Q*6A9 z&<>Dh64vwXC`$S>dOpiYG)Gjm8Sx4aN^vYWapo_&L*kTk||CEeS zebMD(^tqmD^~mOzR|~^10ho2nL-rFRQfrD|W6{w&pLq)xnZzffZ7R|t3z!Puzd_6l;$Hh33!@>ZvJkpKh#`Iu}LVf+-4j=O%o|s z2G!>R?yaJ*jgj-09W(=v7R+dTXX=ArCZ+4dBF5#DFgwrZwS4{{5~LbiI;@r(q`kHf z+|)WA9Wf@$iuu{Tq9QsEBINTj6eTi%4u%uyz&L}(9w0men2Dqe=5h+bhJcXUV3V6- z#7&ryl1t~PZ)|cX=PZbq)JFmCuHoHZUH0%Oc}1{%R}S1H?Ck~Q%m695p1*gkWQjYN z*oa|G#ziwBH$y3~`i}4^*Y%ZrR!A8Za~wddnt-oHu#5%^wY{h(lQ;Rc;;bY5jrou( zOjKm-;(eQZ^;pq`@H>=JSOEOo zGBz)B?|FYtO6aS#;R5j5MthS|OuSC0-Wc~RB+A8iCE55n0Dhiu8dK;o>Ni8eL-5*)$8hF+I@S)^IrES| zemspLZ=Q-j0-qdJrk^_yV`mczwh;;V1;x*F1syg?00A28)-7kIIlx@p`pmo%BX4K7oqaTNHd75tsk%7&Dc~r=EZwLwDZo9T zL~#PEPl&N*q<~PQh2^=L&{tF@CkMyQ2bh#0I`OX^_nq=!?qH?N-|b0BC45#8^Kvq> zi@@C7;thtTqQ}GGU9=5;0hRFOLBJBZH*5hWMz2e!Ib*Ekp*oSZN@jyhE8Hcbfd7UT zfGl$48^v#M2N7o^c1Jd~bBL^<@7!MM(I$6y9jjV*Kh2`v**TY|b?4ev3@Bp{^Te+e z@{==&qHGoxv5=PCdVS42kls?XFj95qBU@z5N?rtQwOj$B8?$^2_HbAZi{+ya$`f{M zoix@&+gIO8J5%_bv@gApeJ2HvL6@kXqEJtSO}s-Yi(Y@<67o0?$3Est!nUN zquFnv_k1OqzPn~rW5)a5WMDvg;)dCiJOsABT(SEFcuancW>cQP*_(<=ldK<0eWHqZKe|iz%$D39}0)Xo__~E2Ay{unDyT7#!9vgFycseVuTVi<1eN} zmPrP3-Z^jd5OTu#=C_8Mw`?PeEHWUFAr0ERdH^<%@Y=5vpOq`a)NUIoiIB>5<5ioe zY42MN^$q6;rR<7GfX=%6jHK?96u_fO&8+8jd?l}7Z88N2?vSbHLUGU;%Ta|u()_#P zL@bExq(K^%x1-W?Hm$Tx9O}5*EaXigXn#upA$b58&Ng;^!U53GCX7$s{7k%2Ep*Y? zI`8hTk)$d@O|Yguf93?mG}GtcGVg{5$tQqO5g~&>3Jh3cR{k6zAsU7+i8+s~A40S@ z&6{H;BQ-6|sF*i4zy`0S@jAYs5`4Fr!jPcWsm8;C0$1LGUc-h~=t=kDBMdHy{&d5} z8FJCAW6oz}6%trQjk7f!tra{06z0dcTd$4+c^k1e)MaJPi3Ldtb%n`TAJN&=hsxR? zNI^I6$^NVm8q>2QoPIpee)1(^$uLk`Bd>mP)bY-2jDE;|pZ)i6*?mFb*tbj(V>G$x zCuzQUEx@%G9xU*+>hNKEat{Gva%$o={CL6W9{HY1w~r+F9cOe0A!cgL_I>sOt{9c< zL~lHpnW`4@v_N~zVCMpF1ANN{;~NqIEPk;QVR;f*ezL@>X_ysnTw+|8*3z#g*D#IJ zGxTuO7mG9+{9fNlivwTt(-)fGZPtdvj>j8-#L?5AK2qonEoZr!ghD)hP4KkE-L2~m z%Icy5yYD!L1H$fFA$E0_-$es=SNe1|66E{k4vrK6Udg-Fx%gV(#31VZkJVKCjVni^ z2DYXj;@PqS_qyG*GI6e$P5OCBVQKZIrcz!ci<7b({%QePi+yrK@3tRJ&I$E zu*JU)j4!SL2m9n5@)I&Nj|rM_3%xkp?nVNQcaGuQ4fr!jsWe>!BNU727j9Pxsp2;^ zM)7}}(>T}Rc{Gy1SNwe8qrJZffD~;`l6NQ5kZCk`eeCW3TKvH~FZ_nlc3>`y0HV&b zTfl%EKCHotd4K-6_zmdP$&vZbr0(AoyZ=V&{v$8_f7I5Q|2;(h{~&e$u7Us0iSfVW z?O!tXKeg-s86^KJCjL)%=Kq?~{R8^{&%D6DD_suGe;2w0|8rA4MNK*>n+>7ox^4#o zmH0dW;cmLNQF$gqJ3DBqK1zwFG=AjiV7apdtw~{$l>AqXe2uU7W}q28=Jc0$q2=cS zU-$Qbb7@4aN6yb#%qpxxj9IG+2y`ZE`qga@?gwlA+XQC+jB7!4ui9t%`RN^}Xs#l|*elgWs^VAySTMgYYcQ8Yl znl4`5G5bmt;vpbC1-S0~EDrFCw#d+UN3~0avErs_z5N5jj6ynFDPo}Sk$+q9dqMT- z0jgbfKuKExO{@^eBM=4-s(6f*GA}z%htu&~u6a7UWb&h!2o0&Ie~jUo^B<(C)ZZ_8 zAkhQ8(%EVmF65GtPfzU0oE8FGaT=NR0>+h>Fsb6Of0b1^zFy3cJC7sa8wCm znudxM1dCx-Rx;#M3ha;NZp-0vrrZPBq4c44`bz(9&JOPv%m3-}k`f*2QQ?5zCA~EG zY@lR@hZO|gN%|0Tt+?g_M-@L{WQ@zx?%VD1)k22IJa-_B6cw{);KAZ5bzeaAXY=A{ zV?1e~R!S=7dpi2bg6y&0!iX8C9~r&K+9hvLqlBW@4K*F{=Kr?A_X(D@gQN6M<{Qhu z#d!Y1TKnho?H~X5|6lm$-$9}O5A*Hs+adqseEYw#>FCA&GavLX4zj;(%>S_L7};3< zRm*NsTRLgI4Y6moZjKPVazZ4W-C#6K)--1#^|F#A>0oCQSbWdDEp@0tq=xsKZxi4J z0NgX$+)URCQ4k3P>+_=n5Va|;$>`}hib&_%)8qD-ePF7bK!<{@vny9|CPK}uw3sY< za`n*Zi4gfdTZydcd!}Zr()RO*;BcYMxf$~;YKf+oa?6U*T;)fRZs#Wb+9%rv9rcHq zGVP~r_x-Zd*W{r*GZ{otQ?`{6=RI?6mdDI(6YA5Ah>}r>v&hjd^hiVj(VT=u{vDF# zj+U8y{D!S6ZPrh}Ii2@&cxZXPdrHxxRxoK8#SB%n0@u3*|UV9e3uZ z_C~jH6h$l46kx+d8h3<@X6O2hnJR*m9Pj{}(pWEG(=|FZJ-`P5;tzVw{d%7)m_nF1 zjd=8rFFylSup11o$Zh~=-vTVwio@t{?Y#oi9}1RREbOyh%Z9A(7;qXx!&hV zVsi|-!S;*?_}VA2{gfO!+tIVTt74YFnmJ0eFPYGtfqkVxL^4~c=j(nPCP%ZOK*V{y z^vP!WOwf7d6X}vURxn7osx;trRLYu*YH;-N#bE#%sWBZ>HVgq9tEK2M`VI*P=A}BAZL`Q_o!^of)m1^B@VP2=Jim{%BHVHU@{EbTi zdBGAim(|eL5#w5HLdhq z=|et8RuJhSJ|;Kv)g0!Th+sYRcNpN+L-bu~@^o#G{ZKnPtAM1Q1PqkG0#n)1O=^!+ zJ7LBYq5!cw*@l9pYIF&g+ZE892PPqgmRZ42e6p1ei1c@UKAgx1Y{2IeX%!Pp2rNA5>Qew zC958YJCkkWGUa@*0{tU!#vO~urnD!=%T-fi?(w2AIusH>W&kp_lc;lSi}@+Oc-|*g z-IHx(NFq$d=Dojm^sI0M=_Qi@V4GQzA`w^LJe*6?u~~z=RvMsZZ8(7F6ybIY0H}N? zoFK)ad0TAx_UR)|qtd5sZBQ5tT;WSSfI*{J7TG{(<36{*6qVN_A1TrpDnTcfi|-VZ z5xo0=w_eTwg1#M<1TQk1aX9A2K<7dwfm_ihN8S93gp!NQE+JyeXCOOd2)L%ktB=n_ zKwtoo(_H!UX=PBtk@pu5lSD+*kL!f3v2uCCscX_GaBh5kdV{4v&>^}JYlj(6~6o7LW4OolQHxpH*u)z5PA_U9J%-6W9t$5NsGibf6llaw$?$IgW)DcvNcX zfnIYl_tlf@LpXuRY+~AR&m7eR8)A56aMV|ltM+HJ?^N}wkV+b^b@l0?#L00|sM(~5 z5g0(5k1fh6?gS3_gKEOR`vDXO8EliPFNI?BW3>p01Gng}!jduEs^&&=_CQt+P>xk( zKdO`gH=nafoQjY>B{^>CV96i)vQ;*j%i_~8>5Q~r&IZ@?k=}$;wzaX(3#5?>Z-cttmk$UgB9R@H5lP=7 zlyDv#e@y)uNpMz5{>%JvK`chQ#F%q+*L1KrAf0i3dSn4O7O5f0#y|(TebfbRhRSs$ z9Zq;`f$D*5lRBIT+3}s6JEC(?D+)oJJ7UpDMZYmqyEB``jerk4@*wBP=Ygg&2b`nxiMM_;RT|sUZRl{wz zY%g1Nec+)5+ml!8e5nagKsUwQB!JyC7EqbIwwoUdw~=U){wyQd=_LG;E{OF35G&$| zM*1W>`}QaqqvaSr7I^AFqse(g{%z;%JW+yj{#fCJFWNJHXv zy65X0h|oEfgCtg%C-PLHTF@MMkB>>vHEo#5~ZU7w>B2^_FB#0`=$LvlorG^ONlC7UbLQ(*%Yv&7fdXAN!l#vZTo$yHDRVuj0i$^M;exc_=RxBMpDNC)w{u0Ii1+p8V zOorISp>@GNBPGA^#+pPP2#gz89|vX^heY4zk`QKlgVVPSNX(3NhsTyd+JccD5%Y9gut6CGqwZq(?eP1pS^fM1@JQVHqHzvELFRIFX1q%Pbi?u>@m`$8nD*+;V| zuLJE)AceE04n)|*EnHghA@C$)a22mLrZSy=U~pY_{tf)nRli$i1ReCW!W{}0d^VsH zhMWawujV!Oki}paDbDevdhJ!)L{Wc@GCF3lTW{O-y&pWjvTsw;N9DbcYlAQjGi5I~ zms!5WaY=R8v22j=z2h<#xx?qPk~_>T@dwH?O*NX2{NOaWFb z*d&RI_6MVTTeIL(2RXx~M$6#8_sw#;p5N2 zp3Q)+HtEK4T{w{-YFuXs)C7w^zq!w>PVwPY#IDzFd05cKn`^vfd&mW{;+6BIvpV9v z?;j2yLl<|Y|N5fmMiEE|{fc@V4%3fZMbi6X8N?-Ie&6e;HFsyzXyfOtHv8^*Df|cdqZ`1k{9;9PK`P|%|@KR{Kf4+1LD8WDR7uIf{J~+m68># z+??a35{yNU!H;J&>IPxFQ)P9$%?%PW%bvoG6r<1nLV19v#ms|$Ifag2cP9Ts+=yN91*=`* zCn{cQ^r)@9RqJGgpXopf$n1`h<0*Lz>V-gmFx8>YzM zZPzs1*mlyfZ6_VuwrzE6r(-+m*tTukM#r|Zv%cA@R?nVq)vVd?&s06BC-qjPuH!zB z`@H0Og#QlI{@fV(Z$RxIJoDc{jrlL(;eU57nEy-H_~NF2_9y=J--u(i4AY{z^0z-xZ6ePX+yKt|^wzvL|oGcnC8E>`xoio(tUtdvhvFu{lWD)Z4o zs286Xat!R-$kBW}lpU*lyk1YjFI#k74&C8HRl97h1AYPbFSC0i>0yQuWDjb`? z@~1Na#y;t;%9#G|C}$07B&Qg(SVH#$kA-3?RS`y@!{!4lx0D|}U+WBYRp5Vr@b*8< z)(G6^Qx@*VS;^9-B)-QTAFmAP(@D@WJuZq~TKjpU(ry0e4Ta%{$r50L*Bny%^THjXJ7I>6TDISn!`XnAEcxyfvrt`%%7J9B>y!(oh zb@<1foN^*Rn}b;@Ma3`7M71jVKt`g13oYYDWaCM4e|Cd;!Zk4sf3{!8`dMkU0#i@J z?L?}3BMTs?%20B^sTj8u7Om`nn{lQ+q2g>{xL15aRQUdgxYIS*#+4BaUT^U6Pl9(CnB{oF;Mn-Wzh=c`Si>lc0H-6QG;-c#f; z$WZiteyFs{6D&?&N??++3uYIb17GAxm>C0MBMvfwnx};(2`zKE=CT5F2Xn%4$U3pC&=h8nzZ|lj}ktE+(Ln7CQn-vw4YJo zaG-%d$&tbOLcW1WhL{4*HFN(~+4+dkkBCYX$jLr;kXt2qQ8dZH#G^@^#OL!rA>4o> zOd88_v37Z6#lmbS%8Q$kvV2uA@JWq1?fu#aSt(K@nx`rZvR`r|INC^J&(LiAe8-Ky z7aN2!ZsOJ*`!q3;lPfJVP?kB#GgvM;2f!%Wh^01W4QK6BirdWtFelMnpAw7_wg8$v zPwk(0dLM&y`LN`)HV&W#3|O*#2&BcJwj`@8X%D~6SWpGdagQNcWe9{IUJwT-77b;Y z73vkA&yDS<+i*Q0)qJ?lNDD^jbCPr=1!-j}msw0s2gD#VEL=b|CCuHQ85zrlLK~qQ6&lbAbo7FtHR>Mmr@XOeOQlbh4JS0v zFl!-I3tvxugL{q!>M|q9X1&_N9LfxOyErtBnB^k|Vlu245KrJsWK0gB7)CRB%D32V z5(#$0Z3_1T-(Mryq%)}{b8xj7$R%yHm^SD-WW^+FJ|xuO!xcrSX&iQyU>XJ-@eqC4 zp_`dF2z1nflSX`cA%@&-!~FZK{RCBGu@d%-2fF!CWSOG0YIe6gKX4h;V+_<2Gebxm z2mMLPLhDkZeTA8L}@+1o6kdM&%56W zVCkohS>xPR((;2$FvWu~xC7ub#TApcl1MitOSKzmW6CK)osW8nLfo*=E}r31awgXV ze`5YRR1?qQf_yE**8cE{R({uhvi*VbCJvFE7wNfX+9f0m$EZv-b;k>N_jUk7&!d<~ zC1TSFOiTn4$%#LzKA8n{Y@!#^3E_N%?vL~GiS2CE`Ce8@N`p!z@SRGSu%m=+CZn|W zc^zmX^RgR0&Spbk=zpdw^!x^JgSZO*ylr_k(TgG(!Hr4^$EG}& z@H%yUs&>-t!Y}m%Hh|JaNRTFQ@oaji2e&R|!YSAqU|MxrSkc5rv&$+EU~^ja1CQx4 zs?)0hGH593V|nz1lMPD6zGoaiOz4 zi^9N;AO-6-8d({JF1U17&T_#`T^7Ox@o_jf?wg0PZXZpCF5wSyHHbkLR?N2aWJeHW z^Ut{T33{HvKEWDixFv(veyLz2tOWJN!Np~OOWfq^y#srXxiNIBY@5sBD3VQcd?%*9 z0V{IfFc0kDKeZe;O|f$MPs^3Wz~K@8rMQPXdA31EdHo!PMqtmi z*O?nqeS;3K0;@SwF$NkRzsu_!iUje8iBoIojt%sUdOb-7bG@nazG44-Jj-{WROoKe z-c1q$<59o0DG2w!aDq(byk%nwE(b5nMhx7w@eDDU^lQuCI7p&{GajssxA~|Mc1yB#J!gsIx6<$??j-P|aacx_b__D&6-OYlpCx8ZC zr?h=5wvPg+lHf_cfdVK&CIco8wEXw?&~$D1bAd+?yaBfY-_FkbGN{>%bCY>)`(KdO zxAtIq4e8c$d>Y$R+~{K^$1Umuz~B438?4C)iQ-V<<_+ZrLeeDk_)*!H0?EcaurtO= zJl6wJ_{U|7Tcm9cB_c*LhrDVfVPTW?cbIGoWi}%4HmzpUc9tEIa#;Fad#GDCqxSe8 z9BCw5v_8K1JBzhvvO6NgcgBCq9Ht2kE*Ne07H2s$Yr_WS!6d2XFOvQ0WO}vH(4Q4G z;{-nK!nJ^qZu7}VU8f0~%RDWL*2k`wROpgtHEIK91h>b$BxC5P*2gC-!-HZh?aB%G zLhR>~vHB#aoSu}qcNCk!mY8%_U}nlFAmBGQPdxo88`%Mc(^Oo=2wjsG);)|nC&sgW zw~Xtc@>Dm3OVH!)SjGmZ&MU_*5_QqvGCvpBYdkPb*6pshOgNWoE|RI3+44Ibj_F_= z-;Upge`)~&@kL=2R-{G`^ss^|iu~Ftc$rW16W`WPeV~-x5_n*o`w>s7oUbcpbKCoQ zyw2lR6kskoZAX&Qk9e)Lu#>w+Y0%@f)l`yR-=6;HsNVxNcf%AXnK4&uj!nP+6ph^yYsQwR?lH-9)wT zKa~a8Y#+?OvtcFUzOL1Eie_A(6cH)}T9J#5x-g&ju`ZrLB9+y=;8V=7}n z+*7X6qhuw_NV=OS0pZd}sc@>B(+Dsuu5lzH^St$v&K@Hx@~Jv>Aku` zGrOg|e7H#v@k-3Ck+z%I#G|8^{Ytt&7L%keDecMd%!+hCEVYCcEmqDRH*Dz`;6()6 zag~L?H0ev%XE@;=7vk$cW z$+a5~+M239pnq=^|J|BJ=Koz7`C{n*!Rh~@F!DE?{(loj{vhu^>HNP1t$z^wpPI-Y z*C+mfa~4+ouV3_Eg@G(A_{@JTV)z2}KN=UlBosFM|N5i7+9J9(`0tw zAIa<>V&|#q6@-eE>n8jfCp#(^>Jo08S(!tOQ+85zQX&aOtd`~DR*?r-G-frwZ&}4t zHYgvAiMxAimv`6%&&2ZCrLEfK%hDR#)@SM4c=9F$Q=9fwb3y@&jY&OC(0tw6!kO1~ z(}~OAg3XWBGnd<--AcKFET880^H*KBmm1Upc_K7A*!xoX~0N#I*mSR0x1K_?4hD#({>p5@#O*8{fA+Fh$kpYwXNZv&xEgVyA>p-6S|y~gnXlY_f3l3YaU#_vUtCA%p= zK2JF}5w(^LNV-PxfCw`>KEsUHBDB74Mr&8nF;1cgX;HxBl>}RO$}zr9+7~pJ62My0 z>q@2b4$FeM5>A;l+cMYUV;Yej$)DIMH`ee`PRC+q8miKl_wTASn(RRGxp#U)oqMK= zfcAi814i-1vR|?JeLVE+|4p+!j}-)>AL&y-kq07!|L_dL;QJMgn!z>J_y}tSU^=mt z1P0>Jdr&Wjj>C=#bo~}92QyL*%3-(VAQm9IQY^*L5ZCl2Dr%#S!0h+wM*J?ZJ( zZ47N^2|tvaaJ+!KIA*u$>9=7KmMf=daBePsNH!{`!~XJzHC4c9`7)D24VE8~^1!T~ zA;sgGYtV&#IjFlFq#4sAVU1L))%;`daB+;Zz)%uI@qKD?zc8tNA9`~;wuKKeV=rLX zy9w2m9cG!uHlmJ=zAXVk_lJ{j)&+f4^ZG@T`2uFU#UoO32>rq#to@Gqd0=OCh1VRR zao*7#aJQ-D&v*=jopWRApD`+(K%?wXNjnNF7(25Vg^gwho5air=OMde1VL}f(@tbO zR@Rz{)D+n4kXGQwRL)>5o@7-SiYe-*P;MB1>mxhl`Cklv(7DuVhuGO|=eu2cjl zGO!+AIZV08&}Ra+pHQnkavvw%GekVj(p36JQM1yxdUqp_^#>nkskUdkY;WFo7*3TT ztk?`7)vjc3$Qna{Z1;~r|AmKV2#;cmX^D6uMp99rpF8$n#5w>~@#BcS@TOQ&q!W+>r$xlrWAbob8(ObeEP zmq}7A6nkBAm@BmdGki-a7iJ901@l34asX9SX(I)OfKO-7e^J624kRMaFn_KgV#tO5 zb!t7A^J|*G4CCIybE{}+e^5VXK7MPymxkW}Uuhz!Z3rf2g>!D6A%LCaXHeiUu)*7I z(UA!ZXn*VeD)F;wfzq|4(s&<}zI8rrCIj;9G)*!`tnq~Bkz<>e^)S*2bfu6Z!d$uj zufAl7+)epvBg8fZ%Tb5kQa|oaMDsK|AzkfcpU>3M-2iEEXh=FkJhzwGS44b(>LbRH zVXqy6c5NH_m&Z=_bI581Y$-KpTrr7ZHPK*1%Wf%{lxaygI!F~YIc0kiGBIG%2wB(^ z8r+?MAo3Ca+=x_qh(ovJ!J?QYKSm!(9#+#JAybZT-Q){H~3xe!4p#>Z3bI{!>eIzcF+jazq=1pwrDEhgGNJI5o}mu=N zn}1buViBd=aF1Bfy*p{;uncO>{w5-k$>-V6Zgs6fc7mh=$qQmzsGVd)&`$vq_K2OC zRYz;eilU+k3KqnK{BF>WIh_)5ni@%@&g_V#)ZoWIcc>!**-zsf_YLqBY={BVWyK4$ zzM3E;QEhDOg379)Y|a-GRq%o;OKnjm#;n`tUIYm|F*yxZR&pX(Pah-)7aA3EZChxc zL)qLMW%{JtKdvm8&R7FBg?_4e8w2j@2W)p&xs|KRuhZS-P@zJWFYaS{BU|PPaM#ycF1FOGX{jI;fb)$)TAw{1?&Or^@ z*OMpV0vz2hvG^&2x{ z{7X``Uk_`BYeNIcU%em@Q`TKKZfGU~OPb66;b061 z9UQ`GY%F-Czpql9TT4LNIq4R@g`>ShI1c^~s*F zv|Cz#7!LP5_2R!@GwYi9a&2pFcdaCH|JzH&Mj}gDB{n!^gHgGC&G2l}pKrGTEn|4> zMcM3Uf7|45zmRR7?gnSPUavdE-Kl#vc;$>!zcVi+^KXkNn!&SqLKQYVoZnKyLcJK< zn=Kh%dIj+ft!!v`StpUzx&)b7cX)&d?8u1lst>$%Ernf6)d4P%RRu?g3#`Od1?eHC zGM_|riDK-!xCcp+uUjtnyQ44z1>W=3%;33ZN6VB(>N62Ek8%`vAk_rt9;lVc-=fth z@nY&si|LWXVNexjjXVOxd(sz4e}`JHX6rF+|Hd6f*dILx1GQ>sr~J)=)(TKwtP|s< zXx$_!WFEa+M)$&{=ifTex_G(X0}z9jXHK;;+B-B@gwFZI?TRT64%?dmCQmmL%(%Lu z$%%3grxK%jX3(-~BQs=#>_1Droz*E()vTE3Zp^7Cb|;Zq2#j-)yWcB4Y_np*H+vh} z=Rtt>#*AWMPrdEPbK_h5N_$qxC89stYB)cGlLv-N@|33EGVrkThO+dgEIc(Yc8IihiW$GorMiL@uW0<^Fs0CZ?#EpY{ z38uwSJurFd%{GDIs>=<&zFJ7MZK?EFp>_xk(DP zY4S+t6lUeTYL>Ns=_3nWNE|C8Ey*}*IE`43>cnc*`iG}b7mDX>aaGrP=kpC1e8|L; zlzN05AHSS-YWjxtR{LkS36<;f8cYh5_w^FJBlIUeHIM_Y$>ru-85^iGhaCXR8B8aA zP%yBd4vZ{dTHo1NA$<>5t2@!kXWkfML{1-(DV$V8$%6U|%&l+oC$Q)|ROsIXvwuaC z{|rk1KA8OrXZ}CI?0;y`{tfW`y+Qj2sr{QY_Rj?NPxkxsw!j}?_h%UUCm#NvS?=#F zTUK_q|CHsLge?ioUcUH=7yrfd8tXyjFs;`1wp>~iHqm=*tcnn6* z)Q!+5C~Uj0gqzO+0dyp?cM80b9}kbr`8@ZHv)S9@_8|O{IrAS?dhzLPkjVZR)?^x( zy+LW~Um#yB=jkEc{NrA1F8o~V`Z_aTPqpGdYJTrt&Olms)~KC_wN>9b?u#L5+$YQd%#iprT2|~Y+4`|y{_EG)G{)6 zdn2>1)4>mtf!K)|M8MU1S;e_cr>`b+VeXyAt4i3Twk@br`_h* zH98Ye3GBkX0T7Md#+lqPN~)vfy&`wTlGmma-g-|s#m zKe5!n&5iEQho<$AK{mG}39BT>*&@v9c#Ubv(%6a0O|j32I1q)H7OrJb+zzoJG-tog zl^UwC$B_p1Q^#u5TphBmbl<&a0x$CDZIhl}?9tIF_ZAEgF(xoW-oNYJm6ov04R|(L zvU-1}lx{K`Ln5_nZnwp9^g$HHAI9NJ>{^8o<3WAb3y={iJLHgq)|A9xA@oW^ zqWz6{{G%F_6UYXg?{U{KpFRF=@Rnco7H2rY|NQOT(Eic^S~2l8olVyqidr@>;?zGT zDDf8~Vdg3_WV)nb7g#wx#nDKs_@aC)I)AyLXl%opQ%+wA0AovC%X9<*D$-hxREICF zzDsyS*UvTIpzPQy8%>N^#$4JaDvB{@l3n8vSfCm|`~LA9g?Mu|MG?SFzAEWdV6gD% zg|+Ot{G@4UBw&l17z^fvpE>|rtim}!dU9_m0@?j(Hpm^(t5%dHcN%_SrE?I4l#%{v zv1D;$M)E=_7ho%@V0<+y?tw65;vqm=3CdU!X0iUt_&va%<*C9)jMV^(II{-;pJ3&o z>Qow2Pa>+aw;NthR_b|A1QN92YnUmy{Txz$UU_`?M8wa4Xu>*Ta=axc#ui56%HYVl zqTeEZ4_jzAnMl&7Lv@hn;+%#k)YIbu_7a7J8!|D+1)G}nhq2R0!!hf*y0Rt^q;V0t zF|yG!7fFnqlmS&>na#@>%wR*dK(_=xAk#!7b}uMAA81bb|+Ct=8woPVpF|wf&`3M z7ex7X;WC1zeWQDnbWzBGLr|?2U~nacR!io*`<%D^Rx+Z_2Sg^MrR%$J`$+Sa5)^sgj zarn&KOLRibRSlN=gCa6OCaJ(!DJ@0mNk)C}z1g?E9tw~g51n3HD;vNAg+&poS)b^@ zeAg~}1!wq(84NBI3s@H{((fU5pj*v#W$3YzC?tYJ$Zn*eOy;=e}s2$4C z?+|p6B{#((nE?)D{GeE`R1pOE1$d1Vyqdvq4<&194Y6d5%S3GX2MnZ*)oIfHO&+9_ zi>@cwm_X2`W>U{jJzt<0UC-U4{jCayVrnB)*qDi-D{ow9uiKoJgn6c*5=R{|x6#Q5 z`RkH|+Lxh3)SgYqjR4@yY@eS~ZLHXg=|RW7rlSIe>J@C4ha}QGPWbcHlFa~fYd9*I z4@-)fH-RLB9sMcXt^MLi(GL}^$NpDq%XO|+6I zOoiD7#_|KW&RFe}4P>rxse5)fhz{s{_A~Qq+OGFcG5*DOhiGLcZ6q^k*?L6q;}tGD z7?Z(<>;zKZ%&%N#tm|j2nGH!Xfg2%v;Ew^pJE^FiO&@%H1_R&o%fYHZQJi{DlP)Gb zAem^>LZRRRpUOnj164((VBWFrr&i{=Vm=7Y`Kgz49jik*0|tMdbY4tp_N4M({7tqdgMqii!_#Tr?PQfJwOG(+ z5jmt$MCIV51T~>A2wV}&pETl%G(iu9E1>z_;`wc)=T#ax>VR!K?gI&n%%0BbdVZJ3 zz3kG(i9IP@ZJCU^iB@)Q51h@);H)b`Sy=anXZSu*lt@n^gJ`6B$-oRbyT|XsgwA5B zDxL-k61v0DwXxP4dP@zMzFyMVDt>YuN38Fy+dkxXKyW2@*{K2|K#e5mFpH9K-REqM z-b%xTL>i>>ij$I)ipfpsgX2VJtANVf>9J(;H|yELr4^@mf>*{D%L*fv zw;8gr@<~5IiI8M(t$*OaDX!uc7%WuChWV!tS$iVimRzeK;n+Bz+ToByE2<$(Mi+g1 zEb+6>ItO`}f(b9_p3I1WvT_H-m4@Utz1K^%KREWrC889*9jorx@1L2o*&)%&$UVF# zTev;3s#idVnGTCbDR8YIc&#h^3>A1tp1!S;AlJd2L#tx3@G*y?GZXONoC9N~nY!2E z9tJ^G*~;~9=KYO5Czt!&a+tCuN`mFz&%Vt{S*sEbCS~*XJNbdTE^6jwJ`1eE-X*l*FllJ$N#ka49W^J*?Kum{4cN%Visag5%}1@GGd zx@cuD#(pm6wc9Q(*C)xKt4`+G1;)N$LRiU%q0oh8RdNawYC1g0fsZTv=Wf9u6YP%P zL{Dik(1%WG^Vh4|5Ykj?8X2IQQEyYM(=6}fTA^VE&A)}g*%@6TZ7+Xn*{WonCu_Pl z2RrZS08URva)m!kQ$ROZryxNNHW>FAv1Kq;wlD{X5qEN=gpY9`-le1sTcmUfT~G60 z@_n}6AgwK6eh*CUF1N`!^Yy-i;zG?X9s5DA2DYBe)WU zMCt+Rg*t6`yK3f7wgADoUa%eCt{W{7 zY>H%&9TFFVOTk6twH~?)1hJbK?0c<7aJ?2aF+5OdlwlicAeRfsT95D<^7fn%q8oW^ z7adG^yK2i?iIM2+<QD-Lv*ye6{vCFyV*Vp-h`-YB;g!KZmq$d{65Co2w}Yr!^#mjSnY67Uu~ z6hoZt`pg$~4i>R?h6Y{>AB24raT6hN)-sTBx)RM?(Vum>MuyBENTc>br5#&1K8%8T z+5&3D(y+8+w5t#^#c4x8Ws5fC5E1p$pX#Ja>#BNWhy~zfABSoN04iBfg$qO~E(IRa z(P%{K_=z`y93>ziJWJ^#={yC>ZcTY0|D^UmjtBk(`#*U9UtCWo z@~*N+?b z3og9&S#Dou^~$~VV4`7C__*0v;QY!x=WEL6j~yc&nxwE-&jyN98W`bNmq%mKJlP;x zw5%$hj|(yak#zORat1qv<==`q?u5TEzhq}IqZ9`oO^3pE!rmsK0qepP7cIg>lg)4| z_3mf_O2m@Ebt=-#5fG~dyb?EVg~+Icadps7Shnxl1jyy6D@e`pjbyu|ZiUWv`2mT3 zXNCd@K>OS79G+rU1}XNnWKU886`FBRt^V=KiWNS-rbPT_JFs$|C2Zevk1xuC4=zr& z(0f6xdlbca%d`XHH#)VJ$|^Tm>QBJPvSM&zx&UC=5g5K??cyithK*e`;aI9c8cpg* zq-U12KAW0^&BOC|8v?73pkFZ!Y|Tx6sl%Y<8@o@_&O&$9@RIJV=GxW7_!YM12NA-M z`l$*X*_<&DY^*-XG30FJzNaW;!P!G#qvdzsrJ2e5hQ9Vhp*I#Sv$>SSGc)~)mXTnP zA$2JM#cz|3;;##R=fj&N)smFf8l&*=%M8#Ix1L!pNNwFt5VWJJHbULFLr$jbQNLQ@ z7Yy}EQb3LP!NS5)Z(g!7v)Z%FynNJFG~y|}7|w*m3P>QHH@$3CO_I_{H&dPKlvz7O zK+eGeB|#_=*d`u0%@-9He)i5lu!(>Rb$U>nd5T&IMKCgq4lDGi^PEXngsK<`C^<*DSivd&u1ALoF6*AUF;GwqUGY%!xiAhqFBxxdz*)?D_!h-i# z4r#fX-0pVEC5P;50agE9cHnmuDK&cwxVk{UgDX5F`BBkrzDpe#ogfvWLB+}D1SCeX zl+FI7UkvWAx@_+E)*|pbJr1c|AuP|8!D~@-BF{XN(8W1|sxeq~4=*pRg$l>nV z(ksgqL!&LH>RbBtX*kL|$Mx@j2fM4FybTmnM{5iem;VYMRVh>L^z)|JUv^Ui^HNZ2 z1Pnc+qR%b$p>FHv;JNxiK|4dYhlFky8ujx-n{kz$k1m-2`5JY&KO!a+lK|NryL|1* zQ-?>Y~xA%9+m!9e7{N?Ll32=R!J$Ecx0~CN4VrT{5fKqgWWTdyikisFb ztLYFE?4}UZ&X!B#UyafbI4YAenf=;u*$xS=bI$uYwRTg&w$*wp%?hO^)Gx`rg|6G> z>^E0}v%f_VxGdb!^rX9oKvPZKLTVD~YrK}{m0!zKlGcGmc)~F!L06YVMYgcbdT`I# zrzt5W!8Bl5b3Tfe;i$e3gPhaC8V1IGf?wZZe_VM&)r{x&*7+a$YzBRF!}iM+SNRDY z8Xs8#Sld~K*hI?iU*+^=uLGdl^;j&GvxYdKdSC*e%R-Ga4brj~FSHl>o|i#Attep0 z9C#xU6=09Ci3$2Mg}|+eVJr#K%4U?N))Iw^r6>H1IROeqLDp}V=3)-H6`jRs2#*Nn zZi|Q{EJh^bP&-69`3l8f%?Oyk0oWE(?>G@orTM4k0d`3r@H>^m)({Zjun_A#dNt5I zcFn3WR0?3D&1dG-7xVelk*}^%v;yfHV{rqZZC*m)uX|^Wa=?YrI$0Dd%HP;)%ku=v zq>teNraO{}`pfmMO&3$yvI3LwuX`v6s0Mq+0Z|;S<0aQY-=*l9wY7+E(KO#L=vG#Fx9tLo zUrDX_Q`j)kFxT~(mYpvQO$j#!C-a)x*~`r*^R))?0z~_=v95%abxk$$>9FuI0oMAM zK*Nsb9ZcB(YPs%oT0?KcWgL{zF+S(&he77Y=e$-zpMei}_w%Bq9qxCBf>`JDVqblG zYK+d@8EH&XpNy^nbed(dM-qm?%N=HU$?~;$oE`*3gL-rPdpmy# zf`2`Ebayd(E#k2fx?%4M0)Q{z!x+kJ4U02Zq@xhP>^TV4R~8^f-JBr{=#<==SFS6? z0HR3ky3`=d`Q{2Aj+KUKz`~;xUDi4v7D?>Y5J-1YcwWlbsdnB79|A`^a?6#L6YhSt zV*zs>@{~fIL>yvpjHH`T6<6+QW*(UlOAq?6fIjg|%)5JJ73 zZfp|8nuF4Y6yT+x=;T4u?^3~e2pPPbf=KN)wXD7VnfO(PARL}%{Y1Apm3MGv*E-5Q zJ^HumnfFeZ;AqJcF$R&^Bn>;S3ml)Ifbvq4P`ZRTz5V-a zYNUqH%fM^%LAC=q-ApjayRbm&fJuaqfcLwR@ZqXcI(<+;5)g9_!~oB5hB}jomR&%? zn0h}jn?`wm4S$|dLYb1sl_d})4Cs~2J>wX}q|i6|4XJP_1vBcX2$HD}VDsdp1`Yxt z%L7K5g0PyaW!dY>{#;N{tgVO6Ikf&csDAAr{-+=KZ>G&ZXV!mpxO^#u ze;9}VZkDCT|7(4f!ha|h{-rAZ^L_tW`NHy5*Y%$csv4Tnr;Ui-Q&sdYNOV|C?TQu% zC=?F-{#w2n6N+)*IO%OFhMJn3(WcD!@<&;EzgI-RYoImVzIu3=so&q174#V5K(ZbTSBhjA!PI` z{ahm#tf9|ll(h>~_;S?Yft@S5iruD7%pH_Uh1diPGe}9nHFMMA1sMML+g-WNLjI!G z-q|<)(BMd0HDSF9o43ae*s8^7wr@I+u6A{eof~(Lhtt@P6GxiOyRQ$h9|p2x(Tk73 zTubk;)eh@TMX!N&OP>c|XP&w)aG%y~olR?qY)7O#ca19p$@B*ZNuj5w8xItW0GOwb z47)De-!poc^!g%o)=a{6A3m&wfNW4M=Inpo1`3KG5FGC5=XMXI(NFBAI9~x332gt725bXW@<*-77%z(AfS*q~SRpAJpby#f;`0t9*>yd2_G+;#!2G&7>UDW9&6u;_v2RwIyWk9|M9 zYCMmE2j^PFsSMn{jPFrDgB?KLbj5#c5#G$unEFOjEzG&rR>fy1v zs@_rusVw|;tnis6IaUauZlsL;T!9090|h29xp;O?mOY1sLKdNPEG7p&h&*yY;t(<1 zng$Mu2_}y4vicJWT$~VPl@z0Nmk&!_i3FHs$8*(uWKx{asY3!HHa+sd)2pq?`f|uJ z&7z1Dx#MA9Nu31yl&JxVAL- zb7Q?}?rA@}f(kxRRFI6&wBd0BGA<4Ut%`6&>I7l>zQ5^15+z5xr-U#fZ4t+1_>G(@ zHA8uCwVqn0AzxvGpIhXiYp zQk1(w=|MdeLnBzBv|%Tm{0@MP!$RP~3Yzn3vNlul%SkOcLs&=jHg8vXWj%@-dA69& z@0)vVaeH>=1*R~?Sc$L3f1rs{rVapjHo&N(XD=7W5MT{9rKqw=cs~kE54se=6pPqm>Yy`yeo>zW%%^i5rnni3;3!;r%4O zUg_4}xJ*znCXaE|fgfLspg}MmIzS7#wrZ)|=mjY`o-OszUucY06nE{I&727Dxnw(V zt|5crr`LSj>ILcDSm+h0g%~kl>66e?cBZ4uk?8vX`}qT!IkF>`5;Ze z4A9|>dKTTrlJFKz4kL5t>Eug6gbtjA{Zhh7l%C7;{lKCe{77QyvC=G=^yZnrRrZ%? zX9SDuqzn$kO`FMn9JfG3c5-Zln9QVhBc`l4wo^i7SI$oJ4?~S){W_y!Aq0wmn49AF z7q9f8Yt^wxs(fS&vXla57*>05q=f~1$p6_6fx_HTs+v7kx7z~In;Cw4w~WzdIP$}q z9Rwnd#&P?x7X(A)7E^o>qSu{-+)d4XrysOroP`>!FummPd%+I$c0GV2q}>boQU`22 z>P*J(Wj}P5d5RdL)mxNriu2kKHEuQ=sT7QH%B04`NKO&`gOyyYowxqIDU{NK?Lzv* zM~<2x4hW>*8u3A`#CuXjA1K18Y)09SvLasRZFl@v^utnC%G$H^p}8obgY~+#8)7P9 zQV3_!srZ@G2^k8*hm7QC;{39bYV4H1*Dz57_a>GkQ7a+T*W8n#7mD~+JW;+DSatX{ zQe$1NA*ok0iVN+k9TTxTs%dav2hc*JS#hxX(+ruYGqc2cB7Lp_-2%S*KFYejBohuD zVV4W1(r>Oq`2@1)wZU#zYnYP$Ac(_IvtpN0A%mn*^W4KDcnN)V>*`?KPECs)FUyse zy|Ytw#E(;*QiIkD&WL)l#ec~#p=Yq6xZ}&1bvFayIz*LM?iha0w%#GcIP(p_xoOzx zn;}c7_To7Yvj@chm1C+wcqRJ~ll^M{CG5cvXh|lPO4M?P@q5RxdQNHz(_*(;h0pVG zJ0hS|bbpsUMbZ|80q-Fj7RKtGvg}sdu1jNtqRkA(vFA%Ek#K`{rHfc)W2*C%MfR5b zQJLOp9s*#vu|$(CJWlbVD;E--nTON)*a!;N6$Bh!t(W?&ja>$>n$*cgy}~Ya;jZ%v z>Ni#kDRS=<{m>kN#n{}jlWpecr{m+;l505ksUole0DDI~gz$6)6gK1tVMsT=W6#7f zTxGujCXnal!h@g0GWYNn?lpH&NHh>-4-dW+m|VNHr=}!^gi-!eAc9dn+kieup`Q@n z;}TUEkovR`Mez0op%KY2JWtXff?(zBfQFN6+Kzu)?ni2iFWhkkK{%i-^8S!$Hs~ve zoM7oEJI`CO5RzR>$uIp5QYERvy+Z}9eG6^6Ail0beV*mifHKK}_wcb-wrt2Vl52bW zSNXx?unKn+N2|A|1>=sqIC9f&lu+-_)=kV@63IK6cD2hS%a1QgfoWc@w;+>p00v^&TfJewau#p`N2$V2Y zEeHpg^|k^fltG}>qQioUeW~JBSCj@Mf`@D)b<>dr)waA`rOVyNUHw}n`O-0wrz_Sk zGVLVGt8ooS*IoMI!9CF3H|qsYrK3P(jp427i@caLRDTB9BzK0?AdEU4c3vZLN6LQ( zo(fXRaEkjWdI89&Rg7I@{F_|;6_@BPBfKQ_hz0N<@DDaj>=9>(YR!r!@)n@o z&K9}eI0dp%8aR)0yI@=1JKB|}MPQ%^oHm0*=_da z(@T3(;x_g^ymENng@xRGsDE7~mCVdb4o$9q2m%$SQdI-EXpU-b#bAAWd;$wb9G4{*+m|JGr^qA)u4&8Z9eJoNuiokUE2$1 zf=HLaEs%ZUK7(plbf=NUmaml})Z%I*_I~Jkbg{S0lL2qXZgX$YT0rJ#^cFu4;o8fQ z@L5MwM4UTHa~Kkfo8J71I*+4$xj0j9C(3$KM2?El4_*qKBsMc|XLqP#fIJn`_#fua}zt7=9PdIR)4o?M?17A z!3m^;#1wO%_c_!SPuu?wXYUkUS)i_I$F^g^k|c&@YCxgSB{iJN_4TrH9*ze+JNhyDR@WK>s^K{(k`a zKN5ZaKLGmgPMZI|`utV1^JlY&@ec|A?}Xj|0M>t9cm4+Gzrp%%fd2cY^gl2;D+j@! zC;shA|FsLypVrj>?vecuux4TYV>$g7!Fp5Ye_w#E>+BCn)WsmS;(Tz(Qe>z&iR{^1AnuX12Gz zA3NB&bU@Lno7CB#)rBaJs(TuT87n52rZ$)2s`wXww9jrF&0e&uSlhlzF;~?2{d%3a z-U`24p<|$gfx-2AO2zi==+Kky`DNV#es!%Rc564P5RE`Mpl zG!vboJHx)BSL6E5BHr8;%E@0se|dWfX<>i!6i=4y$W!3ZjeX>0q!`F-{f@WvL>JTH z<<`Y!_89k;inVNiRCDF~0L@r!$o7D%*O%U3!$-8~g7uB22H5jUi`p&&@ym)91e)x} znC?2#NmZb}>I}cjLh8v^s7bh~T4q(@_Q>-T zZQ>W-+}!d;N2*bz>3T?PB({|WpvjZYYb*w^XZlWL3WO2HL|db79)5%(2}Ha0y0b>% z_2~c}QHk zrGh@r7R_i{`VexAQlXx_))lad0RFjg(i~7+2c z&K+?V33=Edi;0Y#C(`8pJY^_ViV)}AWySRIaAik-!jfh|N0gsLKf{ojfh79?xWn}5 zMK~Ipw)T>8R3++J=5^|!)NA)>k2i%rR$In%UpEEJiZ{Vvwmn%A>lgKy?WWRpX|Yo9 z$0%!3>FF`d#XUpLF4QmSE>|b{B%5@;+Ho{j$=&So7NxI}-aCCV4MUCP-pxG|);1kw zFuq}6l4S7H8}rFa>qvFWjMjVNk6C7PemR#bZ@13=0UvQWf3Z9frrO5EniUSU@Yw+mqAGUc#kLh3Mah<8 z0f6VhFkb^hX*oN-a{+PuviZ@G8C+2~Ws9Wv>?kUKbo5@US`jS8UP=4M*$9_dqb6ps8_5kAql<@oZrF^P5Tr+A;cADJ z&&Ggn*b{J;lmls+ZQ+tO$bDOwHz&c)j01%OpyEgTI?5?Pg>W%)&y~TYmr)DBDuS(V zp{RxbtwWw1#%pDi2guLyXidLyO=Dv7DHCQ{@`QbV(98<|5Ev#xp8808>5?;mdmW4n z8_zi?7|FQ`h=6EWyMtt)nheA}QHa^e08A>bE)xNo3!G#~A^NdEL#4D(`8Bz_J-Z_t zX?y@_`r&?mBPT4XSV9$g6h@7~0v{!A7y|AZ>>sIMA&SS&QkESwMq*e4p2f73U3c=)F-w<#J|;`Go-1< ze;*gp!$-pdPFP#XljhF~HI)#UOfU?+^PRIvDJECT(C|%TqD*8YS@l0a4vUr&dp7&@ z7E2V>nZ{~g?j#`SsW0kHG)zkgR_<9CPWVa&C8%35`b9Z-(;I}NdY$>(L1LW&=afrk z-ZgM`%D*7-iAoWks%rBtW13&#Rh{tUHy6(50`0^-rIAy}A*orp*qp}(|8Crz@{9t2 zx}G%6vM$Zyp1)&l!>#YL#s+N>HjZs##41ge2`V`)0*FL4FdHyWWMiZ?P|w5GokD;Y zQ;WkH)9{+xqfUp5M-L7YG?A0>`fOv%uKV(qkLo&DfEg$Gjl?5kSXV?U8iw>#C?H)o z@t7qU&nqK~SVl+_kIc_4>4C!a&cG}b2ipzEVykPuT$+hN=1>iT&;saPgp=Sn83%+W z3#AwD>u6vw^zt$szQxbyia4Impi}5B7x=}R!0nh1?AR0*h{ASREB5}InW&UxOr+Q; z&$`Hb*p^MUIY@WD&;Ugr%bb;XkU%1|0NTPj#KrkYT25r7#P^_9vk^mqX6#y=?Ax zwWA{dB5cmB@-o?`b``Gg-?jZo5RU(h0z{}z%Ej7G2qy(T!!h)Y;^x!g&;jhEpHMJ4 z-CXJan>3M_|B7xhGQtAOOSl10nJ~2P zCo8AO^_Hd^z00wvb(%l zK$laQ=1wyx1tWPJg(NXH2Y#RiuT&6lm+K=fXr7n#7CaC|4w;oLh&XhYlVyruQ-mel97g)>htL5Aqyvx;U>4l)fzT^A9u%wP zoG376>KjfJ=~0MK!*e&na*FlpQGc4bT;M>3<9*;j&IuWB^#KEI^A+mz_S=B?V8s0< zM(1g?02uW4=PAb(YE@}~T9T4KU?d)t0mb4ejs%HB*y_vDaQWa^MKwKtoV=lvlFw5E z%a?(b4Z{X<=wYx=OYR(m;*O>*N@#0L ze+t;QW`E3e%6v_xl&&g!5EGX(%r{_WM~wg-(M&I;;Vq_5z*%v)uUH!WsUM-X%&tPe z`}NALDNNRIVXh?XDvS;ksVFIg_as}rqUnfR$s#+Jc=%=wDO~AL&u4y0s#b7b&=Sdl zZCWCc@QGf{5AqZc3G_WZtS>^Z*V-pEfrxIIh$3iiT)^FFO|ivFl6E46iLc81Z# z?Q{jo7{>{EC85uAT8zAqYI#c6k4pE#C_NI=B81hSolG3Fs`!G!f5yzU%^V2E049y% z71(`VTzt=hMAEBgw{8ca>LPQe7;^hV0$B)TiViowB3KhxLsQ{67jIo)@2Hkk22HNM ziDP$q&}2?9yZNapQaPevIc`T10BAbLhkygZGyxSZGZ_fav&7$Ai4x~eU@HA8w5i2W zB7rcG(QN6@RaM++TfSokS)4R<=911w?A7gnDWsR%$ovAB9=Wull74#&2ooAv+S%s( zecw#G)wWyOHIGlUyJxvnnqBqH)6LtPhOX&wJm*VHm+m8^OhXN#$NH|GQ6C+gr^{;u zfZVd{*BH(&r!<1OX#XpQAMbLQ&M8`5k7yNeUKwc8t!c`(>c%D;9_`@r)}TTuyhDP< zL4$!W$4w;nxKB?}r#7oXLro9ZG0J4+ua0xC5Ujqqj7$`#5*aNz zkD;JQP*#9-X=OI#k2k`km&k591|0dW0>$0?n-$VzXUM^VP_Aop?c=jFs@B#xRdo&B z!=hZB)P+PoJp8V%3tCw^tdM(~;|H*MzAle1s_*tzXARG}sZ zdGHn0bv`}Zc8(GH>hS12i}-Iz4TV%pJ&~g44NoXx6hG32Q=b!fhh0+gZELycq(>v) z`YD3c(AkWLf=*q@y$6kS?I+-0tu@h6wfWdA!+IlCB@V*8vzqV+YRWxZu0|@x$Hb$; zeX?x5%3E4*s}V9K&vEMdVO4+pFoUa9MI;(YdQPuZG2HRrBO881fp#9XD*x=S2<&UL zaUjzP;}gcIFC8B=Y?O|2axyVbgK{GsMCmT-!l*Z8^@w*J*%we74V_tj2ph zo}x8+VNVv_y)z#B-b%j>2bu@klo2e3Fq%z|;xq{)K4Xf@@On0gPAOvy{aolfn&#>a zNA=rEdE^}8bz>Bv#G1+N)X?pB865@5J6jK*%6k|W|MmG(+t|#Sw9qrljJ@vY0=rbn zh)4pjvN~myHJrz9Dp_Q7ht(18CV1VoCc{|yDjP918snyL@Wa4buWAo8b0AV?9e27! z#w45y+|GW{d|$H#pK5<@Y7>OyZkb2o<;Lh^X?Hca(O(|bcxQ`Zz}ATLcC_F7K@9op z-d$!a;%?mB^7EHk>vlP@-{QS#^=(WqV?#IynI_IX!`8E}Vxcfi&sGanWxP!-k4MUH z>z^AD9|OL@?q$T^AOo>;6MaxUOUJCmdF8m;Q+!`bntCqX7{Kn@ zY{BAS^GE58@gQbGsmr&Ytu6LFRoyChPQJe7cAT2mR+cu)9uALf^%QF5W%w0vFJeDW zFFfoIKUaP%^sQ>s*tMy1)9-zua7N$49~p=RfKqU3uS9NrF0uqchf**v7@RU+Ti$*LSUL;Tme1{~ zd3pmqj$(Vb_e?XwJV(oai%M*=*~UIJv0t{-;lOzQ3Yr%ySJ58>R!KUl75Oo$G6PkV{Z!2~OP6$!n)H(Lgj`J*I?Tn$g|F zZz=nr=q^_R#v*OtN^TN1zMsh!Lu6xMuaNpZ_z|JP$g?qhP^N=;o(KeEpAz@A@6X6U zKghc|%epQ^W3hf*>NW!AfZB3sDnOiG?&Gt9;)Q@cCI!$p{tZKL+UTlR`U4gpm^8aX zI%ikp@afs|CaDs-zE&&Ua%o6LvkM<(ztz2crR+k5%7;fp_;GP)GE=%qT^0tdVdm1I zXXe3%&*gfd%6LN+z>-mYl9~t4w*&f$3VL3BFaoO8|9(LYXkWc@f;Ed zTMDIH@VBw}mYHMh57e#rL=}h3J-^P^Gkw{`0kVH0HT|hG`fthPe~_B~PlNHF zUZsD@tHJhvG&=wLlmF>`_)BWyB=~nn$e+%p|3O{)OCtIQ<>;?2slU~wzZIx|uyFi8 zmO!!nEsg!Br1bx?sI8;zw84h<$Ez`Wfy`@N(59dHM3}?IeQCqpp*(XToCH2pYAomC zAle@BymHM6AQ6Z{A=Q|3DQpxOEU=@~?G$oyu^&DCbsIU{v#s0pc1G*O{BN7ut}fhv zOuR*xGXJ)z{j(}-?Z?p3lM!77m8%=6-pQWlPo3124y&KF14$c~W~jA%o2o15zfs(} z>dFhX{C=nY@ql*kw5%=}<_@v(ZPNOVyx%nW^>{exeztbH`#mnG|KOBYo5&$jvtEtT zKW0aF+O@fjb;JdGZW+d8lwvVPKhOFdoUCx3$w-Vm6~Zv6z@5b`mK`bbOS`uer25hG zK9;FnkEROu>J;(1Kh<^jv{7fVV=~K-oXDeYvQr(AIExVEgh<7~Mcr;;v(%!0VYM*s7@D9g#c7P9-Vrl zhG=89sZ}POi@7mk**aPQei?R2`XcqK@BVo>!L9Vm}32|o2a&#YAKm>uhTJ<_# zFL`tJo0~FBQiF7}ypLJbkA*=1@zkIC`k!75A!eRnR*)z57GUmnG&(WU08z6SlavMy za@pN+(aeOj1h9FO@y2wr`KQ<@9%{dnJ4Bm5u>9jD_W04&(DcyV8|dajcjEJ9aA3}a zZ?J$mSa8#j7KMi*O+y>}Ww4g9!1aD~R{Pue!q8g_LV;!|rCVY?Ac`LtfL*vijmm&3 z3a+xB1Tkc=Q>e6q^nP@FcPc=6=ZY5xvR}YZ5=AlvRw5fX9L{d`E`6TP5rqK<{+Tv8 zl+?&g-4X@j2MpFX^$*|{(j11JquJyFRbD^)e6)>S&WD0brp{atGm6Pn5R;{lO)bKx z)`R>J{wdnk*TaNG(s^4Cg}$ZIw+-fZe$${Ma?CQI_#hK3?K37&UTq8zIh)W5)N|~F zx$;oJm|joEfKnZPz3sQ3O)cGq=rfFmMsUNHZLR-Np+y(8DtZEq51>8AggdNG9ME=w z0tPZ`Z4_3wHJ+O+^LQ-7QL{|x= zf@>5Q?)C}Aq9uGA!Xn3zQ3Ie)R-W3?%j{RlM5k|C+_Fap^g>!5`bx*4@e2Thnw|R6 zFBob8!RS~7(nvU&XS4T$e#z{cP{eOBbO4j}BKfvyE!Ponf99?yw1JzRp|BFal!q-a z8{-ZkRrgg|t!V)pGhw-8!7wOch@NXHl{WnG4Ewr{{dwzi*|`Yqc&F#1n` zm2T$C#0!zVmj#2*(dZ%s!3_c9AJ$%gXg2%b9lYfXfr!&u>7R&g1hCJ1Q7l{Lnkx9$ zox8yhjHA6zWIQ5rdpo~q_G3Ck?>{$aI0E_SK-YVY;v*2}LZ%H-aa5QFv>*s@{Q}Y6 zB39VJm#sN8(nLH#CbTJuhoEaXMtkB<7#q5QOcs@-FoOW=)tE zfv)V)5v>XdSFc2aRZN!c`YO}A!WG6L6xup1X(9IomL0820?XmLeW&K--68;c9MA@t z_PG`M51cNw&7Wb(ypY)z4Sz8+T=v3GWR%4Nj3W2fv)te($S`#1QhaF35%?rtX&7~r z8_I8$?#;IxGUb2iy6A^#BX+v!!e|ZqsB}1@f~(#x*JhO0r5T=`PoXUcDHn#Qr*NcJU7Mcc>DEK&tLy292%p*krTPjtfp23-DnZaLGDcy^`;3u7%m0;i^h(FNQJx9 zSAvRCPq@wF;FgEfD;l7i8659>4=R0h}2YA`k-g}V0lnPILJs*LHL-G zh$gS}u+PTe&e|j>MhKn!&HWG#(C138P)!tjy9yxq_S{nv#_u)6XMiY`M7JdK6PoZ{ z+HW+&Mwj;0>9i%dz`2Q*;iQ;1+y>Wj-5{dC!;g}RCujv(kjf06B?=C>GQ}8|B=d4G zo!JGIs3Z8BL4S_>01RKNJqb%6EWYz}sf z(zxKj0c*hT!BUlPHUtBm(q;on6dW|GU?ApE^Kr!jJdF~wt{|n@OQe=|*tw(K@H|tM z#PX@L_J^_K;>n^+E@nC(hc0RNWZH8@ayT+LhV-9dJ~|Mz0>8lm2E(hWe!*;8p5|F$ zxFw&z8EU&)F6yem(wsK#BKvcZddai}+{gk_algp%H*bg5V_uNdH>c~^wP<7fUAZe_$~tX=T$W{6nTZX zQ02wci0Bf@#LrYMt#q~QXhdQQN`0yP8L{wtkhjK|l;ziD{F;X`3j5XmPLSGMSm5Iw zE91^!vicS8-|)Ad1XMbPUT(UF62KPf9UZQz3@l(1 zeroBs!`OYSLsiwiP7yKYcku=R-?O4*uX;F=n<5gcrW0b^JJEHFUD0PDMqvuw))w)> z>BE)GIOf&x_Pmu$1Z^_-FR(JZMr;9zll zY>iwtk{H1+iaE_dZN>$2@U;^=4|eziBP2iKO%n+tWe@FxFIm`nVPtrOSm1uwe^448 zbyr(%Yp$j>>t)HqyR^vii~3Ma!4C0ZvO9VRe#?dfC zv%TMqsX)z`vw%hNR6BMSWgmN0BnpklE?{`!r5rK?ZXsN+ng(5m&I-nIzD%s6xinX% zMqS<^+R}5eh!KBOPatgC43smf^yW6!#@$D2uuXtWUl>BViSh=t`Mf#Uonx?ja_5SWO89G=`L!3fk$D=;KAocvD7}EbBwNBUr~>v<0ux zL+G-!j%3?zq&4(k@PyS2z`ZAv#%_5sq#qe~4SS-aYfAc`8Q{l%@#@V~)HzSHy5l2j z41ap~D=VLX*Nm9#*p#89z)qya4mhzR4Qr@ZXSD!*6ShdW9m5Khv_AOx{)nSCdG)^p z@)Q!oVH7HjQT)Qiejp3#e4#VVteddB%8G#N;Q!@xUde@hPf`}VWnzr5_B!r#(L=|t z-Y~>i>JYDzCuBFJPj5wEvozwO>^xPP$(hbMbjc9?+W(rBMsb);@^eOc+_EYGcFZTJ z0+ST5t@gqaG-aRdb?~97fyUGVq4n0bkE^Cxp4t~LrQFLX7K582(SdI$asx}U0qS@p zSAp-YtuKn*r8}JZa959FGlvS}GDOO2bYwDb3N1X4@~D2t5XrdOisj_JV^S=LhIO3( zSiW=?Zlcj1qN+6KmIoHzhk4%Cc&7+(yE-lIvIyqmtZCP}IG=7!n)X*iB*Ka!t3}T{ zsjK2t$i6Ie7A2bt=2dh$FEv2$4BS;HCOq3_A6UQ51%pdwWeG@A>pLb|ZRE-qi=vt{ zE_&G$h$y`Cz#x+vc2QZGq)~edZ~AV>ay05Ki8!&~ zzyfyAm5+U6-oP*j(IknPidJFwR9a2+MAO0E2e_6aDu@3Cg+8kJbyrtj zj)9KpY~UjkE)DP9T4eg>MCe7y2AENKCruM{|1u>x912kK>_~I+xd;@|w%`$g+)e9u zYKrN)<~taWECpNS4hpx-r?TJIJ^%<5bS3Cd$d)uZBVeF0V=42NQ~D%je&Kn|nIO4O z^!*;5!0$Veud02mkMFvVm61Dr+yTGzxd)@_6-h7!lf-i$4rnpsX&M{;Xv7ih47Zy= znq+%IudUwWl^DLrU=s#(vCMit@?k?v>0Sx-wTQlCMlMg?IY*ttKP|r5S~#OzJaX#j zxLDAFnF^ml>1zb2e%mB9Jkhl}55>CxqL;TQE;9miU%yHzD&_La&zbnDo6By~f`pu0 zx@!#=ehr1suTIlW=2#7{#qmfCP=JFnCxKg99Gj4VTY6Jb|7c|FRiSr?Jc20VxWYQU zpWeU$9Q0DMYCrF~50={kK42;X;hvd$Fq60PL~eS4TgZ&NC6~V1t4m)zd^E%L8#(ap zunhkBj!Lja0-Hp?8JxtYdM^!NbHMIPK|CHFfzvJLS3>+%E~%{)mi7ot+{r9tSiy^s zy*BDzyD;R?UjdcFQ>Y@+AQha>o6&ki(0@T+l7-*`)CgydD4rAcC(%3qF(`41v4m5U zno*d_!#nDQuPysYsq?3VM!8LBkgJrUKd!UsupapGeH`hq`nf!Pb%DG?Ju^A@oPyX7 zze+j~9bCX@vmg=y?;TWlun7Au7Ls#Gi3{y#R+=kVD&%9UVrE3nf`0B>|b+FvH#P)b5_oO)jid$^~XK+AARSlv?KSvtJ8fI zGXDnZ4`QYMIB2?`5sGuZF{oe04?A~g*ym%-_1WV3At7)w5_cr#woaKxu!qRB%$ScGLTtd4TDYd{wS(!S4J?^&zCJcDwKUW_Cv4Z5W~Q7Mcm~v&&?jw1de!64Cd{%B1*}S= zu}EGh2RIqYu=;OASu@0)7CxA5DLGKOgO$8(N!^pBm)5C?418JPCg=gN}!$C{el zZ6D9!zkRNH`+kmmc1=+AzReN%itS=f2Zl5oZtc%Opvgo+{WvfE9W>yj+S#saJrU&v z1Aze8#B}iNev3wqQ)v~22ncxz=VyC6P+GSUYT*X2>Qz1uqS9s7Uj*>O@!cPzuQ?AF(`K;tH_w5} z$u3WGdq25=_su{yoXM2}XnseuXwWIhJ=XUdFbs&E6(9eW#^eng7vPF#OYH44mAqerL5H?zL2;l&85In~Qj8OJ^17md?= z^;4A_`?p@Tzn)czF`mj(KN46Wz}fd5QXnR_?=}*Fu0q|`2n@#wjr|Tnw2NbgAFfut zH)&K$)z}(rE9e2P+%MczZLC}qso2n)JTq4q6gs!W?$^G9CLF!FPaALjGAc|stU+OhklBV+%J4fhgRx< z9qbwCS#Tu)Ss1Pg9N(e}53a1wQ^Q5YFq<*2XM{9$ElMO1-`-_H zByK>yvy97LJ_K$Ak_sS>5hI8KnGF@vy>~qKScWzWA8EpB3M&KPp0wxKxs?o&T1~|l zYY8$&is)BCTpCC%Qq2*+Ksps}2}*Au+TZKW+}x)V9u~NgTNzR1f2=(zWcKIxz(+79 zuou!Z1ZhT^I-E4Bxp0s<4O1s*;y9My#ZHLahbq%34^>M_m=_?*^3S zp&5kr=U*FwXtp(dTf{0~1n$vSUOlNitW{A3^(Rp}EePMQsJ5?26Cw_?lnRx{X!GB6$*zPcwKWL}tD-Q&riuYXSI;ib3Zz0nraYjYB)03H-B{y7 zaSDJZl@ik=fD*JyQaoJ7QKdur$^y2JhzXSQL@JRgN`&#H zS$*#qq6Yo-n8iyIVRDw2)hCZKQt$8VVBkiarm2*vm@!h zn|KvtWk1gwJPWMm(NaUPcB#k7YAifce<+v_N^^tuvcid4Ohf^`51%ycGD zq{d)iG69RX;%3H-3J(RIxbeaPLfyQpv3PoNDU$u=QbD8_zpIYo;)Hn*DHz@D#1FVW zpT@d7!a(fi`%U@V3m2<2XQ37N3;^rs4FGG>6&A+97FIzi01hi4isojwNWLSEmW|FyMevv3k^Y()$Db?9OYsiY<%yo&Qci#{N$4> zIlnu#{FYfRAZ`@g`)%dVpaHuniqcs`E;q&s2RjmHZ7PeoFj%Y{&@wqBssRnyHyW~@ zAk7^vT>-vB@3!m6D%|Iaf?ZoST)mi zCkPF!gKuvL3R7k!_Ty?Ek48S%T+~X2;55+9f%}cP0*M*=-#Gi{uHr30{tDCm?(wtU zg(M|h_m=2v1{Ri#K;{Achj9li-4Ry=30(M~gQO%pBqB!1gsxF?X>A%Q$Gt!9OB0_2FO`=cH}6DMW=g7DuPL3D5cs_#c31yFIdCx z{qD03u!Y`yOwcyJ+6)%0Ym0gt3tdmAU}9S=$(gFPTFdbKMxF+ZL6Ll!eFJZ!pZs=J z+0*BEG4c_F(-x=7z$&5P*SBenoO+7jfL?I0Qz;p(Y3ZXpAXjVeN)1##WkU6qiWl@a36UqJP}KU}TrKdLD5 zxJUEe8>7fiKGU_bOT1wQNIzLj{dkhSu%hVmlpLE#^O=>_jd~@y|X0bxgR4XuYOACYGwUG zba&wow&)zoXg{2!exvG@Ddy#u5GBTsiUhu#z;RHeMr-{pXw@J zAHgUtDs>U8nPtzfS0WRf*061(tQ!)nsTd=xi(WcLRLKo-ltxb-szEgeLM|tp_$mm8 z!3*ltDa;Iv%w=dnB39uY+3FskT-cy|Jz*T8ybD>X43z1@p~Ovbv&&sZPi>6M0OefaG+)EYcci2RXk6x9n0+lj*%6tSx)&(|T0kX< zn(k8Lr?VKH?|A`?0g!`9%>u}HBq-Teql%yoN2^zlfCEUJiPKh4m6}oMZM4BKBW!KB zZM0Fz4w7fvfZQJCp&!sq%#3r=F1H&%kn$lzt)L0$gbR%B2U|JRS8GUzlUrm;{Dj|Z zh#de#--3NK(OsGkc%iWwSbP-ub06TKYRnT;k1gpRd+w3u4$~C&!zI2$9cS&hhDpHn z9brTp{;;7YUh9))0mR?PCAM6YNHFNbZGTJ{&xUg~l%bQe(I?_o8Y>t06sZ?GXmkd!uo{imH z>Ty!l`8aU6YgS|8k9up3+!mDM7&S}gKD^9<2q5eGh~5cf@YCp6!ioGv_9p0&BZ#WP zP&Gf#)lD8=H!sz7MFB!iL#d9#(RCQqxmrl4yz_4v)%rYDqLqLB~x zz2Qa3i*9CVI$12qgmTeV+kb zkpWn~LK#z|wLfys?b{W&e?(8PITZ7^-xDiotajt$>6IDr;TwO|B_}zrGRE5Z?`>h| z3<}m0XL_pC1xhV@S@4uSB9=mGRgEcFHlUIahaVP%)t$9o#raw_g`tNIEApq7eHs zTc69Z?5^}8(!pH7!zED)0!-o0;eQFYVJA{^lpF@vw30u2tK;JfB~3V-C(|-J%R&7) zvMptRsscC=Y0mZlOI1APH6ks95VGhk%EvvTxlI+}PopiNLc87a(9znluqPztiJ#{) z$czJvrkf*oE3;|-UZ~#D5#{J>y5-nC7|)<9Hx;b4YG)!1L=|}o6rCj*x3v!&E(idk z-odt$PXj9pasj-{Uj!yk<_9<+WU>m2zDX%qdqvz@5!2^n#sAIjR**EYCO-+wHkW!? z0T{x0&F_^xR#m4G66}KKn$o+x2rVbyUkSpJFwhF*8MD=;_zR)Gv}pViVH^P1_W9S3 z`&nU$9*k|%MHO@MT3cZ4>;eL3>2A36x##3DvZb8dJg4I>}69XeYht}XX zJ4L<)B|-5H#Ep}KOxA#jif|*@bP$>hC1Pa8!KulsAhg$wqeik;ZwjHo?l{ju7Uy9_ zkiCo7cf2n6_CEwVTSq}5X=rZR)tUu?`Sy&%I|24@CD zawDGFSKQJRP?qAWYM-99v9>b>ABoVd$2;3{8nxLF(AJF|@lbjU+-AT6xceol0_CCw z0W57|-|?H}gY}G(nzkYZy{k6P1+;mouos||50Svjpc4;qoK)bXzA-H?0f~0sUP_f5 zFoLD7*ItXBzYY2UKq*@-0`Q!yW{mgT(g@>P6hvn1#jA!?QA|T{I}4|Y8HPJZZ#3T= zrt7(i1mxHHX{kzAfL2z_KjHZHqvECL#In9Cmk zl!`+(e-Un9yd4rd34xN@-3eIQjN?0&Ess@9x$O|F$=qIq%{%9_kbP z2cRJHCS(IE`x+>p-w~1xA$3{nJ4+i}6gk3x6_4Ll6N zelk@>N&o?78xkL9!-zp!PU4VIf=fDTZ3}?)7F&6w=*BZbv}k*yKMqch`@E_ zhlZwq#RF4M;iVxm!-UNQ&`3KJ)zW|Ol7zlk`U}&Y9sQu9^%VG2CsVGhIHR9k5&&e| zDkE8!)In2{S?M;M3u;FXo^_I@)1zx3Ti4y{9vU9c-;Dn3-V}N!F+?0gk*MBJM|0+@ zc_aSj2QC`VP?{XNqfJy9W2PLq*fiz(_~_Ax48+(8)Xh*|;sQ+pTR+J%bgI7TZn|_w zFW1DjuGb;bB`bl-FRbSGW~-kTx)yJp3{VsT+W4(~AP$j6D;4*b550-q`p@w3jQaMw z*FG))Kaf=paPW?W(Lv%U4>scExFVyWfS5TCJ)1+Cj4(Bo7T(4C$dn`gyp4UKN|(34 z!LAamzzl=nd!N<75Tno3mly@mqDnKqW$f;-Bg@Rj0667m-U=|<2QA>)(~ECSN*b3`-HOrSwj6lP-On=z?3Vm!dv&6Qu5#Ai z@KYUJd-kU!`+1cadlHelfTROaMdmfYbB|=5u!%b-Q~S+$~*o8`AZ z4`%cXBqk*uKD8JQ+x-s!PxH&9pL+@PyFgmP9sHYSdS!j5nehFPt5Yb;%g!o*z!f3^ z8wiQ!ZF52JmE>~$%^=f+MM3tp&VC4daGJA$uy5<66-|$ue9j57*|%}_ubUJf;+g&c zs4GI*sc6INtuPKs^t#Nno3O_Mx&XsAgc1f%{Eua~O7A43ekk;RKG&piqLACclhLz> zD5b=lDW#O;Gc3&Z2d))!18@#jy5Ya`_WX0Ax`i)uCd8nM?(y4Mp^xDLQ6r-R?Ul{L zLp-2obmLB4=^gDpCQ= z@OyP7I_~!!9q`LPS6?32)jFiv7ZJ9hkL?7^AHv_rN66b4D`wF0&)@G5Vkb0nFR-;O zFwZf}jU3gD!SsHZ%*RCdJVMfF-t1(XvK?Urw}TtrOCg{^3u?>+*6WF0>H+p+@J2Ge zAme>{^nq@KSvSSRc4V^Al-%#;+s872RMD)MrY}&SlM(}J!CtYwr2eTZykO)g#@aPc z@r)Lc_lUMQtvhPMh>w+;j_)D5q1R@dqeh~zowvIRrOlS^J%Z5{u~*g#9`zTeR5&g7hc14bkg&GP||tdg>S

I6;J}2kf2( z0TELARx%6{F&&gGCDxq@TXg8zL4O`ZFV|)R#b%E*k;}CAfvFjsNGeHmWsfy78$|ZC zV0w1((c@y_RGTRrC5qZsanV+xlgB_wiSkohID&)lO4pYh&V0-#PZ#`)L$++h(j6)Q z3FFY|NDf*-JQyO9;-G)>u2FW211=v zTVT}HCngw!kt%hijgLOs{a!F6jBSw6jobV^y;oQwUoQVn`lGZIAjQbV9TJIIo1uByO9(*Yb9-wM_*SucG?V~?h^JPIRr{z=Sr6$|_^70P(4?gE z@Q8LFZF6?*Z%6({I%+7Yz+|S1$fkUq?uTiy^Nx0$fHRm@qNc@){9LknoAi2*eW;0% zWM@9ymfN%75_#4}5qr{=$6aDigD=KNH0mIW1}1tfGK*{=%x!La`gFNsbdkdxzYnb* z*zVZGsbLs)IeHQn8Bl3qFvt(&qr-)@k4K>ODj1Y7kCFn@&OJ2KU512Km&lC_Tr*sp zFt&;^q`T9PcyE#*SLk$RsmgepD=TckF|sWQ+#?+~T&}pUv^QrhN!^`w!NR1}r&Q(R)1KD45rJ8Qx<`1hEi z!?AMjFCuIalmHyV=n6(pduzWJe%G56_Ue*sEfKEMv=#S56}US~it2R~7Y;^+vWM=? z?fT)Wwa;iCx!+8PEw6Ku$#@XY6uU4Ye7~6_3v_cz=vuH{>S3B!vny7SPH@l2Onu9l zS>-y&)ssN)k4!$;e*O7 zGlU=uu}#OUqoH8@Q3!rYXdl26Q~m9spEAX#^L+%8K9xT2YUsqp#=V1fQEAW~+cA6O z?3`e)e&z^PsjyqbQJWsK*Q*20cSlFB%K37=McvqR9uWLqcD(9RKsg@?XuIRp~=^yk+2Vn7Xu z1d>4}gzyA1Ve!7!h=blj5f3z^L$A8ErNO!FUg29OZPw#P*VTZUafK{*wQh0^UGzvd zT%}@-$ro<^YH89DA#L1^%Bl%+T2evhW`%jHfZ`=+kgj;Tt}o9Cl#(m<{r6bqs)~2C z(V%Uznje}9?=gpTdDPFE2?c|l*DVSCwclvjj6dxvzkeAx>h3Fvrr`R*_VPaQY`$dG zTZQw4tV3?g>_4{C6SkE=QKN4=b=6u4{N%`aPl$aOUKhFYm2ejUiM{(pj3UR3J4b&_ z456FE#Zxixc<5D+J9eAn73>VRs?aPgJNQ8Q6zdP$5b)umSFu0#CH5QLkD6>e!`0Q@ z&#}i8(ay%aE<;nUr?WzRTDJXdArhVY-%Itd!EZ2^UUj>VO=C9jta@HT_#DvW2 zrXC-I1jQ^#(AI{U9i5YyQEr~&+DeNlug&_8J}_9yV9r#)4v$uiuaqG@6PHLb01^ir zhWA;K8}KL_IX#0}e9!5Ex(d^sTb6kK4Jm-St;^0{kk#&u_hdb6NNDn@x!R3D=oisG zY~xkHlP>|jp`VZ3_e&tCRdcK1p^~cbtk9}b!CU95?Z7m8Mfzt9Ky1i4b%M^$NWuL! zz8`d1Nifv?BAGSdB)fniB;G=E%~|FLyQE>u2Y zGa~xl{)(ad-%UmA|J_u?{{L($`sc}iF@pbQ=>8-|K;E4MgCyx{>-dlVj%b; z@BSnC=HHTvFP{+;=7Xw^y-HPIcgGE3e&N0D8r9gP)lZ+=-L_!V?J@d-Kq!W)BpUu@LJt5pNXZiMe z!7e*@%$qx7jjXPzJwdLrG%g&;G2zIfEi470S0C|@6j;=Wq?xv-cZWgC^usnvjYwg6 zi`w@caOV>#_u=b2zcadw&B-kdP5aH+Bb*tLKD~lmY^r2*y=o9!5mgjK+{Ed&ZrAquPIW6S$m&UTG|y?RGrDH9g7S_<+Vk1vr=;#!DdbYsj>9cL z%RtpN4Blmy$lqef^wj+PUK{3V0D%m<$0hyLawqC zp$cy*K@^3g-tKzB=A2M4Wt4s_HTox6z9?eFdWy^wmbk*)UZkf7Bf;d2rPzVHzF-Ah*pV9p*fh<)(p#X4#(zJ;E zX^1=L3S2Y{bM@{D3Yglm6~R#oXh#EF6IuRhTtqV9u4+l`+>?DE))eTGf$PO|Jpqfl z-L$stw)?_zDLU;3C$Y1kV_ci(Jj-PUh)`akh}15!oGKY&XAXjxc(qYTmrt1TEyyK! zi)o;P2Mz2NF&CTGb3{DOZa#RMf-Sw4DV0HF&+oQLmp4bCA|4ZaoNqd0{$X*zLhj>v zAGX6GDI_AEZmuPgbCQ{PD&IYU7J+XR(wVl2lFc3OJepdxlaAe@uiP>B@IxJ)&fRI5 zye8)0homFrV+VQ3kFfo9ek}5Qe*reeqCxD4)_9sjwW(X#+N&s^548#%f=?5q#g@9q zSlf;_*5LDIl)Xs8T7vc|A95aGX^(DAJAEw&pPf>d*Ox(tFr~s=$&C)2tqGSKUlMzbta$!xb2rwonJgGon_& zksvPn?VLTS96)QVm{A+Ns?dWj6Ne^ciY~+y+yG!N%GK~hBT;{biB@bJ&1QzuGG8}* zZ)x6!UYC-gU-zb6n-XDA_X6dCI&1Fz>P#+TqaC&Vflgi@W`oZ(D|TB}m3V3jumkt1 z0*v}(OsEd46!^%0{X-Dm9T7x3Er%`-AMxVRIH2kUB!~f6W{|bU(FS9@$4CmUvc&FV zTk&e!6~?4NCJD09OsHB(9~+$&$) z7m!gXLVRM!om3QUCB$%nHC-+yuDF1fcb+vobYn&>n7rDWV~wMjzgs0LQ#k7zwo0Ep_vXNd7vfrE5QnGHHGAzV4D6P_S>KaXf4O$B zzP~hR+#-syms|Q}9T-r565d3SuS>FRqo2Fq%rViY+WVK8QX^2dQs?fDUlaX@yAc6qtbgjZ(NpxcRp%rdC4u zP?`rN)t+XeN>-?2EqnwwiXv}s#tlH=%yOVcH@%zNSI%^VxF zJG95dEE@ljz|LimR>5GlQSaDf-uC5WgXK|h#i4etz2~Jq?r6<9(#*KH(_B4##Kw5& z>S%3Ub#H!ojj~p&mB+PKQaooN13PgcuC>rWCg*iqdSqjnKlZwegK?Z$)Xuin z)IK%Uo1QDFXIHC&%f7F3uD-7h&EL;Rsy%Pv^St(f&)G3uL~r@3bMWd-`H;aG;R86W z*s(jjEoWMx{8YKzn#fzDQ0-5-Y`WQ!76~1HHh?RK*}6Jvhb-nonB32XVMm1ufu?sd z!PyyE6g4Qe0#eWQk+v-kLmP>al;Ccl ziH2G83uQB&1-TMb4~*9+H9jd0Z<5v&<_YNY#M&6c(j-iI?A00$rjcrWRCk$^`zswQ ztQQH{!-6VIyn#g-Ub5a(M9J6TA*>fws6=AgQ1Daf4ieO;@Kos9lS=RkKsN-pGQ`(+ zzd@G>zn-uzO9khWZn&Q{p5kca1vP2&Y6d0;r0MJHX{;Es!Bg2raa^&^bMLwm(kng}U$SsYE0+~sTR$0>>@qfv+^p?Q>Uq3r zzin_%IvUVk{W=)KUPi5#EGj~X3`6Vd{~q7~*C-Y)L7=*wT`HF54_E4{$f`sVt}$^~ z!g2irQ7w5X4qroz+%8|DMlviKLgeL0f+m}jQ`y)Q>yR77bT?Mk)HTG-xEqIni$l|f zT90FrU^vAd!WLS@mHXbGfsA3Nmod>h(Lg+)6!A+0R4e6tmuP4zFUT>v!w07)0j#DrRM+qcRoI zw_zBH>}mV6+sd}QEJf+XZ%9IP%P;3Xadia^*5{?QfUk1EVj3Ko=aQTCYAtujx<7#u z0R|FbG}iqaDJ2FqUyvTS)nNyBm4=Ii0%adXz$+j}f!t~CL~|jdslTEUadK=IExofb z2eMh1YK)`u7^-IgR}*ol`U*ptZH;}?#7LlZ0D?oD+Qq<6rhXNPjjhpjOdR&9Tvfhl z9bFLmXYm=6O-BTIFtY=TT4p4|a)|ymi##TCnDn`wISRVY2Bb)(5pq4mQRhJI8!_!I zVn{6Nb%5tHeXgX%}&bb61sL1Iy-)DKgfedRx<`DIVi@#qCzB!7AZAOCGwF zud!mEogNca?@ua(6*SVNw9+LPIXj%=qsdO* zlqot0MkyLJ1Ynv;mo%`6uMjw>Ye+7$r|>BTaPR2m6d?8^W?E88F@4OJdCXj-f}r-phD2}y@!66j2>#Kph^<;{M3D?nSWn75&WCoBXlba2T2c_tFtRl5%*P zMaeNFv1$?Zp`#yzC`=5zmf?!^o0k*Y*m3uB8hyV=ULyG7c8uZ3ml?e~*eKZtC-}LG zlv8HP`yJmp(`6MidTO$)SS>XHy4Ah==(m)PujO!34@O2C~k88MlE_^Wr_aiaGs7BS(8W0}LN|ta@~fvy{<;o^x>^Z-bOt?ZZAn z5(w;&8*b0A<6IbWl5=4)zM$kxrky^7a1+D|9pa(4+C-2{O3-ckRsxxzW3w2pV!t^KlBCr{X0zj=TxL!^Szi!ygDp_G!)g zhv+bYru|tmCXbJHMN+ESN~Kp3s{mMbZ2Xo|6atoW8aX#D0wl}Y2-_{}XO*CFOdTR= zq%n-vNvaJFH#^+Fa3FbY<{bKH6LgL$kw{*E?>BM{<-M}0BR7D!JokfrBz%dZe{gpg zJ|VHdAb>?69)OPJPkPO8EH^_?W;El87w}D2=-=!+2-mM**}#4OW!Z%Yx50mwTu@*> zIJc29l-wP}sGU|HA*zESvszn(<8T)Q|3b7V>f42w{Eaj5j@5z5hrxIo#}8tiOo2Oz zo%euH3I$%gRjUX;a+}fIo2(Btz}#6zrlFqbF?6f;iG#|c2A@9>vPey7# zKb>GRDiU&=%Nf1-c7=@nDD_@g9$uzP%hWHmJ>0f^=eWqpmfW3rdXO$^0gGFX$olt> zwd7!f#)!e!RHJ6O(x2_Ni%#$63y0sPn0%luo--Z>;GEf;g9+vePa^kC4B>_Q^UKMt z!H=jB4KI6qo?CHVKzlHJII)(PrH7`6Yf9^Moy0wqR(?$=uyCLiH)2|yOl_Rq+@xOb zR+yg}CKWU+opkQ%SH7yP7${_*SE?Gm!;#pq#=mSwWGO6wZvP6@CKVK3rdw;Xqdq4d zCw7GCU=?suk@Nw^ZYsbxMYsZ}PO?hM=I2z!z&y)iQ~kbAM9i-LcB+~vTtfeZYM1iR zgal(z2cspSm{DgxPQz^OtJa#+&qy^?O^&L}ps38^z^9aBk(PGChEMK%Z@}ih(M!mN zygM?(ayY@+_XJjhx?tJNFys-|Y4B1TL(n4xx=YVM>%Ifh&P$HPqD=)#NxKv|bLoEKi&5d*->7tk(9hl;jCkDWjYH z{q7ueKjKYjMSch|qoi#B-(~!tK*f^%cbK*VCHBb#mIfHwH~ykhr)s(s%0BrXz}7TB zIye*Y;0m%}VOvWH_gLYLnDLduKVUbbijrvC6-+iv?4a#~@MR zndSRSkv--z$mKekXJo%slZ)OP>P!d7J1&$fQi2IKX*qu^+|iA2=|wT$UuV8txe3Bg z#Di_>39Dr!;%{&bJhU5lm82%Zx!f^|+OU!z8+y&iIW~b~eXRd9Fqt|C<}vwp1Nkcd zlsUd}E13lOpwHfoq!~H3$-|d-Hm9^K7ADtnx~3h?&zXl9Koo!;s_}Vr5y%MkBkN3f z=gYug_KvR6O7$95Z}Jt(=q-_8`eQ@B7g7sSG6Y$7QW%XvO>(!p*(JJk5R2=y;w(L0 z#%Jx+(oCG{q?E2Y&m2qvmumec3j&>^CFhBi=T#xUu-c5DJK?(DsiW%ng-RyqX#o+CoXlS}F0J+2ZCr}ArdM+B{ zFYcZyTb%IX301n#CQK7jvin+r-^ExIW2rUJnK-l?bk@o+Lut%-?-jpu^Bb+EL6QxUz zI_Tx@cz?oyFE4z&Hh%@~;!Dn&S1;(3EMTu|p$Nycyr^~YIc-c*cd1C3dx0Yf)?en~ zn;OS;2YjM$b-q3Q6~6sblKI#8_MZ^%ze+&a|I_LB|A24*Oo940!Td)+`X5mDFLCJ? zjQz8N><_5>Cj$Nh-Tvw1`!`_zoACBe{{3H}RZL&SX@4^Z{X#=6YL6qh4NPvOmNq`h-(abx%ad44g2-?*ky&%YZ=f^ZkzquK zA(Ea*%&_jBChh&2%D!uhr}Jg*QDXu^yaB=Cp*aY+~#e-ZjV+sO>$0=v}GUupRI{k3n#(NqOIs{+pPbt~}g@&wLWcC8l*t^l}) z|I}Xcy$W-Tc$ZXu!p_8ewcTk0qRK}~NoEzSY?y<4q161^TqMO@(8#5fRAD)=00^s& zg*-A99#K9!FMRS)t4y0YMp(q4B(@#*#@<1`<&a0**INWB#vS=23?L>&^uv)%lR#o! zWS+CmFQtMw<5+R_;l0SL4U|9H#n;aI0NiR46cJCkCSi_>RIy=WAkp7I=gwiRmx9c} ziH0}1@<;AWDXuHkx;N1Z+Wl&T<|Ta5{UK{5;HZOXISxb-8RZVie9i8Osd=!dqi#0l zU}<-iF;Au?EewB95dlE;Vk3pltgS8y@`x^@C^ z?fJMtHIpSf_nj=+K$S2d;p7v8(N811tjGaHXsX?Q3%YF$ur#i|qK+%+jiSWzxH`b~ zY#@?0qPVo5n)ux_%&9o3qbVphx7>z$%aX-0YNKv5uGp*@&I@B`x+bq;x9BYWQ1~|a zD_#V8lJH=vjU5CG!B6BFwVV5&2zC5wsjqn9v#RWv!FAR`&i#_a`XDw82kH*Y$Ui24 z&cEHQb~IAY%M!{J;-~`!CMzHy=cdy|*e1X_7-mb6%=Llopvd8ZD{RM5QtY|4J28$? z%lGt?x&q*gM3%8|5zElg;yH9LH$cYh`0J6`%hbW70}O=4`-z@tu#NGrb)GvN)KsE9 zph=$=GF;g#==q1mBjJiYJtw!Yx4GE6))v3W;s3xR0l4?Wt?VNwS@A`SHTbeU;pNss z?Vu*i1te&bAX&sK)@5f9M0TS^z-U5Cs$I!=1&3QLSu(h4OxDARbk!4er{vZYCLFp* z0Ja4kQ=H1E4YoV(&N!Yrep+PkSx<2FR0-Nti<~Xu4WS47JWL;{BI9WifJGCTkPlDu z9i`Bp`Aeu0^434V`;vg)89UB&GXwQ**zRi%A%J)*ik(ptFM{V7uwPV}^b9LPixjCc zcux3^P@|QTKb@sA@C9-sfXt&(DOOPje-CE69Q&W(qzOJDpglb{P%zP!QxXU>IL=)j=LDGKbsq zKt#w}TfU4L1V?1S|2p`z%=Y6&z%ugU=yw9xD%ya`Z&p{Ks_EVo%5gt^i!hXY zuzm}@a~geTEVApg0@Oy`ZipoP#ImJf7j|dt4CIsdv-#DyjXsU;{lZ8riV>W|Jp{&Y z&C8}L8x4(gA!zQj!Xcgm-pX>^Gq+S`z|m5b4sQgL?KpXPRfkS5 zK-7_Tpk)JhjDr(`v_rDh%(BPH@4d6q0_;{J3W*x)opqr+v8xzPr?G7!?dGrILiOhD zMdA=+V1P-~;{nEzWBGNm-jIDLCpvrdnDLyQGA{^)QS%08{q0oWGD zo?U0djdU`Gm1K-Smg|4uza^o%Dqt9lUdvC!2;xX~GfhgS5evw@+G_~9oipNwK^ca@ z?Vm=}CEgdt=H=rB1>>;^47Ji4qxs%*a23V2gDJY|>#B=EJOe|7+{t;E)t0ZE-Rf=o zqS)INQ694#OEqmc@a4j)Qi!lM$mF(!_Vz!oerp(qfH@bploYfnLb z)l_iDgD?>W2uubQ5p7y{&@wKEN8>nXAzawEj~UjB6;Xm+wNn(KK)G=SKNU+s3E*UE z9lJF^Ym#W+)$5Jh_CnOWTQK$|7gl*<+Ph48a12Lljyywp0x$U8oenM)L&kbBaSvY> zeC^jY?!n&IdC!o(h3hRVL+?wF&qf-atXLY|UtzCFS6axDqE#&>D-0_jZxuv2>vJEv z!@?IMwW-Imn+~k7^^1A1IlJ>Q$OI>u(sdwEJ$iQuAVZjd(+|QjI@+tv4AwR6d!>4L zHABL6=}P?AQpUp8);RxwLhikR=4jQ4ya*WRoITT}aa4x}9KHkYzJAYe8fZph zbb-n&rh(r16#1e4GxS|emnPdD%@qfMQ}nMlw#)`p$^i2=v|8X;FbV^L+(MJNQ5tTO zP|XuOrEiZGAR0)=Y0sM`imrz1$RNmB#yS)z{m_)gcD_i0`>^vceczb)qT^0s32p=D6_Nz7QRwkdUY&1ED$u101mX;j z1_p0Mq3%k5Yu#~`?Msc2l#6n;Voex~V>ADq>n;e|o zn=U1ZBR=lY0RuP`63sX`j$jx8s4d2!7PEhOeJtm?R@-tG<-mVp#`b3*XJ@M^7WvEvzeuE*OCrAnpBQRqzM(Eajw0EiAYlT-8WJUL+aWTk|d8YW%m}ESog__hOf~W(0%#I2iZ>$=Ey={|b zaKc9FS<{r+f~2dvv9@r3?tyL0r&AA}r0jt_WpqNFID=LvFoscB!yG)`_B{W3FFCus zi&Wb0ZyG%)Vylq5H4Z3ceFnr>HKuzo@;nNj2(nM`+xPpvIxs3_*Qo$RZ2%CcP))S{EL4>9)Q$-qt}z8g#8qZVyS)+e!K zO(mx)H7YW@u^nJ=72p|)C`>4G2}WaK{90Rlw07!DbGFo|yl}ZN(1hNfV8CMNxqB1Z zej9dM3f=}&2~?6rA*>AL|jZTM0}YzQFyQCjM&(hE)0$ zX;5VXuUHY*q^|f9HB^zUY>C)PEs`&y>VAopU$PI1-y<@vZ9Cc*U1L~mL%19E8mg3b0m!k}p@@SJQ!7SFzJ70cL zG?x`pf~PWr4G(&EkvEX%7)mbVts2<+h2)e}H_OzHsCFL6I_eR95V?<+gk`)pA~A)K!WKZ+zS+Kj*odq1RAh?p%7Tn;`q>GV0Ixjqec2ir_6~VL}!& zM6+XWqaP5RcLGDX8^Jm9oXbIs-R^$xhtdsYjlvzU!27k*5kqqY-r+T`*nUYrome9= zczH>&W}6C6=&*vCHxv}kHx=uC*=EqLaxX!64yN+8iy%^l3=>|qDoYU0=mL_cb24sWv|^sH$JZo%S7K zODniRIRn1Dx`3-aeNZ9$IUXNlptAf^mF?oAg{Krqasd3PXq}y$8(OFVW2_Mx2@n1) z;tq38**P~mD)}eECtOutk+4;`nixah+oTmeJLL|v6@4*O`}En3c}ghY8=n@2l#LIi zVw%9#r(48UpSeb&mxQ+&*UEIzgo%TwV#GbN0=R^PQa{$6nwqgX`ceAzlIDkM@3KA4J^ z5Q6^-*oP>y4U$JIFZk44?FO@7u`doBv$aY6zFr?n zdzvxtbdtof-}~NCXk1408Ep7+wTgFJ@`L zCQ?O5e!hyDYr#JR;bswPboOx%EBm4p!xE;rS4D833e(Dc_Qxv5c+JpPyvUY~g9Y({p$yar^}d#PJWk;J-u%{{sp14pX0TceQrGmRAbN90BLy7Cy!D#L_No+3I&DF0`^aWh7be{O z!Ssk>*sd$QPsxl4NBR{enf6B2?ZTGz?bEB3+uekll}e%->Aaa+({6!oYFI*SYKTB( zRc$J8dY9jM9*0Ng+8sE~T07@>~6jqSZaQLZ1r+7#%6C6YSWa@k7 zyHpfLwPzLt%;dxuelVxI>#qdeMoH3J=niKEfX7yY#+uwAH%lgeph{-c8AL|17(%ua z5Zoynz!Yul2bwyLxi7L_!nVn?NFx|#rS{LnjjduA{$UiQapq`2nV!@qG7xx zjCjXs+Se>L>|E1fFna4BP7i-K?sqgxJO{dvw0#07N%BAiXwKT#)3>>6YPeYC5(pS- z%!<2JpivA`0W>f?Okc9M57WCg4j+PHIeTxZu!UUw?K^iixS{mg77~S!m_~hN=c5?T zTToJX-wJ!XPC$q|JEaP+KJDla#x)^s-)tB_XjqDu9qm||c_%#^#J_#pv{ zXm?#naf!Igt2o`U!*rtJ^so+sn!Mugj-BKP!E|q0!>-OrNYo%u6WX&adZXcp+iX_2 ztlxzsMNapj>PeDjuHRR?H!oZj1oENW69f!1wpcOLZE@oa)K<@JVabqx3<_ag!^3vE z<`;czzs&10WF$Tma08_u2(%}Qbq`wVcG1NV*hf?LR^{D|l$S(l52}>BcN-_XWN7$t zIb2T!TyK#EVvIxFitex5)L?&hV zc`gYUXZeY&S$VfUIif&a?v?82CnLcNS(9C;0u{*k&je9&Vq~VS=f`(z3;G0Sc1N#z zx+3ybR<*X#BVs%S4Q%ECE-G{cODn+(ltn5<9liRpMUq)KEDD$AQTDy;LxeSA z3+f*Q@x&dbcWEixu;9MxX%ecc9e>WX`hKc72E5nJqZ0ZSoP`Q7ScMsC656MgQ-e@+ zJjE@c-c*Bcz03~=qCSTaqQJJ{=x_Eo3SA$cxkYQMzLGbcQHm{>cVFuXI+p~^0?wM# zCGs+HX~M|_o!N^KTszn(ut*GR^bl4&Z4IXv8NzwKOC1L^n9>h@^iGbKNs--_4E5@e zO28ou}enN-naH89(SKY;kyDnu?=T zmkj`rm4oy-ENC4Q7{&e7qmgNXmW`F^I;m*ndz=RS`U*OLUfMy1c}^Jd-bY$Djq_9> zPxRVJ%-*((+RKN?i8cOx7gE4RIz*c0G=nf-KeK6^kL~9ZcfsSv<+|Pvs?c(Y31*2N zve2bfa8_%4K2PD>-?KEMwlpDxYRWtpmxO>%iHqNU-PX67ry*D1ygMw1XXMbPz2rZ^ z&JWZaH@jk32^ZTZ4zN=b;=2{|Z#u(D6UyL=7i9)4Uy4XHG~sLohD6_x32&P0L2s zh>^L@AO={lBZ28M)m(VyAv{k7m%`URrbO}ezM5^NRIM~hhsxZq9~Sjm9&bA^Icd=o z2{sh|X3*4|sCMy=*FtT92&MK`ak_ES9tC0AH!`vAqWu7TpNo$%EbYX&g1yYq;+0eF zZctjJEou=V2m~+@6=4g4G}~rhTN9_F-|kE|C%o+&%yYn(pu_1!iXch1iN<}Rqsb+H zvMb%sCKwzix42xeH31qRQzk%+%1vHwoCyp7JGiq7`*p7&|AlTf`TR0S8rj_`iiekj=_|z}2cQvLQ{G0hkCzKxmTf(kD zNdcVK^*x-ULH~k$i+90?pxx~}C|RJTH6~(UFN+JVZsycJjQHp^;V5aPk{wyNOF*k0 zsqA6k8iuWJS+7+d@%E&p#(CN*GJ4kTJYWtBqW{3iV-Q)h4v8I{8l1{6>9kauoH-2p zo!lxJC_l^fH%qs>HCXtVq$-JwzLD&aB^v=tmA1Kwpr~gvczQ2iyv}N)dki_*>!NJB z#In89q%<$B=x%=nf#qRBzfL{@Uy&cPD&hd>Pz;@+AU5C^Z)xy$@A5VAq2dsk`_SO^ zE zUvt90(IM=bSn+w4rpBF>d9|ssN3qhKaj(D*+xny#&F3bYZ49C8PT|9rzH|)gRavSgkvBY@iIDcYM9B_ zBIw;uq*d%2r_u`wmki zj@=ew1%U)#@B!k3-hxn>fv|WPy!2~KCkBo6q-A*@AdlATfFc0(=Wm;GC#B?~9p*^N zG<#Y2Xe693;X@wsg@Ey>$@zmm?iD*#IcOk;LAQpkQ=MNZtOl!oc-M%7-b|XJ_5o zMZeUXC&%`cAU8uR)F^)(2uS zp8_Yo8xYth9KB$EK$HF_`g7bKefz^ z1po3CeYGMn{$DfEp8(*`E%2W;M*ohB{d)j_^REQY%wIz8zqt_(P?NOZZ$#|8s!HBR zDm4ot6Z3`t#>w$BrlVxO^<0TcY37t~LWkwIomdLIIeQoHyCXXXP6(B@k+(=5;P1Ay znL}M{1iQOQp&^UD8$nU@4Mt3-bAOSRQ` zlJmftE{{rRc(0e8wnYf+z}TZK8`D4gW>4p8m>bk=%E2(}Gv3&7xAat4CscgqFHiwR zmi8K&vAo+Z9Z-*YJT{bxH=513n{jb&3N~5@+gH)ZAUlsPB+M~RdhUyc^ZS3UTedm1 z2sU7!;4<2ZyD*)&+w2h#AA*il#+D2buOxdn>-%-*t2gXSBRt$7;lf78Fp`;g-fs@cd zw49onA;d)ozd3VurO$049b41ha)u;$M@x1d9PwRB@wY?Oh-I{ydm$_g=B>~a>pAfr z)JQRjgzUHxWYzOjqqTcC`SuRJw#~Q$UXF z2?oB!C-Urxf^lKlcGKPweL=Y)U!lxRq+nn_L?m31FqSnSzLvdc>z=5Ch3!1$%3kX+ zi)P z4v}~_PNo+8&G)I3ko8l7PxKZb03>OK-FzLNmuZK`TMFRsDPdXbZ1+dh4IYQM!i90J zsytyEKPGuW->|jd@3W+0LvIa#Ff=qk)Zk<2%>xnLQdg9@iXkw=LU|>wluNAiQtS4f z#38Ihx42m^s-cV*$uD!4qMopV6%k8Jtfvn4K!(W3_wJYK3YnRV>L{CDE5@Sra>QUz zK0c$mEt(yfqS{0E(Y4Ur z>n8#VBB(oV-&BXe=9ZQiz=D(ux0NIm1oOM) zvSYYYO=$i%GIT39S&H6-0ADZjNpkKjPW{H8 zo>cnmQ=#K1W|mUci=tlvdLtqG1TMz!HHxJ3mhc2z1@!2}NLn$&uO9>E$i7;iCE0Wn zvLYNex=x8gQWcq82+u?AZZX}e`%kzk=J5#5XX-8E@ zyEdUz%>tgim835-s+c=e^PjLAq)_|le5(;2x@7ze82ml1E3*cP-5Q2g z8fF7|CrM2W`;1g2!{Z%T~RW@_^GmFd!TjA?=b% z_t_Pdxm$+Mr&_vr-UHGC$=pJWYU0&

)X?N?V^em6e?dJpRdej)h{S*_4q)hG2!>FH3t&wV&;& ze7S(h%MiRoPE*-kT^0Z_6eO}SRwT0JKL1QYu0aaN>83$lq(LwJm9;5X&q`q#y#!}( zNnSPEfb@-p5=An1to6F*7U3Z1!_BM}hL|~mn#JujG%zfFy;!{wg$XX@1S9R!c*u!Iz z3K4>!Q}U@$iSY95nKMmN+dHew^4l0ji>ME8JVq=xlNJKT?Kush7#qE^dVxn>N{Iwa}9Dg7F|Jw|1Cg%UW&G?T901yyI$RGlq&h@ac~ zFbWUR85A(kD);svKfwHvkR8H)b78@u0R;|y6^1#YLedEFBR31l`sU%lKs!O&j~429 zZy>ooon)$iIe|H@*#i?B8Wwc+O!?POGjRsNqd_kO6*fQRS=&O+i~DteFhhn&MWg6Q+lT~9KnMsRomCsMEp+_R@F)Y@ll zTYd%lwy7pgHV%9Gd<-W}WV73&RQqTT%r8o!!>?Zs1F+Z-@&hpOV&PE1K?MFB>J>_( zMLM!ELVP>i=p6xn(uR5k-yS5~ISz0H?zdC&11H+4%_RIA2e5z&A==^53-a;Rva`(z z1P0Rhb0yDziHR2s&efHdbB;ZIqG-4&nz92#C<1Op)H6t`i|-z)#?>5jAvZap0jZ zFfZleZ?KD3^=IyH95{xZ9v_Q*TP#>m$1f3k)>@{Oqa)b6fA|cFfB1~MfBKA(!h_v| z2kr4!=?{QJ{xlS2ZqEUy_oL9Zy&kFyEAZ&I8hgMewz_N@egD8~PjR{V-`v(wlFO_w z29o|?(7W&ri^6#}7vBnph+j9$e%!=yO!!H>d&@t7?}U4Iz7sZOlB4&h=IncR_wA4` zOwGSOi%8}mOx~^9!GeDJDR6TBM%*bG;^Z{QBRnvLvoYA}!G;67B~?7ZMctA01Qy~N zhrg-FB@v1f=%2=ZgZ+euf&~$_AA}G6h5)k#N(x=y_KU+pa&8#=Y76uyO3nQAcMjHyz;e8@JoxdhcNOi<8K8e`^smIAm3e_j9687KF$x?RaYM6&JZ(*j8-s`h5!3 z+>3MNJK~W7tr7DqcliobxSOfvujV*2-QRUZ#eL(fv5R=ieZNKr5A+zY24YR5%7m21 z+v0zHvBjjK9qShR1aQyk1 zL#_s8?%rU9@@hwUg|#h_wWF-tXLJ}(-_KRb?v+qx)7Z!n?z>7onc3RCyjQH-)-l9R z$>G?Tkx{3Rn)F2!cOYQix`1Hc5^0bbIZE$iJ#47fmbv=*j5#Jl{CLEut;fW58O6e! zJ6dWTDlE=>stB}?jR=EkJg&9?Mw;C~iPmqmcF0JRP21OFIapyI!31^g0z;0&!#8p} z4~1aZlAE_-@E595$}r~{yM(%^&L@1Ui6Lpl*TggDa`gC7eRd8E9?7vnFUd(r+dmCC zlS&Pf*k;QENW9q1#@^RY7q{T zre@qt>Tl@2<|5Syowc{CI+%9$u7K@l&fgk00PO8Vs#=-KW*WYVFraO1E#nk|fxs}Y`LlN0$v`J4Rx3**$PKo=2Qd%V`7&#c{jq|C9g4KqloP%SKQwH;tHae8Lm+C#L@|w_JbVT6x<@xXxiK}nN(T?87n#z= zAW~dY-jjn)A;4hDG<7nR%%h`a?Y&Ga075r46y7-f=SP z)vJq8iI$0VC>n@Q)MiE^I!&YOzBHQGYv{h9v@NBhqec>&KNy_$d0E?8=Bcjt=fdJ= zu+y#nvPX|U#+Fc|S7w&*bvjVmuqAQ*w9vpSlJogXB*PGE^sx^dv1s?%d`8r?T{_9XdynMt71&#o7o4KRVO$5gLeT z3$F~)(Tm?UuDjjE{rK>RKwHYi7OPnUdoxf(h`ss3rWy{P&=BNLnBNQr`!vCWl$YlG zCWx7$hhz;+7ijj+H3u>{`i1P;v`}yOeQ#g2PGeQNPWb{E&xDq($Kr=#T0MATfc;EMJn1;vJMn|5w#>Fo& z8=(GTEYC2n950m7wPld3;@Zo8$_BO>f?)FZLtHX#vB|zrtP{FW1e6HTtLDGam6sh= zV%_*s0`YH3a{YA9nDTAXYgMz8dSnejTwUUUut$r!qKP+cq_Qz1HaZMjrbZ0B>Nggd zltip9;l*#sTq`qyYM{Lf@q#21LA=LEJI6HU#>AnDp4UTs$K>GAlEh-M{3v`D3uP_X zr9E`fyTZN^%P8TuB8q(ly8fzJ@FgP9IzgE z2^)LDN5=WqHH!m$(WFk@U4vtBIM;Fq(VOlRKa#lyZZOv0WLQ6L`5mun+?$?j$0OQB zmx_8SZAi6^ownaiOw>zQ?>S0DNIqE5V@X|KC?7ksn}W=7@i3RUshK;eShjhg1K8yy zCu+4EkCsxW(3lI%D>i_ZGt(9$-A~0CQab`qe&u?2xBpyV2w$MyNzuDSUtoEZ&Hi$* z(#GD2|KZ6E7$@*lNv4YybEveqRudF1dfnG>UtSH_U5*GJyaR_+6!}fw*z!1nOq)x% zezn5z=*i5#z0XS1TlWGH*yMV)QD~=Q>_t-}xDzvhV>C@;%Sqv)i}~$so=Uo_v9A@C zFTAcuuHG%MI&yhqS?NES)L9O!D>@ZrzHkh0UWz?jd;X}*Vj+hCjI~)p;9+9mb~fs<~FU4bmB>C zs;hm?uR0OCRAIH5Ar;xb_%!|^ah}I5?mhx)3D?SfrtohAUu3&k%_xb7MkvpjMb$eh zEFI5~Zuj3$m~no4Mi0qm>c+E-!)|rX^mbO%=BFr%u5Hwu^&#$V3EPcpZPKcz5^#XP zqnVkGCfmH=M8&{l_2q(b4(nf-&}lSc-5z0ctQuS6tYVbZuz{O4KNpXQJ{&jdTG@Cu zn2H%(_dV_%p6{C5G)fUTP31~MJ4ozQOtBW26D{yj66HKDhVr@!FmwOf-ynP${{FGJ zvGBAghS6FAvDj&A^?R5>dAEmfY5`3QU!?c5DX5xze&l>-nw%Ot-xFbsY2x_<+R%RJ zsCfrErGnCxrbj85ys*w%Do3f;p|LhTD;Au>LMSSJ;U&$l#?hH z-*xgiSAS^$v7lr@y6aiwxR8F zN`bfIS>R8c`#eC=*xiJBsyKFvE%0a7|1RVaiz)>Fn1PGjZTmCLmh{G@lw{-0XjroP zftrIX0EMIFQ3Tnil{pnF*USU9FgluN85&3V1P4j@GSUG@d7SM2)&)j=aOWPbYC06Tn2dDp%&Zwrbo+TrvDKWf>ZPyw>Bzhqz1Y3F z43q%0BZ*`Jq5yr0z-?M3>t2R6qU7&1INRCR;641}c@!B=i7-{(L5`W^+wl>}Y8_Z* z85}Q5W^@|jvlZ1N0v`eko$FSndL&G3aF;E#pgZ^tMzK!Cyn5$6m5ydyWi~&5{dcXr z4$k9Ra&5%IXw*S@?AbbwQ;ZdwDKdN0G>I6Y)?V27*OH~I*Yi$2LCrDlA9IwSR#9=) zj}XcRQj+bYWigZUDjN@h)njzyi69*1VqQLu{Hx{o)c(`pSqglY&=!;^YRlkq35vlr zYX-aG1To?oKT?1voijw_L@*r=VQHnEV08> zO)UtzFavBzb%6vfu%wF7=h|89xmtLt9M>H#;ELCyfreMk`x<-v^xHVUO!A4WJy9U) z&TAV$mVD~JTsxLX!F!&(hh{NMZno-m;`uAN;JBo!4QP5kSKerEQBDNIk=ptrp~uy}L@Yb2ZCqYj;SYe zlVV7f9}vXsM2x9XZ7f57D7nZr&oUAl4w{LtN=lIeO>*xcn3!A~GIMt0x~;NzM^#?H zqW7@&Ug))Emza_bM+!bdfB{_+v+$}WsUlZbpe&rZT1Z_PH2wLb2I$1W;?X&c8m_ERL+WdZU|FdYWghU)x!>T_!(09q-`q#}qNk^JpB7m}$gTX0ni zdtan0Z|q@_fQ4Bio>Nae$}MnOz?UDgd|qn-E%Q7|Hv~__Pq7*Qxd=|9RSV(B@(@{%Zl>g<(OTsqeZ*A$Z_g2DTwlS zSzX;Snc9!F3u=L1rjr&b{on-cfw7*#G{V@}NWD8aS#*WRx5jVYoB>P+E$7~xGsp+^ zD7~6r3T-UAEf)2iRj0W^P^9S4s4e%-K?!}Pr$+Qc^WC6!+offv+1s`KZ+BvIE^B5_ z!;IYJ--06DbLK11jdHDKOHC7G?o+L!YFngN_Q`OXR!HN$}$QspNa8$w7 z*U7vao<1N??rjfy*O4;7z`j8^dF*nQ%mcEP1k@k zDotuW*4SS7(Go4@&-9y^bJY!>)VKoi-9cUL$H0xO!^-H`s}!$;$Y)2RF8hg_m3`d7 z*aR8cG6R>yRFU>|*;ztC?opgZTwZLkZd!WfhwS89UrrSS@|WFxUexX%Ga_GCM}pH$ z*Ef;3+;IsCh95_|X$M~M>c3maYkv3Sc4rY)>j%XmYEcYlTDSN|t4eVP(Ri>OtJKcw zcChuvr!}8I^G*9Hm+lZ|HxTCeJA$WTY;iybNC@Vj^st@p5{~V}Bt*fOYh=-YA4H1$ zDPP4`a-@5IenAw+zkyY?eRNA1CNHxLI+4>IJX&?Kfv|vwPoCV=q*qQQ0b0(Bq*D)X zt!j+C9Sjyk61BWCHmignd&#X#w`3Q%_IW4I^ZIDAVs7bbl&U_z_o{kfB`1*2w7nFXH(V!YLDRbhj9|6EnF+f9@JLJ9ke^ZH@# ziY|&tuGO|j~1ycH!I&P_I^y+MgR)TRxD2{fr^4@V~F1GEMjaDp*VVe zD+LyQ@R&n`vQ$x6XST_KPAFZu<9di;p5Z9P-wC97U=Oek`uWzmFl$$MxzFnjSB8V0 zliFg*Y&nXT2L^1uoODNTJimF_3-=2)6p%(VZsVabM)pVRP1XZ?mGFwo8!v|rO_9%wAa8JXu%Z03P>O!q%hE?5s;V9rIM!LmqfFu& zvkcv>C$Pf>y_iLGxZ5~LZ+g4V=axcUaaVCC?3N9lZ7wF6V-WQMWpIu}!IS5SOWOJX z!hfC_3|=Rzpqn%vGyr`{5-y4}vw@d?V!7Qsh`{AlX#n*e;*3^@-y{)4$5ng8~`lr=R>B?tR~;4B9xciZ98s39T2v=;ZqWRV53sE z=9uSqXky6~{kDehQOH+vC+K1uCsy+F`EE|op*O3DbQ)g6YVca@$N?N&u90#@(sa7Q zePjD?@DorBuWjxQwu(P6A;}LJd|g3D9jMdCjYiA%=jR#bY@??d0x*iq{VAl^3r&GF zpj8MN*dV84QaP7=cLZqz5ugS}Z>^OeD11)HV2?`a-Hls52lJa&1f-t~7}--Sr`80z zq$ocsmWn!CvfDt%b#z+<7o~2jf(VajAjC&|n;cUw!tP(NtE@FUEPsqyNa?mAS60T$ z&bM{2LqX3EpWM6f6a;iGC>WCJ>R5$8%Wq4Fetu$m^YG|ci zr*?-DLZxvOSrKkCB<7qyox`X9rnp4O-*|CNKbgWl<-a(hVa;nsKL*C+0Vw8U7dV}n zUf``wV_p`aoHCHhB(AI)dtJ2-_~X?}GFW~Wsjd=EizryQ$)nhQ9Sqtul_Y*^1*~B# zK~;v7bvHZf@)2C}$XoFhG<|`Mv+6u*(l^c7lmpY|*5JktNEvMEd1+luh*uOHhEQWj zQ1!NyR=oZlQ;&@tOTBaI40armOJ?0qP6YiTpz?R~G7UJHFS&0NnYLPGLd? zVlq2`ExH=;6w0~esxDOqULcIa$d3Q(JkWyU#Ra>P1mXuKN{2vWHvt;WuY{0!z0ZyNYpCWhL{MP!Fq*CVqTi-+e$46c{2#^oLqOq zk51jnQ)x={t@ic#!)IJ?s=aM2ybfC0Aj>3Ys%5f+v5S*>7JP4h`4HYe%i|;QK1lR5 zH7?I){J(vcI9oQV#LR8rn!mYIf@~aWMLf%LkGh(Bp4F-aS*#iY$DaFIp+DTgp4+G! z#%;h_bXY3_rm^Ln(v7bo_rXDH$Afv!h;;#IVelYD?p?oE7e;w%F%c|8uLV+8ok<_MGec6{RSP4Oh~Q{o9pUS` z%q3l9S{b@0K#l?oGq>y4)jMdUb8tlVi{m@xc)aHG8n+2i^RPZZz$gzKo|<8?;G|D3 z?BCHGZg%Ru(J*fkwyJF8_DhdPkhKV!Gz6G#6ZhrK62biqU87}4lHbMu1p1lGx3_eX zHcHeImsrf)-EpyQIW-(lNZnD$`y0+}A6qQ+Uwc|LLvZu?G$oEey5a=ktj1rIB;o{i zH0kwiW7r>dr4d(NvNL(jN67RKO|vAiF~z zM>PGd^;QUti|Hs%te%y3PTx?!pEXKx@Mcp6aCl`_oT7DAv(za>V*!jNEtrp;61SVkBptmX#Nh^ z+b@yDxT2!gOK}U;%ZZ$d2;#v}>+RuEk2At>vTW~nbI>O2RhjBxyk3~&y(xJGKRZU7 zm6V!Lm6+-Vvy}Pet->~jq~J;c%~${ZVt9gJ-EU_L%EE2e2_(NMc$LF3N|pDpNy|C5 zuNQ{Bzb$TGNUh`6?G!H^)kgE#n!0vwV$UNzuON%^Nyk!|Q4`a49_n?f&FW}F*u5$> ztE^x^|1NNe)wD;uZ`$rujn1aBE$@Fb$s60uT@3Oya-&8SYZW8TpBPC0d>pOl5bCH_SdMnLamx0(qlp zk-?bCdp=J0HCDI+#so7UZf^jAbEjG7F)c$i#1SZpYCIHQH*G>$^stI{=k0Z35R{^y zJr)^uA1Q(G)XW&nYb`ZWjz0_^%RDA>Ppj3uw$oiI+^dc$EzNz-*K_v?h2j0F!JCx9 z>)Jz;*x9A4MOi3y<#Egs(I9CO$Jbl8blhW3eRzN;A$^`D#}tuERuyAcI=<@?n*EFE zDL;bB!2hu7$DUIaPKJBDm0nUB=@77+?D&Jw`M>0RQ+86XxT)DD2E&Y@|FIc8#;MnBuW ztmKy+Vv|Z(`tmp6XuZg2s=hY~=qr3Ktg7c1Y19<8E_Dsu{V;15CjdskPZ;D6H=Z>& z>LyR#I*rK!MX=K)9nl=KLqnev$%~T!@X&?2Y>sM>GjKW~|1c~`(_FmvzM^ifTG0wx zQBx*l!*pO(RrJMToK8Pc+)tko&+jnGYSK45!;vr6c0hHh3pWr8p_X;q2KR*CVA-|S;UKc8((B$aU92(IKR9syPD9?am z*cz`pk7kB;tGD}WE~VdE(BJz827Z3G@CXfJoETde8bii$I@STL`MR?)*8~4v%hUk* z#rHh{#@-Vg841dWn%L37TNq!(TG*A?Mg-5_yE!)mk_X}p!P5pT3k)cRRbZ+I|H{T9 z#RC_b>YsbnGgkFt#dIU3B-#noH?ja}box@TZ(;@K0T%EERVh9Mia-$R06u3O)pnVM_q8K21kWfh=_?b*eJvFMc_q2NHyU_ksbbZK8K)kmj5ADOS5ucW?uc933>eyidzLVD7yJ0pTz zc4nlUM7={}=qKl&^1}d9E({F6vf^;qUMzE43&`h@H%M&rC&rII9+c9Eehl{`J9R*5 z-*4|T($_}KGMAUueBWW;n>rNO*e>Yk=A^lAHeiT zpX2q#;1xh{-=q5VUGmOI`<)8>y?rauy0-E$Rs0qC`Mry?sGM22B1%i zF2+|F+giP=2?WvCH!%Iu>x`{psr%x>nI^n{;e>suWBa~T+L#{PdZ@WHJly$Pg2RpN z(eKmv0_p(NsVT5Di*|DR3}x011Rx<@WDX&3ULpDiTXpB4~Syuo9GHLa~v=m zioPfqhTmKC1nDDM@=7>(?;rJ*hln`*_lm3$B`K=a&WI+b)2oQtJL0F_{VUr)R^b29+%YmtLuUNG*F6i-3zM$TVC(`rb)A_l6$Gzlfeu4Tr zkDU?TkV2jVdSh8WSQlb(R=-FWVn4n$j$Ra+-qSV#H-e6J->8$J^`C$`K}V;TfiI?` zn_Kq!_Zru_hL6m*?J2|Wu(jR&pq1~!55inSiji-jW<ZiX&K6(*!bcEoJZ;&6q zhjUFGys5ZBZRo!{?(qO)K$~BhqA7^qfGFP$4hl?I${j(ccdC$c!5wk@%`afVkJj(P z5yCRB4^ZE<`w!f&<>Aa$9-oE2!|TWo2ZS%k?@tGC5Pm-j`-#XW3hzF($3FbnCX$z{ z|HIln#^@5nZNfieTW4(J9^1BU+x8jTwr$(CZJx31JrCZ^KFKEgi@f7KN5kRP(L!xm|=G&WwUE$#pfuQS=RMfv#&)IML*9rx1$rygTWSbBpvi%mBkvCc%IZ!qRReL)?FEf8lJb zmb)3IgL1O(HvVq0+u_uzs+WV&y-2pKn&D|XYU5-N+H*5MWJ=n}jZrkIOYM^Cwc(5| zrPX(lwcaFaT*FcDx}q-Q=ET*zP*Rk>Q#?GN_csz36R~TNBHc)dBN41W(XJl1_7vB1 zYR2SRq$bnsq291xCdP!_N}FXaa^rNm$1QrKECxF&Vrfx*>&Ww9UU(7j92ahYGY>q< z`6`6s|YO-Tv<~r zVEw*+AWOzKcoqh+P{m}ADW2pmqRM)m>@G#Y&m5T3bcB)EEz4BX{pNRYXSGrc)fJR1 zsK@eaVRIkRP^0%2j;0ub44iPq6a=dkOq>31LuObX+9IFn^zafk({N1J+ zB!BC{VE4`9sM1rgK*;UQpwF6(&`|Pi1VIS}5;?xo8%;*z(OH?C0Y2P1Ibe!x&FW;+ z0&>ykn7AP+LM(Plqx8Z?eadLWjpUjvmg%1`4~>Jk$jq&P=)2US$E#odJqJSTlrM*xkdzQq;u z-mzjfe+y1etgl5HbBs1st|CC}_RB!>4O3)j3;QsV5_#_vVm727(>H1)ZCSL9m zss9QQF}WgDh3j3pS#_AerCRQ$@Ng>B1)$yF^%g-u zmH_6KT@8Zc{HDn!_Nt4i>D`pka$Ed*ViWpbElfQQvIV7Y*-p&858)r=W9lD`QP~IJ z!X8!=op(zLfvzub-q=Qcq=QBEpO>1TXP-7K+e$is_F4O~(L6Ks$Bh#Jtv)@%b?bGN z>aTIRw;^u1(QEr6MHSQ%qqBe!8}B4jH+{mo1gRLz$$IH;trc$Sr$~X{Z2Ysp+)Jy9 zB}jOjp5R8TFRXaeuVQrcyIIAFD!-7=-^y19Tn(@VE?Qf|+ZnlCX4P0iPw-NUcdP4> zdSP`H)z_sEqS?)|rBDXp>&5f_qBZ_9K1`9CKf;E~Z56h~$r?M{=17p@BaY=*3pxq5 z+N^Iw=SVx(jmq9se-TVrE6ciS*MShO7sGZB%5%ZNM2tTausGHI4v|b)@R;_AtA4wB zT>ql$C7$0+J{ZX3RRUJP@4?m1vqvD=ha@)PH6u}GUaDfs4luB2F76Z%sWT#1#Kf^i zUKe?FwRZRGrIlVPzXLP77^u9}2S`|xkz`|i;hkzZ4Mc(v^MVnP;2|!!n8gGW_<1gN zItrV6&q`x4>RgnSKvs}LJaOc~zzZ33UpSN?Te|Z55}nENvXTz<1iV&;YI~_E4^`z} zP{ixbx&8arNfr{8ht07VnRnc8M=y~6EHfbc5Sz=_ws7>`4q&nIET0o^veOA%pbn@? zpM+#C^#J?}Rao2J#e(?iD&Q{Q=#2cbNffNhYrZCBCQ7^!8AjtV7R=qRBC(DPq&2s1 z7Uk-HfI=@BENIIN41p?CjZx}$)5-rpDioB4ws?7y9Q6~V9{I=|Bw)o#w&O)eEE^C3 zVS+6K163_0GUeiy(ZK?Yw7$XBnQ!S^_NvKTRNJpf#ISH~EWY?Xxyi^Hvg6i0IZX?U6P1y-zNlo1I`cEq?)9Z=-Zl-3_qMjfAf;M^sV%B}w zx_a38uJc+0f*V$Xog5DwEJ}7XE}&w}#gyBG0Dp!8f3MeDzcnR9e!54KA&& zWe48;>(e6hJ~ApNzW-Sq69jaAjRm6hcRk`) zlY5jukom#sl**76!u?~36DL#VCQs}T=+-Al%?_47t~R=gtiUHV`IMQ*Cq3ZT#|l~F z4ws?kevqnYnEBnv8WzL51b~LRhVMwe)Bk}hv{JqJn<;tjn(VR?Z4T+;4zlCrtp*f1 zzagY{xhlHUI7Q{uiWdJcydE zq5zs*_CP}eWC^ADsK@C*fa^qUpOlG}CH~YIZy>~lIT(-XsQo1Hbs{e z^@NE=WGg`!c$56L%umORz%f)O$#m~~m;+?kCBHX@_v(EWY84*o349te4S8%)M}tdgH=}^4(Bhh*A+Wd) zU}ZzOfVc~u<>Z3VtIwN()i!pdqQ?zo^2|4}b$Upw))C|NSV^2uUQMYN&mPCj#`=ki z1S7c-GdBK)?%2c+SY;-wSuRwF5zuL1Yz&OScB+FEUUw^>*vtIH=|%UMo%RyE!PV6R z+(Od@(%=nMRBF(!T+_0SH9u#^mA>HRN|NalzZiJ_uwhPKp+>4;-9+JT;}#hMeJ$*v z`au8X?dXkuz}6al$ACI>V=1p@rwl+G6ps6lZoRBYT5RwEiufl&gUHFR&$We7$-T+R zxsqg8)U4##7U8&58tU3dl3KkgU%D3}WF`{yPw<8%MHXKX^ElC7QL&R*uOvC)PBMCU zKwh>ahOu?E0X%t94M2dy(Ls@B+F$r$1Ax%1-CvvIm18mXi^5@FTqBi=_lMYogx% z^pw+E(Jm*Omr@Y4IFl;hH0?~dhwLixSoS!~KzQvULPI7h;Q1YAaQ}^rAedO-8ipHx z#gJLfT_0;wx2{Lq&qerqWw&>3)!R=VV}7sVS^gQsFhM75GAfh7!LOn&g+SfJ29}s* zW)mt{G-Ag(JxMD@%1NMCe@++$c~dgTM>R(*XyK;P3>U7| z_0RJlTkDY@=J;ON)1gN0I-)U$T`%5EkWJ+ZlPuftRewmN2~wn`Huj0jw&2Te1(F9y z(}1Orv1M1w+FZibfY-ZUGwa)33aR{C9Rkte7O}yfgP)|fava0eApS^|d0fwL4d)vx zx&M~s=s~o#8t)=2Eir&10ycUe4nK^_6b zbvd96*xWcf42A{zx(^GUs%=hGNE3G1V!GF7nGiA~lL3L@Dpchp-Du-!yf=F>?Od6O ze^9e@h?s4xVh9>ZfBf|-n3uAhr2UG)JE#v7T|jeJTbuaK-V8xwqfbsQ6HzJf>jBRr z-CE)!^$Yo?1j(c;`IJ+3PkefhZPh7@Yh8BmeuH7PM|~_A^B4P~Ps>GPXMCHKv@L|+ zR0v7m%cP7q*yppAEw=fiRM_%t-Q1;p6*84(Uc@jjh$Ad*eS^4Zh$4ul3!8gL?3gd2VPF)M$F!op1Vim5gY%(C<$A) zfa%R*fKbR}*O)F1`8&V78`_#ndt?Ei1z2=VjIzH9wu6(DT7m7iRg+PrZj?*yhB17b zl%jo2o4Ev~1V1ntxf9hqo)N|P9}g*B9n?`M%nj!P?<+tlRK(xHM+cZ>u>p%v-^;Vv zFYnyQq6%nY-7pffKPEmyuUNeFg>jMiLX_5!5sZ}?nA1)WG&r4B(qAgroQzCp!O1IG zh6&lny|(M=Fnrdb_SjGxU>nOG0+QlhFRIYj!2;F%*<9;CojBZsw?v6pXy;yURVo#E z=Ehhs)u-mBXC=&~9+68T1BE6EPMn+hq zQ}PKo_wTz2gmw=!xHvETS=Sml)@g<;IxtRL%{b3@^A1!fiD{hk?U zVXs-DNlFT9>Z7J~cD6;x>XKWjyuZVp_jG-s{dFpxfpb5JkLu;|x2A3L@j*F!?RtYn zoRDo*Un8rGB`1XyhCP_V)|L{rZgn;iR47}K9S}1!7!TVU=95tX5gDK$+1u|*x}$$Kq=Bo;_$C~p#?-b3+c}u|2zXKu zvkfNcj|ja%SXE31pqu*;%q{=I;A`yi|d<%^!`1BXBD!Z&YVi zPtPk)VW>0VqmGR0$@~>SZnb~!h8?%CXr_p>=HuoxD3HgjS7wm-s?3(mj+_^E?3txV z>IiZ2NM`BQ(^hyiDu()tr6^=(i%hlRE%V-4zJRnj87C4~&QDJ8L0SgE{;FXd?krdx zuFh&v3t7dXW9n-&dz^K6C7IrCM!>ae#jTqVxJhe^U`^iN{{R^gS%@HJIbFP9=BxHs zU6~@%c4tkc(B6@b?7v+ErIeU+UAL0_jQr|m1ygBND5?;9d9Pws0*XJKs+%5K3S<5?SD%5CSqLgIL56WWz#{hlnUbPl2t9S(FuZ>PeICzsCc_zQd zLB!%2vt|w}yr$X?shA-Kg75F1Sm5!GZA7jX1eEv_(Tq``xhCgspP2vWD1UajI46 z7%`I{e>J=-CH5s7^Py*A=>*()c+tB=^a6fO_~qWW9qJp$DOCy2tQ{z*@+8q-$T&c< zztF9>ln<-_c|kVQ*hc=6U2q>CI3A6C1d zIO#;(OGEiz!B7K0Ob;5#7Vx9Xc{wcE;9l*q^{h zU6T(KnJ9Xg^TK93LB%p;GeJsLsK3%k%Ws6R$vGj}_nuNGRSk(U8KR{mUy|c~vf=`i z)RB;mPkB2yluLKyfhe#A7{@$wmDGE3LWb@OJwH533)je6R3r>UQeb*aT^}S@Wio8lr&4(BN zP$2%w#fjqn(Ey*0O^=agzfntQY*0I}k4e*%v!B8?SMfk5z3eWqYIKo4Q%^2EbP>lD z$>Ht-d-$reJ?8`*;{rqWGmVg{=w6`E9}J-2ytz{N<=ue(O=WvL^WD^{m06?hYR*DU zPp4S$XO48p%CCG_YM8U{M`AXTceNxpv^ur{NtX{jADH;>_QT6B6RTshw$D0IwhlqI zYLv%kB{hW=GyAi1?jk0N-r838zXF)yGr+M$OYk2PxTG&0MN|_!qofrvG(sAGBEyuUK1>rZjpvjLN1lK0(HxXuhLP3BehgoV$` zX&O$X#-8j^DjV}|+ZW|7)FmA|zuv~_y*n$8Z3lOMD=6WXG#Emg z5_$}=cztJ02?1Ri?^1FkUSq9!uvU(q>|B$z%(*s`RH7~Ks#q}xxKB8iGg6WkjMprc zwgj^j*l~Gf6Xf_oGh@?{rt>vTkdG+XI&}(kK}EM3UBh2uK|1{nX-OE>QVsX9Zxty= zjn;cAHMX6@9h=nBb#ouoD3tfP%C3iI$c_;b^RK=AP~Qb#lLa2!bQ)9c;aN&$gF4~2 zGkS{5|F;CSV*)cmi*3fTvJ`Xd_3e-^x0{~d385wFiilMB){^sMrG0P)t~mqYiS zGKG>I|DHw+eoa{OxcG%0+voId@!qUQB?yCV23+Eg&21bL1NIo-u|h+^0V9=6@2oM3 zzfM>AE!d0F#0oW)67k}ESI6Y3e?3H*K@4Plf&m0+szL0jEEMYTRk;{toy$)gRMJmD z-HQ;5`6;vE1i^4-xG&vBzvlg?w_vEZ+Ch^jqr0!Yw~|}oPhzWOF5Ne{sEL1wXHyf> z@@dA@K`|~6kf*EsJG2)uDC1wVZSl}t1WWh<4_8+nB_F=2V9;4FZqI&k*jgd9B6)nO zR{ zh}g}yfz5;Il7nh5M=qTtMvmCo*Xtxb4}stneBI6guATFE?O$~1kM`zYJYkN z`flz5$2ZjlwaEuq5qq#HdwrCs5CvGt{WpdkVUcO@Xmn=}E0VE;9-PQesm||=^yX5e zT|TzTcfZi8tH)Kjp_Hv7>AY~zVj__rzy^J7GT+=YXZJ5N=ecz9khWqGQP5;Bqc0pJ z3C%*XP{l;kQ>nQ=Q1D2f3yN!vF8*qVGrQNwI?2Q2zI<7itVpV5ELr~6IcL&W7BimW zJu%vIkA7?kP6(wE$>4aTJjf3Y3aiHjwT5M(kVi)p7Xtm_@8ENV-QLTPq&6%yluTHy zo7i|;2xHC^Gg-yIA=6>_BP795G@ZR3gnW}-AyiL_NBZhI%>l!kd^FGka;@Wp_-kY? z0Pc>)rE9ThEb2^KF5kFPvU3W6P2(s=Hn0QUO=>!!l~0U1CE&o}rG%x%gyd-&Ig4<3 z8${Av#od=T>xXbR_f1cocC7?KiV1&+mooB-z9ZD0VM&^+5u0VyRp*BJd1<9&=|?ud=tz*?H;qfrKgx1unH@}O*8$Hd4h$wz6uz-a_k~BsnrQ$@^}N&fu5;Vw zA)M--p{kBy_2gIrhH|1J8bd_qfwZ}Aq0t=2dDvq^PBFycnnCXul~q5{;>$UEWe=@4 z7=Zhkvr0hcXq2xdzkemp%+w}Bp?RJ_W?nq*?x}1^gyQT_UGlFH8K|Z=wQ{DokBw+` z;Cu}K&YepR>~iK6_(_F%3EQhC&tjY-#VM{HLK<%A`lomEaFVx&B^6g3Kj-it|IUjw zcC=;#fKSKcJe1WvdPTl9Qz{K<1TlO--L!|y^N2e!S%Q{w9TX*nHEyn|w$nY-KCdC| zL}->X%iK&x#WX2lV zHPLzbuj<=^Xr0t?rccR)J)$?PCu9qXI>O znc9M0$5Mt&6VZwyx_)L}%}soPaVXp`JW>VnRu{N{@^Qm?JPU8F8F3z%y@U>`Wi9ken}Z^&YZXa{NDNO}0eDW}fN=(N zR<1bwQg^`oLu%<0Q9@!I#6@j}=G!@frKvN9nbS0Bfs+1uN0e)D z=b0hH8|&tfgx)2BzqvbyfnG>Wpm6wAH1qs09Fb5|s8056G2_KMnw{{rYB0kv& zlaD{KmTVEbtV7wo=(OkHe50j|p71P47p)AIA8^7td{ETg+cNE34yDrP@CrfQu(4wn zR%~+dG7AVo;ZU+Pm9Yz;kIk;j^>uRM!kCFuK-QFA5K$gQ#lf=wC=0zmirl^j3iE{S z#wU7ogrmRi@AUT5ftvMi?IOu+i~1MI{Q?W4cdiYv8;BP9i_Wz8*LWNcf7r6xMh9D9 zJ$edntZ5jI!8vZ`rLN1=P=vu|?vyZ>>NfGU@KRtuv7V`Pwl?aIHZ<$h(?Lcw|=1Gl!9dc@AUt!4O*C%bt5&AXVCSpkhgTS|o9OpG`i>Iak z?lft2v42>nT%dBh>I}zSo*q9HnVS;{4tWISDR}%F%`|=Ej&Z&bkV@>&YZ>}miw92F zw3~Do=zAd}3-Q;<4Shnjm)WmOts+*wvjYhsbqV!DCB3CtZXNxgM_2ap)k14<$9;4c z#C#xGTJ|qiotoY>aHt;Cq&;I0^D>->iN~|TDh8FdU9aq{I72di;%_*4Ayz4pA>yd4 zoIJ7yv6kWTgc&7VITsz5WBazNp(_uo5gc;9$@OB9qHgk+%2n{hKI$i$n*gr{F^S|R zPh_%aD59v!3C7`vHIpcyCEnq#e`P|CC@s87HrZiPG-&48<5a2FhE*(U#ybj-u6k+$ zx!qcqc&F1@SRx2_=5)O7!Jd5tuk@OX8#E=#^p3;9yA7w?lgMLO7N+e4l}vij%*A|m z8i$RWO>{{>&^5GAh%O3;; z4Vt!Md!``YeT0aAVj=&|@qLTqXkF^g>xEYo7f4WQ)kl`uj{k#@?97U`;D-WHC=Lu` zU;ouR*61Ili+s@ggpYg{yW3%+)ui1gl`-L{J~gCZU!@?)%(s~=x6ol3fWiK+_pq?l zt@ow=XrJ3BI5g)d*~n$2oI@41$eotLXCMKgqneRov?1tmrl`SN zS;bg}6 zf>;}h@>tC0-ApL4^7gZoWE*;-+l*S{`R1gS)O;VK;%-THjuL&2nM8Ozxt_+j>YV6foP5k&tuX}_ga_GNxcJ(oqqf^=w|!nRn=lB z%I6qzhkx>0Vfa_w6yAD&@cK;OFE@1%Gi4loix6ETDqej=J2nXRfZl2e zJ4vW}IKz)NN9}5QqLl^1k3CgW9ar;isqmXJcroIp8ifXzCx1zw)ZJ+9;aVXf(5{%S z2_o1*NRBnX%8>~Hpz7VJ!ENEjdePmX6Wk_gUhr>>*UPX+kP#N8oa8`!0oMQ&i*q6v z2hy>chVp@-Mwv1?;XbRFF)JwE6E8i_mT#2%b}G+EhSIC&JCjl!f(8 zL))Z2kd?<2wfXG5-bc6tggxU*GJ^xoxG@wnCzyxopnDg?V^t~6@#fYU0AhZdf()FC zvbt_Yh_opV*SB2lZ{u-Cr(j!d!Nzqf#Xrsd2_)&s5Vd_4tG-p+pzp?ZNhuo1WgPF+ zEOm>6zu9^xb>w~+iQO>PX+^r4hX!h?z9n&+^b$A=V@gH7kjLA|S<*8ER{pSeL8tLW zO*nZSr2=X6h_9R`m?#;MdnnpY#F~^mt<^~*6bmkEOuS3*kd6x5m2F)aC0DeYBT)M2 z`I@fBU7O<*f)*m%q-vN;Ua)=WlFVu@Q7MNzXq2!3E&-uA)$)lUF{9VX0#eniWy;-N zan)k1b-9n8R#uGHiDvi#*q6XTwJ_hBPUlkjutYpwy1Keii#+i9ec}Hv|10-8_BFgE z5}vFSefE^c2X;)uwymV54^q4`<;gwg>oI92&xEbf{l&53>q_aCi?Ncb78AZBlrMd^z(M?Rr(u*6SW78?DMn)LXI+=qzVpQ zxM{ds(!-0F$01KB;%8$!1J9&kF0(>UpXR6#|BaDJt8 zxqWpncCJ0zXPf+KQ^_;3JiKN9dhyzyh>q(#1A+Ahj8HU-NbA9)7+*`GYsVId@mcm> z;zu+L)i&zCd%`ue&(SRVNp(ylJyVGG>1a~YKq?&K{|b%h3)YOI$=ky5Wv&9lGpwjV z7l%YZ&R6P|Nesq^{Vn4j)=_Bv#0Ncqf!xd@&4gk}-tWek98FX70xPE@ugJTSx_Jki zn^C>B9Z_dkvUE0zER&VlA@%esDxsyf+E_YD{5=2|=K&7)`mzQ!;bUE#_R7@qv#U8s zd>u2Xc0Z+eZ<{(?F+!1y`95CKxshC5TEAw-qtTN}HEJYKT)p};Sr47vr#qrwZ>*~6 z4WZTFI*=Jp+FW{O)JNi}A*%L9-7$&pu|GrA%nE5@E=2)o*vLlBHDTTB8dV zV+S=#Qx-1frkYhPD*Bfj|800q^x!=Qt=8P8)zw}yYLIaQbbp@iFUhRFaNhS0a+#zb zXiU|kuqVvoAR}GIRr`Jsf!8TGzMzTjd(kaJ>6!G_5|WDYl({ju-vow-6|kbJ(^Acp zj-IRne_VlMTAjRCk=fF>dP~D_$Fwg$UM7w|_ceUu!e)lY4jZm_Zw>M&-QU_^wNz{9 z2bL?@N2f1?^voXe9;1Oyf9-s%GE(ttr-p6JSLlV@Cex5a1;#uaraOa~r$X|DL-UR# z=_%(|Oo8S=XrzaP5%hi{T__jHfcwzXF(Pgc`5>sdon~Zy$y;&mb|@ifCRmnBS<~P| z{OIBbWrdv1T?wVx6&0~0c)tYhqg}z|19O!Y@_!LvS!Q?3DtOm>k|nW%tkh6i&k5i!iZ=?X*S zl1qO+Ml|>AUTkV2ftBLwAeXZl@-eOcywB|n2z9>$jKJ3IB3l;7f`VoGmVO8zeZqr< z7y*IneXFl}l;`RMl`0JW1JyTW9Z9-c+FwsF0^4>+XvVYjV}GvdgJ#?bb4ly-&LfG8 z+ck3_zyf?j49}Qozo4mHqBe#Bk=7kOk1mJ9DBtWE(`F4PfiOE_GKb%A{$Uf(V&emj zJN~+3>>Uz{Ip%45mfgA zUc+RF(bsznQq8r+*?J(KFhz6NHj;7e-cTkPKZWEvMKD(AuB zhOd3p1+a^^a&%Onrp&A)!@54CgH#WCs=9eLng=Fo*t|;TMH0)%78&8qGL}&>tOoJS zv^JxXs}zc*x|m9P>9qlaWJz6_5v{O|VjdmAj-XFK#AL1kQKg{ns8vVURMjBtnq^T! z+^vYR+eGF-uT75L0Rc#ef?XgTUtwyDUYi<9k4aWFdtn0WrI}KqEF|DF8A>cU9yC1~ zt}u2LG(Y=SSWE~BUuRSKVfs%(1RiHSwwJ*38eIG6duQxPxnX}6XnXBvW4N5^vwDWm zMBDCpgSU5cUC+`2(F32R2_jTR!n^T9=q7)F`SHzDjJAy&^-Wb^hZmX*{-SrnO80r9 zA6%_64_7hP6Md~?{CP;!9F_MQmQY-nZfCy$E1yp04*qgj*+ySFu7jV zB8pIEpPvB_Ur4ciZAg*z_1--(PR0hQ3`i>AE0%K>koGfu$)jlI=?#`rPan*ICu@#q zeyuCKB1`S?h({0xcvy0a7`QEd<3!GB6gqVc*v1x=1c(M`lQ!@Ay1k4AZ>2yx)F8ZD(ps7lBPOt)YRiS!E0>lS>nUAv4m$KpxxgF!c8wS`Gq%hs|&h4LjO} z@j9u&FEt6veK^I{H4gJpIcVu@1SdFji(h$?9|oka`u%u=Yg`52DJ#kp)^3jfJ`5HYd*C zGl*Yg1;-EOU*IsI?MLfPK*gZRwS+H|zRcgfj~4*9>@Z)O=D;20DEz4d<`mY&+`(10 zZ3V)mAs1Yus=o|3(&RM^$s9RB_3Vb{vnG7=t4Wd=ogYw~m}!zJG`|}LQRRlHOC^8* zv`B=8vo}K!1k%7i*q1^YVurk%E(`XZbMl}2&SJo-3yGa~&hNNQVu@M%kuvBHlA&5^ zLYfght*#Q53hagDb13TyL1W}|c4;M&g?Z|etzDTQW@9r^&=4mHcBYGKO_iJVWDRBj zi65Aii0gK@k@*fVM(?*q_JL4;zjZ85x(K2=vRlo2!$1{eIm}LM+h}!mg*$u@N9UE; zb1QeRA8S-MQXECjYSE@h!Q#!-?olJtBUmTLF(|e}4_DihBxt!kss~U~L=Uo|&_2vjyQNwtGMSHgew5X&~dV3-<* z5}B68fTuzPk#2lmlIcbeG;Do*@BqSoy0=~LT$52SC$DB~?Rt5F4T!>1pZRSUUMiz@ zY1>M{&A5^SJJ>ChSw0%c4srTie{A24&u8dXw#W4-U#5rksmiT*Ia zW?y*q9*NC|8C?ehhYzb{@k6BFuFfNc29R|5BMFG;4N($kezGy>fCv|{8ryDn4pB1m zKk?JtQgISR`_uiivR6{O&JKiS&V1){fLp^q(;P=GDenFt0U)e+6FsB4x3;rg{aVF9 z^IxwhJzQxDl~c-wE17DLSFmjNGq78jtrrqugu1QQzbZ_GBT0ouQ&y#q@|(HctUY@v zUp>VxCMD}Jqxn*ptB?Tp*iP+jaX~Vt>C4B)N^#~CmwRpN3s0qA@x00NBJAP1QkjJM zWdOGVtOL40_{g6poX3XHZCq~}u)dRYvtaO&3kWRhbPcb)D;l689;)m? zlJ^%<`!7qC%F>*KT!n;*)Wn~KhQQxedVl093OR|Rcue`pv7a#=t1+AY*f)PfuE_&T+gV8)1BD{K18Gfo}^- z&U0mujJ9s2Ff^wUee^rV*eJx$HyGGs50@^m5@^?LiD-g?KcKNBg*8=fgf6z9qF!Mn zg=&%b;)`(v7P0XU02p3fI`-IE8~N=NjhK-MV&3R42AnJX6DZ7-CQ8y2>9g&ak*4sc z(Xh2qHF2-*%nW-AaxIzs#$txk=0lvAVXmto4Zfn}ZQLIJkae9ONV&^jq{}bA&AtCV zKyUJ_seAq?z)4Sxy;tA~j+>Ja+egVuX`yBqAS6yeo3fb57fDIk@HZR8wC!i!KD>9| z=a3j#8^Qk=w}1BxQC!Iw#z=}!5(f3l|?i97v8wlE2d<~&R3TODW z-`yok*?*KHO~+d24w-5esAe^7ca!qiig4p$`=!eM`+_|*%zXEjX1A?)7^X#Fh@iss zPjbCVE$cUsLuP5gt}{EqU*pVTVq zKVdigkvrNI9@z6O=7YtY-)WvUM;OBvZ;Xb(712XFy+L_8z@-CIVR?V&2NywmH3N&cGAviM zMT%{`P^iq387L-qIkDSrEJa7r93tiiFG-;-Kqe z(1VYyg1}Ay7`MlYD{Upho7!JmWlsc-6C+56nJWDpSm?d{vIEk;5l2?iW>qi@ z5;5GhL}w6LRaiuKb{)M3Wg|_x;o2u4VgfMAai;qkGtDQWHgm#QAFPR_D&pG)k zcuR$#Lc0cTK)mn_!p(&EdK{EJ-_yFRpCmpPLKs`h+i;4h*rnQ&ULcWYNKb@^d=e6` zU;gbdTXV9JhL)9~9`7q6rS~Z9OQGz*{h|i5dvV7lx0h}L{|10=f-|17T4Gn3!6NbD zUe*4~{3Z^vh50^Ken!WqUpLxrp2Z+7sj;ty1snp}9IMB4ynWD*GE+#{Src~K10hsG z*KcV}gQuxf*a(XDpn)Z^o8*@}-5LA)h^h%Nx#H_vSyEW$xNI_RCEHm~X`a|U>G06N zvD~8Jcn)({(VTBPfhS*uvD>;QyZE+FgN;QFOyy)aAG)8&lBC!_GtNN#1FD00ItUI| zr&~^8Lvuojpl6f#%+5=&t_5g=O_wJxkmUK0buL}d)-H1bh4}?+_ zBHeKbYS%bMapaxcw-ZOG#ba7ty*lcJZi8cBr(XAY?T{N^7u5vV;l)+!awe3`fdv}) z&qvcN&wS*e2VIK1&rGG7;q)s7G)e2(xVR8{JJ%s6{s1dRwf7|kZQV5=fy%n_GvCcX z_P5cSTVe`vdm2}J2MnSpb3rFskf&!kAL1Mj2vXRCGpvN?p)KkjgL+&Y9#U@SpyUS` zpa3UAU2-e)yWOUFj&UKO*69Xuu^yq_9#nX-AoL7YOPFJz#ErX3W1p9euEJJqD***+pdBbnegrUxA|_gEe0<_+ouY8i$mkX> zQV1PLiR(g`k$iMbeTL+`6IS}cM1MZ3B*UjL48-O+wIv=NB#^CN3GZQYn8h&3pB20% zO*%<-1*HanGH(zxJjtPTOad9n8^ofyx^4>;tLOZ-o(rAekM8hpa~zdLEB5Cx3HVdd zE7hXL(EdeL1PW0E{bu?0x#jl%j+qyC^V}R~&}G4pxyn>1*b^uPW~hMTVhGyfu^GC# ziNtz<_hfXbQ$G2tUfAe%al^cdqfzX9l2_#avbR5AT@PeyqTe;9(*iVTW}UxOB-B|? zGSh^?i8gg7Y)U=4?(j(Q$cpgLY>{?dny*hr_RDt{JT-h3G&x87=Dpx8@*o{QHt<5b zY{RSLgEmq%uN|EFs^l%HTosSg|Nct|;>wYaOG<%B`e1pU?r~Tr$^`z8XioTuFGQ%& z+G2vCgMbsh&{26XW@Xh4B(JTS{!R%`CIXyUndke2-VYd6y0S=~<2a|=171BQ6#tZq zlnC70Lw?jV<&0BCLd4WA=q#M{CvXU1L)OTpxm=IgfEaHY+_(4e-|_L#gkHbIqTi|p z=dwQ%DW*Dp%dxMS2A$_kZ}Z9W7OgcoAMipB=W~PQg#6aVJ2=`rSe z&}@S8F_bz3uSy0mi?AZqsRxmHX`_IA8xV`Q`>TQ|D_-9$h1=yv!~Oa9;WLW&(wh1u z;(3A}W4FB>W2|y(EAab*#tW^=N14_EBws;U;H^Y<#m~_lX65bt$|6X!QJ2ek#4go# zVW-p}(#zts6}v2_rJsyFhlkfnNWjopJZ?;*&|#$eLu}V4%f5eMFc(spsyLPDg7vq# z)>H?n=*Xw0@MFtU1A5&{K0?=&@M$aWrwxC|_=CV&-NydI+Cd)B(bC+sa?_JR zFD4&f+Gxq5*Eugz?P_>FCUy}#@_N5v9E+G*fxZJJ@V?1MnRW03`UC|1y)#RZfDNx! z7OOV?7Z~|c=Dg&V+G(zIL*mptbEwEby{FFD7{%{cWLkMlsg19gQ3xiU^ePS=ghiz3 z>C4+nB@)?7ThDCBLVi2jtNSFrB!AyE4WduK;UiolHH-yQz=D19Y|*wgM<>BIcb#6I z@tK>W03uu3ar8&-*EE`ew;iSZ=}FZ}vIm&eiQ?8v`a@geuieSJHtM24bF(IaSI;hq%RG#lMoZRBa!j%rf#((t^|sXI zj~Wn6KTQD^q0~7T_%b8 ze76sAFE_+yl(yPUwhMV*Q*#djqPGL)rdbeX;d_(^6Rf4*}%=rKLzpswgV{r$ z2>EAym^l&rV@^cvY@G!K?c52pXqj05TT7v5qyPU$OZgWhr7mt_VP@`3z|8bN@|^?# zf&d|aC_oG#4v+vy17rbm00n>&KpCJ0FaQ_=3>^)OtW2E$lSldQw&Q=C2Vev+vitYD z{O@Sg^q;9>LcqxSA41FjG+WsIk2m(e%@zih|D8YeA7%?PGvoh9xcm>Z zg_Z3eX!9T2|J!Vdegc!%-dq8LK9nVB12xwU-~x4XBWH(WzQ)_y-ez&PcU#^2*UG+S zcf8?v`S_`Lsi<_lVJMkpIoUWGf}U^=7-0?JXTY`+<0SJGwe_p3YJf!{_KS}X&WVr5 z^v}`;J2Hp*M2O|D0dI2qwXW{;BPFzkXTJA36aJgMhk9Z|9i%9W21uIb7n!Rq8N98i z=r1N>;?+N>Hka){MBp<7Mt(Fr{1YQsr+)l&)p&?sfBXBz*!~;_M2t?&&!=Si_YV&T@AOUh?~Lpu z#b%)I0Xs5-{4W4gK&-zg0Udz$&Ol?pA0-3i46J~Emqw334p1=zIs7G1wlQ&ZF|Y>$ z-U&;P5zyM<-Neb-7-$c8j}B0llmW=w0O7GPj){D-1}rGw48y@9g<$kM>@UE$Bv4FF<- ziU5Q63jeOp!N?wD>*zr50J8j}MutD!yti4@+F01e$_i-h=z#D?ej*@ypwWBZ-5CBp zTnlR(7i*9IAQO)=VKt})@BO@aR7bgH{2LQSn znKAqkK*h}#_@|KR5Bj}^ZyvTbwg8j&GJxMeCcyVU1P=!TXCT1Q-U;~4nx z0ArAmBft=73bID{$NM`CH2Dj^pT9lG6`;-dK7LF9#y@`lebafLFk>5QOSga2|2$#_ zX-#28E!oe1m;7I$kdTclz=MvR89>L(#t2|yVrBtwyuW<=Uq1>4puh9@m#w6=i4B13 zuXNx0^q-WS|DFM=zZZlW@V~y~Y~Cjq2%!3B(7!UWF&e!;nEpSH`=2KN|EBy8FaNKD z{(mzPbF#GjQ%?1l!vBxlzzSsP_P56Sl1 zqrv+&2wI!IPc$7DJuCZPG{`{=Af8@M67AN4z819&jKFQqZi z_0L%bFwk4uIKGm_~TsJ*#HcJe^7rR4giDjKZp~+Ao5?t!3;MLtf6%*~+&_p5z##u$#QE+;=^ym&Mfo4Z3SdzAFXDR7#o!mQ7j)jt9MI1C2kf5G>V zz<e=p{)zp51ZHlwW?5B+xNw_ z`KK-H?}fczpALTx@PC`l{0C{{2sAdd{2#w8tp5o9*EI{*-;)2Onf_?3{lDOQTO9rc z-xK<`@_Uz@{srH=V2cC-h#q>%ZW8$!>qb|5-01C;Rs{IR1GJzVF_D@Soo` zAkY~B^S+{=Fwf&POMdvGVAt$k z_~QoJG4uDgMhgurMho3_&(v^ktfjg(XcNP2TF*%|-lt;+87JmF>CR3qeHLqDQ>^nQ zr6HFaff;ISTD!~Lxr{?`9*U;Q`wFvjSjvVIdL)R6$Z%L3PEHmih=6v%jP^>QYQdS= z4oNbHD}jmAcmlD*$JG8&X11+?s%A@sz%Op|!;ou7okmDcmSM#6mOg%LEmi+2CQ5a` zhUt}Zg^B42LD`D$pyV)yc?LX4lk8s||pa#4G0_4l9U%BgCG@ZP9?r@bFOS3T`@U2r+ZZF_tU^$^AkjJ&$$0Ot#~7RHLmrja_h&M5sP^FYR{jZaSQa< zTXMaQMcL$e9M{6s{zctGTScB8jhN0blY9{Ms$_Pw-%%n5(4q=840Jt9h;oStjyXH| zA$*`=sNY*M1a6TOy$`=x7sU*H@wOVo*YXRW>pA+n3l$YePBGju20_FUGU%-h4MwU1 zZ^t)lSLw~l3n$ZE48sLcpnmX8cPULTUT}G@twahhJXj7#kZv=Sm-&TN7pGm*jomOy zPHI2^K_x_&{Z%=KGsia)D_SMIY!V@m&%rhVUcHnq{&+Hm^E%5P_1pm~>~4X75Idqz zR43X+?$vz2p^-sbxEX5hEfDb$VW-f#3R2iO&ef#0au~`)q^Kwpj%vn+eB|+bB&33v zGc@&MJ^#=zt<)I=(C1Y9IhD*s!Dpdqd$EW)`K1tqo${>v z{Mm?W{xs7Iy+1dId`!O3bE|LoNvC%_{;m}=NJGvR*vyUFoLfR3f<9@{z2!{C^llSU4d1vW)iNk zX;k8T;?`>8Z+JFh@0b(yv`L7rt#~iYqP6Rw<#ff@^$!JMHg(bEdQwsTxgDzc-+*MCg zzBnrGZBB(VyCpUS?L63`;whz5*H)`O!-f`L?>fd&ueI%33thy8-%S2ZvHzn3yR=Jf zZ1S^%L4*kIGyF5+g{*jlpevOP%sH%OONvVEd^^N}QbmIgy4oUbpTt`{PiH!mgY^b- znj)ql{pIDW6;l+HW|Y1b(KR(YR?m{P-sAL7wT@Rh$|>)fcz3Qz3)ZyfsjtsdxGb7^ zr)7x5lgLt#yy_ob9Ub;<;O%k4+}2iTV%l^`9?h`%F6t>RAhk|^2~O!NO>-yip0Tr#L3&kVL6k)j8B_}=m`@Z&`i8lb z^0Dk#4l;ock|s{W8&dPT;QnSr_-)P$xGqSLW=`;@7uIj1!VE`zvG(@Oz2js#B)V0S zeN*X3)V8K_ULl@jKG-MHO3BAH8eBV`BVd7?JbCRET7)Dayr z20}B6xsVo)v=)+s){u1lt)(3qCPWH22L2*Xi+r8!&luH6VyBo`KqL?&LavvKm^>MmZul4A4KI;mBm4)!)0J*gK346ceWH4SH9;g{ zkY-aUqLZ6{|Lax$t^rq{+}8kgOnXo~D;QiE9=%ngS=nQgE-VxEWWR{1KrRZPQvHD_9(W$!|3P9os5nvWv>hOP%md8=~Nm2!5@dfIZ=#QbHNQDeh-k7C14 zKMaO3a55_hb)i`;{qT{8swF_clPe*AYCR={d=0_A3k4{3sL>&dJ3=U8J;-G=J&#ej zi`(1=uh~bVf3o(ovniSEVQ7*IscOk=X0DmM`4g#gbtlJw2-fMzUDkORpNism)JOngiau{?H1!0BfqTA|i_FwzjM*weMZ47eg~?%yk={3cc3X z1AxfA!36Eqj4)=~)6cA2%(*)}9Z$JK#>fJ~wOhTL7`|o3x@IYfJy^z^{Opt~?zxaD zk5@tf+ZF7W30;%o1%K|U>C>vf!?Z5Db;A*(mjK*`;?)3bX8in4w^F?W{GdR!ms*7- z?-A$gf{kyuWw@Q3eG1(Cz@DfL1zwly!??0h*D%Gl{UFEh!pR?9cY;}*;z}3T_t~z# z!+&NC)+@ftIJq<^Av*3TOXbl8dKnf2_bw7o!^4)sFR?T|rJRtYF_7%saKd+-JlZs2 zPs{*UU=6NfGJ|**)E1@=riaxCnaBs@;^oU?l`U%5S{!#@K4}i zO;pAFQq6S5MRVD33+Y4xh_X~RQWe%IYP$R?(*@wi-xf8E?MC2^Eb#~jL^as&E4=fbAH|PEG~{tiN~X_ z$yo*OJB&T>u+%iKast8+*Dwfk`PzIb10GH=JKbOzs7u3%T2ra=j2c%b5pR&YRexiU zWRAkVIp`-AvOOQIkO+LzlyW~#*n}kMCgfki__EJJ=zzg4xa5?=r)LZncf_WcSmo)t zG>a4K)UfZz9M^Vsl{Qym;H|Oj3q$L3)_wKo^6uM8M<-U}Jc2+aPG$=BqlD(-jR`Im zF7j%^Z1*%X7$}u~@!pq>thwNdv?9;}Vm9zC_Q~-#13E+LlHL}IobHSMoEt*Y`kecv zx$ziH!BR;Q8N4%w<5-~S;`B58gGCxabQ&#Ek2xE0c@OAv6!Gb*0X_A|2*Vs{W%1dW zAtXAl@O~ya_bMZWMiV+uh%t>fp+1=J<3f3|lOIyBsrCjtCJe&e^Kl}6xqsT9Uy_Cx z_3iNe0ol%m+LPTZ3e+#9ryl8B#BMxg^AB1N0y*^b00G?NX>J)?w!q?z#MnI z8Ne%TC%W*mC#QU}+oLuNYTFW(=?mTuow`Xvdm7^PpBP6HCu(7H>=m}K$DL|1R?!mE z%TWE6$-q8pxFYY3C@@%LnfWuBG`0pa_5RHT>j@R&vxi$Ly}W_d$Er@(^T`$%+y!gh z$wl-M2$V$)TEr0fd-j)koVVkYeaamQ0hx9Gi;xe?Y%G?u zHm^^&LY6;jX zefVUoET{zsD^DZ5Y+V#rgU8J^S9;~%3;$++yudU$l2Xj->413|TQ3Q_`7=4w5`+Zp zJxcIdYwAlLbg3m>sLkHDB&)aNn*Sk*MPUGmG%uccSG5W1vkuX zq@Sa`88_B!A2KC%!9!kA1JshgW4U5{O{@}Jrk*yAGovx3U9svKvBep)u3VyX=oz3!o2VYgN$VMF+mD}CQ~Q;n0B{)WO+{e6{v2>$*;zjo?CCxcR$Uk*H+NX zxlv9Z9p0qqrzNkG6w+}24xElu-n5&{x?b{F|S`@Y&1ABw1yqAVY=>Z}E z`VYg~@o63%VxIy3=?ByM-?H&Jbzbp4c~2~uuR|Y6W1~$vg)4_-6JvSXpO@tr^Ox+& zM>bS0UwoPa5p&$WBO~`R0;atQZ9m!e~31u+IG1iz2ze@P3p6fvsarf2B@bUvle#5Jq(%3u3#XQN! z{gl-%+`X%Up&HJMj`vW`;+WNlEP!h?Wo^;i8Cr@t4x^wq0yN_NuyQ)~wZVewV2&1y z@zdET71k$ssni4u$JLyO%GoL6i_`8)ii?R$o{V57v<)6yieCM?tdEnS8gMzYz0SHn z*2baT$+$yaDfX#YI(z99&=E8ym$6#x(D@emVAk3`W5b`3kLrdKE6&)^=f^lVw8jr( zpig}ph&^2`!9%Z-lzw&ye~p;gyBb9_ybO?j5~ zs|%`&c`sO9Gk#Pf%m47J#e!xt#AaK~Qqbso9s`6F#N z+AfUK@JXW+Ija5IgxTOQ$8rfyavJx6XpmJAd1ZnUvD%!6^mA=$;dK|=l7!v>;Dzw? z$fRN(CtCp7E|A5Vm4FC^0nOY5DRHC~Cbp_VS5C63^mAs#7V=u*aDaP`U+h$wpHYG; z9w&go=1a`lBE@MO<8U4;bj!3`oI~PWf9CV7~^*~}k~c>P)q=(gB?O{VdJ!ICsY0lMd9!R++D z6dqm$Cbwuwe`&WI?Qwq-OMxuA3|v!#VDI5JHXXOu3v$kI3}l}Rh120$!-&K-Jk?>= z1;2^)faxh(fUfg|IbisxLq&2tyYfaSsap(_+kx%MtAOlcdAAs`<_Z5+ESn2FtcP=n zmkE3hMiODM?Hj^M!a*dq2PJ0kc)A~{sD}NLxaRz5qOE?xyZzHi)*LjAou~tm1+!=j ze8ARHt2C2eU_=i2zWn^?f5ybZ^QySgNe{78FVQCNXUR#?7t)0#_d{6nD;ZW(0~-ax zlu*d5X4|7SUG&R|Sd4~X^5&#MR5pB`eybYyhTqs=QnM|be9nD3CV$Oj3vt}<3e?YH z4|yz@cj>xbfJu&cq%^|3`O+U9lk=JKEokyTrulI|evZsal)LSOhI>Oh>G)8%w06E+ zn<){`5JgZh4l0Qj?ot5-u58%TMs~Y&1jqVJ9d6SNNTb8766GmJHL}!M)-3WKuZ4(n zgY!+c3eifc#kl2N%)MfLm>wSY`6dP({-tyczW_tnAL<_kPxzK6?yP=Z`&fm7=dWDcUp^LT$zJPrdyu&!ymNZQA5c?VA#&bS0Xe9y~2hQ zx!GL%n7eflU&ws6BY0;G>zMgj>QEOqqD9g;SRap^Fh?!@3q)0HpN+mYQWAvmlQVpZ z*Q1c`!?_k)WVmw?#S)XTX&02mRRwe63=GIxv20!zQg&m>Wx|B?JB7>{O8;;tUAqjt z#r-8oCaxpu#VpGUL-r^t(29Mgu;xwWN&PC)5}}bYn`}iaP(JX)udjPb!`Ea4 zdo*p2xMW%*y9(#loL33Pp&rM3YfW>S#N5|=tIn4D+sOz~`{*DEu0p8#7AkBUDKg37 zH$!hK!MApjU`<=v{_4;3mbV9ED@EgY47V+B@yAIQ#o4S|9R^yqe$*9faMakx)oxgf zA$#$4SrxcnCgxApram6b?Wvko81!0*HjEz z{bEw)E2EiM{+t8YcJtWfjiQSkwZg0Zq?%D@`5e<4#5wGJ)Dx=KWlk@v7wL`hIX>MB zOoo;=GoD%1h}-%we08R%aTa%(6r~J@v4FGaxXw79h(Fl7)mr{n*ELa`=G#)-dG^oJ z{1sxH1*FmR$JhKR&opO>VUfu;nt@i7kMpJX2Pw0~d=dcMx5Aok4LleMb!!%$7E&DT z%-C<%U0*6ioeD<3^#giV`L^Ub0MG`J`sPfAo$pECLQXHE@d0;p-xVGGB$@P#D> z(ZVfvwk7hlY#dWmzP(AqjAF&au8e>!``+8PQRfnLw*TU+ARC(~LH*h5hH2DobgwCm zkvJydXLPd+y!Oy(luCAiweqsE6Mq2j?x1HD8<+a^GhcYJje%S_Q?7@?4d|5RbEEaM z5W5$#dN(4>`<7Se*Qj2V{>LgXM|=j%`QKse;am~WaM6yGfOh=sxVCDj=ncHa^sI}o zoZx*l(mn3gXyPnkcpSoZMVdJDFqV_M3@L+c^5kFRn>N~w&)SyAnTnf^v7*)r3<8U! zWvK3%)*rxrX^xmF?6{QnGq};DCZS3f-HAD^A5rjM;0ek7l>c%O&wr2NUb7PItx2o@ zV*~EK{Q-=Xky@g{g%{d%qW}r_u6d-p)1zC^wF*Dqg!oEsRtYo9!S0qCCvfZ*yt^w2 z&`>K`(NbH{rp&Zm+gXxYw&pfz50*n_?OQtzQx`yt%j%e>I-f+l)?rrQoiztL?_jM+PJAY1urd`i2q# zs+HS`JN{=jAiC9rUie}CLM|R4!>L0&Jak2ZoD-v<(E@rx&BqmDbNeDb8cy1*l{I*= zyV7uBdx5bLzreJ1$y;6i6E&i|X5$Be!_{a;10?gqv6hDM#gR(hlBW<$(=?zH){#Lh zer2v||8U|k5|n*?9sFEtQbv^O#V3S9gcKLoTLFY(L47n`^_CL315h9wgpq;zyr#Kw zsXZ#1SpnCEUUo7mbylH^@0_(fCla9BN2Cr$VCk42!|1%~6k$gx8u~W(H-Kr?iscsi z`+6A|{KzuC1Zhjuf%}2huv7qtkEDbJT!wzW(eC|(mQdsLzWNyI?8++=>VtqGnxCQ- zM4n(8_T^7>OGuvm=hG&x8jVA|5BtTmpT*j=m1`~nBrKjTw=d(HGSyC`Ur zS0Eh)LDC=Y^P~;JjAL@o;i>osySR_APf4AhHy_K*$0wu~H)*2#8weeyj4np@FMiK% zSAArGoszm;sU0!=)M`R<=t1QRA120U+d{Z{1>L~vR}|#7P;nRxOF-w}>np6gdNaUD zbJp)niQdQO=aMH55jJcfU}m>HV7$KVBMt-)T}ORfpU#g&(`KjmH z#E;=2Q^)@GU9lVe}rn6{)}7d*}?Ke2U5@*LDKkap>A*LMC8e zcZdgb{HjsVYF1Rd?3UAV-_8esI>QlTcgW*e0$GeqJ&wDg z3C5d{qJ&$If?dup6`pcSOzCC)urMQ{9L+lbtHZ&|L3!l%+A%sYD0KkL$3r@!9z*2d@frn z_M8hm_;q)pf{+eMliDb=fLn!R#e8|Vqsd$hs<^YqLfPOhs*PRTy1lfkQ_#4;>(L|PB<->0IhA_aB2NR9#?75tCE8ktmrB09#d2qFEzA zpZ9`LRUJeUs|z`<%%=)V90(_dBh*z!lYw(AnwGTf;S~0794KfoGjBdB-%ojCg|*O_!46@%+Fx$ zCk-mz;S1l<_Q^e!y<7i5-(Aib@DZAaawYkuN_HCT)wECDlTg4Qz<-FZH$Mg;onWKl zUZSQ38*wg~y|gWS=2vu1vZ~7d6c;_ia_EjdujhqECkT?D z9cm=KNtnBv+cv`*3|LvC8K%{6jC%EUoxNpg$bdkz=T;H$4g!zrLG6UoojJELS8MbjBZ~kj!H8s6qr8K*Y*8nLN@*IQJZei|`>_u6BI-oTcBSD8oMYPR2Qvndd(* zz~4fYn;0722KA4*mAqnO>a~T7mDbzYo0$w=Yf0RzG9@irMGLIUzmB?^Jw(T}xhx=4L2? zvyDM86el*ReM0hurN|MjoN0YM7n~ zVh0;n-!e#NeB?*0eY0&witRFhefuWJU3fbz&@?*GO4;qZHTZvvwn=Bz3TpngBace_q#tshAJ;?J$ z+@8#xLWQH%0-!jH4Q|&;(dju@jS8Q`Jn}p=@yFi^AhsRnw$4UI;Us6;Py`jK*^XAr zjmA&TZDy8rwHhHp*C;e$v)!Ti0;tR?9^C}}wbM9^s2v|1)7vTxP!|)cE)Q^eRWLqT z1}f;&eUN>r)#5(U8CcnQj16%~$o!JBxvjTnqI)byE1wdNblYyy@qb6ZQ6UVqS> z5aAH5aOn?W@>tO_#m}Nh*WNC?X><*lUe6dtH$YfuZ}u^W%KVtS9#M>_*8iotYL2g9 zbr8pCb-&aH-o`M*6B6w={^12GdTyl}HtF7~ni36JHX;^+>UOhml9XFZ{YWq!LSBLv zhqM)-7S*Hkrc@tqO}w!65LVCbVEGVZCZyKHsS1yRSaaiNCMA1Ov@4BH!2JG%IZKSc zRuF?}^LKe2O&I?%ZN>YD!JAj*aFefzD%sni`m+RF=EByAFxPst>?J{*-=dPtjCeYX zs4|)njIFRK*K>D4`-+z_z7z| zH`8t7B$LDw$qZj&BNCi%Db1gUhT|QkPR6Se+$2%TWC<%bL}0tR?P>!NB5ylJ_SA#v;+t(_1y#jwAj0dN`onc=r(cglx=NR5)+G5OpQTrnwle`l;f@W zKQ{z*9vL*hHXnQ?V{2X;_WWU(zdDRH2ELl~lU8pt`@5_xVqw6!sCF?HGfT=`3VtT4 zC{9b6265H{AyuuQaE%DFNi_(eSekDqm!mgA`hUrZUJ zeD1E2D8%w`f?u4#585%Tp?eKF9(ut%XZ3pV+i_;@y}t{vOp9n+tvW0QA`s3NT-<}B zn_V-fDj8g(q@#M?WWneg;|))`qR^Ep2A?;!RRqNb*Rqec3xb=J-P8P7o6{$8yB1FL z7G-_x&8`pI1-%%FA33nUL!!;zW{uHi)W1@-=SQ0r=1%gbiv*mqu0^G5GF;()R>H(=DguhByLEdTq;v5)0 zs6k)xY7M$K*EC`N6w2HU6Rn%Pg#RpF{!%XS3MFrggH`dmKK=^|uDS0yXtqoaYZApk zVJ+zc@RIp^qNB5~0kJkl61RA?7t}y@(TRVFn+i}zFrxVBsFwgI#%pQ>ajfLcLfT&I z%RPR(G%w8-cU~BR5p3KjMI+OxEfowC)zT0VC!=LU>!^lIl==RTT7xLmlgm6wIeW?p z)@|Dba}yblZ6sySW*AD>TsYdFd#+aF|TM5 zAPpQHc$aTa+RJ(Z;0e zdEI_Q7ZiEXo6rxRf(DDWcH~_rWojQWHAf=GEaRb}U>IiM-F4dKLDnzFppi9b!jGv~ zeXHy(nh=TQ@AYU4Vu)fkM|b!1H%s39boBN@S^pYa1)zwYO&*sq zK(AqyJY2e5`QBGy-=uGiwIOK`eQkS?^adBde^p%&Fi?-)+uiPytD3ERMM_e{(-GZC zum)CWeoJt&D+v_S44Y!jG=j3YOTUSPr{O(HYO`(5Sbi|Iz~p9GnWD-6?Qpw7Nm~~c zSL~{#Qx;5c6qWyGJLe|6cwj+H_G~*eN9ZQ|>6?SZ?I$B(=8v=0T0`80nO7sFt<;5| zNOnJpap5Kr00B>P=5Q7PH|WDEfXl^(qne7_A5z5K;eI-r4ujL+Uq>ldj?Re( z62_0bROFMaNY`KDq$~#DJ1P@(Kb?X9hNd-AO1udVW1|Q_3^@gI63_WW8kw)U>QKoz zhz>z2w%RYw)jyRZYx1bi94YPO?_eYja*hCQ`Hv|pJA5r*`qpnRM#l_)T3?>u>MSr- zne9}~;M!jidLR7y&@^jE6s7p9psY^H+3(T?`FAlJNrXN08;5&&esdY7dfuNpbuy6G$)$WB^re#hIIF-Y^-`qeMb@RJSvem&(CHNh_v zn%<-01z`$`onr6H?)Bs^k^LPOdZ~{$Rp6R6;%@1WlC^^R%QVhKw zDqP->Jlmy&D`sr~-%4Zev!e*#DEvN;&1H&edJ)ScA6#63zF%pkbV2ZSDu|psLyEa7ZZ5b4$bE?fFc}Y$3!%nQ`wdfKhw6p|q$gRo2IPJP) z8~oF#mfoNcR!KV;h148Ij$B*i-A_`TCu)`9T5+74dQg{fQ^sI*GgGxB%IYJwOXh*IEr_M z@COlnYx8%*_Z=y^SzT%!|>oG)V5+UWapom#V@Y;I| z9JkMZ6o&D<6Eex8Y2fQzJjuos$FxC!eLHgQ8u+qYqJO>jE|UALGuzE2e6!%k%2 zWp>bwFj(+r$HJo#{!A=~hPyVsZGo=)9N7=m(=?}Du{c~baXsrSYFM2vn^yRc!2uZq z?cU--_aw*E133aQ@cUhDV_RuuoOYqiP8|xbGU@?6OLH9?Ve{s6{m+*3GWY@+5zsa4 zg3Q1b8d|mOgYcyTFg!)+sAd+pW`!&U z{ban{bY97~H)iIg5AYb{a{RrAP2MLQt~HA05xr1wJ>e&;IIYY28hs3)W|kuR z?d(|Td(U1Wm`VSsL~}aA`4F_}+%Vj>aD!#5m=ekaem?Jv>qZ#oTl-mR=*jO)789^U zbDysD#NH`A)P}SkRU8{*Hu?*3N6HBWBa$NiJTU%rc=h&@Gj#Ty=-SuVTn@oNYHzGD zbWe3S{T#z+nFND@UXt^9QQYo?>eCM&cF_#{?xkZ+f^7U|{7?|eQk8BkcZdjL#tJgJ zLv2c??{gs->d?u#wXa|w7;xp8xB0^oPZ#W}tKL5Nk~!^ub`HTRDkUveTH!E&8oDQ> zra)16X323xDY!J%3Gr++Xitv&eF=-dU`YhRrqlBEg@L;1Cw;k9Z~E^tGUbtt-;;F#TBXL zY^Ia{Wy_8|#Am z_%Tzdvd)Z;N;!-nOJH&GFn|p{>g7!9qSr8~HASuR=OBALdM4D(YOxc`RFVFHQ5lC@>*c;7w3e6UK?=#;nhehF{8Z9$vdg z;{~v4pA^^JL5+Y&Cp1Av6YbALOjNlC{grHyK8(+s45A$DB?U zR4UPWK>n~}%vQdV>)L6ErGthafS-w_WWAHuAPa3+f0FY6_OfBNVLdeJlCEA+p59gPV+rSnH zm@mSNchh0Ji%ya|2YjhP>xu|?&08YK7oqB8KT?rN0Ayf+6OzAJD>7x&P4`8g^jP>| zzF^w*{~q&`BocNzv?$l-oDfGba4?X0*5@+=H!P4t-nTGgrQpR@AwY1XBxJO=qHR+&k{p`3D@~79lvUh6x!(;>1zL89lYNvNBLB{}Ho!~x z=*U$*W^6=^y@l#(=%#T6Im<$$0TPuVi}wTh+#FSOSZdjJG;S#P~C4H#2?W%hi(SHzvdUFgB! zk!!n)iuG8O^_2B&b`<~XGoC_H(ndo~$xH}`lzX@YU$FooSpi*+&<~+Ruu@IM3lG1Ej4A})i1EtpQPRPbxf7sDaXm`wEhSdDZ3ur^#BGJ(*H4QMdJr#Y?Q4#VZgj%n zL=V1nwKYGI3!OHO3-S3gZc)!uylFwjp`QE)MkQ9=InKft#RcP?jV|%}3_Lw4xQwO~ z<0EG;DP|~%9GDoO-t32?pIYlm{v)>|=TWL_3Cb5~es}z4*k2IT=hY|ds#>?WqJHo+ zzcBf(eZy};{p26~dy);*?8Yo>Dp}#2#RQ-A4ZXIV;F|SLt4lP_ks6HHY_`5+{L7_& z{^mM;P#{G^@xmEsds1nR6jpJ6Q+0FZ?3pj?!7x4h)`zJ|HX<_M< zPk`mjLmGE?F$l6vBqMNjxN;1#uV?oFm}_X}6LhbRGGantnU_vFVnvWlP8;!R8!tvW{! zwvxZNlZUBu!IuL++p?lrDu_PiWR$28VY?1`w}zTD+>^-08`%wCAo7%mtjiQ{t`RMn z#J0>Q$UP?wg7>VB9BrsJ7RR!m-J*NXL6)D(DKtOrl^h_+aYB`O<|#Wkt5+=7s7g_! zF?S|xQE@&zghQiYWM07uMs$JAGiss( z&C<7UXK2z8v|%{D#n~0sOloz(E~X&7q!c1eQJmtnJy@8>gb&*5O-sA6(nXOq3H6ac zYI9!5`Q}OUGqdsFSrK~fG&<)N+^Z1!27f!|IUFU;aQ>lO|E06*_AB~*Lvj(;g?ot} zl@O+ITc~KG(u_iN<8zH(i2{57BK7CU%+>Im1FP>+gV2;o5vrirE>AqEA<$bnx&md} zo{x~V7E+5uYgG9KqMG;b7~}Lw^Ml8d?n-axn1;igI@lh_ecPvz{*hdh5; zXZlG3Zj#!`b~J-G2bSn`R3y8ivtFOW4kPQC4`Xs01MCsb5PHz?Hyc3Q8u8rIVD~VA zUr3P(ss=z}^k&g9e*&8}@(w?eFOigXSoC;rKcM*@(L1>Pg1*4nd4MSn>6Bn=w8S@% zAH8{T_)-PF($j~fi|esQZwNKrJmoXxlQ=DZ_o>GE7Vqa8A?_SHd7oU3b21TN9W3z> z>HH01xAV&Gd1Q3%B8D>qYpUQg1w;^B17~7S!z5cmS+avlq`o0p7-fR|#CU-N%uL{B zXWo{>Lcl(sLlP;|9^uB(Pq+zT{z#q2&v|pzcJg)5=Nj7x6^T{ zG$Z>~E@oo6HZW_02IjG1A^NJ#)YpFM$kWBEBdUD+$#?$Kj8bkqn_sf7%02FhoD8`u z>dqneqkyD%DL*)T^6SZ@jTx>v!=zWK(T_NOT1+!N|D;MuwXa&*k}K+=QC$vSb$-jc zwVFzV*tTPu9QkjD+o1xwQdjyaGO#~+-g_;OD*tel1)3B|yJ z3}Q`MoFIRSnA{jwP&m$4w8EDbu{AZ)*0KDJ$bpJLw-aoI|vVkqV#FyK0XQdH2% z6@U|8E=qyJn-l}zbGcEJ{OCDVU2x?x3W)?xFD1^HY6cr%q>tV9N_IuWusvVn-GsmS z^0Mqr;2W$V-e8|Ax=tGn z40Gf3NEqN^6m>_#bh482U9S)Lo4*~YqDKwy^FIb9wQ$Y-|DSaA(t zm$ZFTOTWVfHOJ*L%db_YjQ3F~(wqdjF5M(*W;&z$&Sj86D{@)|1-DBR9bu-Bf*QWU z6?=Q#Sv%%&8=`l)!N;s>mji8Ds8O0)75v}k2B|}!_Hg&4=*0xFt}6KL%>Eyt)y<^6 zQfzzh!Y0MK&lEB_yGgtm zN3^-QNxn%U1+79-6S(1Y^^M5`zP@yx7?y)ya*r-vErcaYDyAsR;p@T1MSGbz7~B<% z17m+S6Jt^arldsVq@>{H#4C&tK!AKgN|r5vwhLVl8|?&0jkW^O8#&4?gFs-ag#-eR z{~`jyL=22E%#;<%OhN6P8l%1^6poBx5?bz``iql4jGz=A7^LLNgB{se7SmOO4|jPa zNC+IOAqT`jObom%xCpGGAcW~d3(F)l1!4i|8tl{500i7btnnz6dGwWOg!Vh6FFTBz z>suhQN}rv7j)bY}M4=Jb!9R&`4Fd(<-U?g;+@lInuFD1dB@>6AgOG0uK>SFV4gb@- zL9Z7G#0AvQ0uo%{h^|@3J_`=?gfOe20&d9#+7|#*^-0|e^IXLR#Nhs`XX>NmV?B}o z8POb;mNqh_5&X{rfh}xZJtQzN&TZv66CxIEFNp1j?koscSnmV<2Hm+ZM!I8=phyeQ zsH_z*-8S}T8sXyj&|ho_^N6(&|D(~Hb-2z+XCoWz$P`p0xRAoHc*W(v;FjRE9h4)6 zQ*L0Q8-0Jjyc+5ub=Th&2G*8-h+^7)4WpNny=8pgYyD!hfDHwH<_dd$d1(de_Ef(>F^En84eHiRe!alo~U<~0{ z7edU`3Imi|#Mle58~oW(ADj(@Fts&HsHk^c&P~_boX&uu5ij&?*A(;-viC;$1n~J1 zy}cgb#>9;5AP4)K+oPP@Gy8>p7_3MgLB0WlW(NHGEdum&t8PLN$es(x1M*#yh%cb; ziv^aEFydP`W5Bikr5v~t4{E>rH22I%0XCAIZJevLEhq%cb!?0n)<=G^gZe_4je9u@ z0RketQP9iz>x--v2(P&ZQE>Jk0Gily|N3`uE$lnbhyCRi&b5}%b@-<&o`E~k;Nug{ zdv|ic2Mvw5Bu`O>$Mx*=-!mGxB zG=gcNZOSc_Zu+lsNIqVGXA<%9HSHJg(3iw8e9IMFPp6R0c8_fTS5^?NOHjMcXJf10 zwV7TZ2T}e=50rhYOF6$U{MVc}ajT8ywID2H-sRTl73_UR%hxI>ttKX>XJP;z-E;E$ z(Mtj+64EhnlZc^yuvSzk*J6b0-({Jk_Qnf8q1BDk_*hQ7=#-6)o)o;OArVpu| zz5atUiM&e*ovr&=MC!}E`}m%lq5HN(r3nF?u)U?^Yb<@h`G|NPePTb3hzT!!B1T)t z8@+H0-ulLK1+!@K=e%FJkl>8}x8Nnh{D(Ft$&DXQ(aQp;}!U%#_v4N6~K0bID^0UC-z1$Pogm*V%~EaRt>`XxvKv<@}?`b z!kH39G7=i4Ax$?Q>VDpLg~gouW^qtl!T26maT1*4@(?zh7e&HTFUxkx93;=?S)QYV zL+Cku(D{vXdTi3Y(beD4sM}UPw#l?cz9_Axts%$ zn!1ZwO-$uvfry;BH+S+4Lnd%B%-Y1 zUMy$ac)~3>JniH3BhfDm*c|2gHs7turBm=7PQ*t>fe91KVK&W+%`aAyd!mo05u7=2jjJkklmQs~gv=LC**2oW5G3}Z?uI%=lBb^VyMEN~>{b{b&IXU&)_PFy& z*+uMB&Mi!%!k3z>fpwZ!G$4*-vn!-btDsrIK|WC z%T;Dq9@!NOPCU8nRSq}7v5C~`lalSL*T+5FjI*AwXDClGl-eBL$O^-qRVIubf96x1940ftY{bXbVL6c-5_e??wJ9GLziD zn={vf85-$KvVl7>2CX8W+y0#M5JsV~2?duNZgS8qa>Vtg;mXrTO!VuwsU_W0BDiU2 z_fkP4WAr>K9c%pjF(4EYu&4?%uj+B?(d1D06|Tl1RRd4npXkxJPg0HE(#vG;)X*!W zdMWo1H2pM4Z}Pw?=NeZ7rlwAA@zlBx*a09AG)YQPIDvv5=}@foLS;h zOfggU6SlvLP{$#*a1+6Ppx;S=Jy@kxd{vDzQXD84cW}Wzk`vP$;F!A9tI5n1ogJNB zJsKKx^?#T{WUXM19shXG71*U2lTt-6&86$h3i$QLu)YpBI+dAN2?i*3qurC0yot>2 zS&>s)@8HoXD;rie^;qi`2U*KIm>y!5%Dr*<*AWyGUli&3Tsjqs1&FegNIARb{26TL zvKhTrkQRTkIgKWqqW&S)SgVk@X)sn?jmAHFU-)F5rM29D~zvsqL74)kMdOj#rjEZ;K0%95IO-HpZ%nl~VF=pn8T zBdvuW0sT(r%b1*Y*<0={B6F28Wl4-)sRdYg>GvY8qAA20FCT-F0WG28%f@RG*1Vf2 z>`@cpq)|0wfWs0bV9siDlKO<7dP-aP;OAsxA`fB$3#_@RQaN1^!dZ_@Kv88HPM(fg z5UNt77UX5U?-|@Y)w2L%7_2ZsR70<>k&f27ms5NJ(`Z_o7Juq?-R+#Ddiop|r`G+q zMh{PR%yGK`BA1=EdVL!X6@Ei{D-&_zOf^UfWX}O4xp#17^4;7OWzpEaG)^wn?tZy_!jcSBbP`6YA;m}Z&Cs;1SO82wXO!~&_> z+H%|>BLbIf(*Xwe3?picup-YEl8_(DpAU4HfwRq>B?eMhO&yvQEzP{_C>y5A=~m8O zMD?T5L9WjB&=Zj4CF?ualzi4=tq)mg`JJykt3+tE@JxP%ULqw2zIWA(x%Z`0VPB<< zipAx9R1f(8&lS5ckx}FURL=A|Y38{F?NBjyTQA7OeIeieG=5UwN1DOnTh;WEjNn)> zcKt-eYtAkdNL{t7|`*CEAd= zq#}S^w@m#8G<~FsG{4!dYzh&Z*h^^$ShaevG9N}w(`pKapQXglRZ?ln+Lh7buopCE z8JJUTawnSQ4$j)?f;!mVrEq@7RO1sOVk4}oS+V|1fD~Jy1K)y(TcL5sAN=~9F8UA) z4EVHz&FRl-0HJHN1m-_XT&~x{%KANHbx&gc;`c&pEyNF1rUN6ui&L7Eu{JRar5m)a zT-j18PlzK5#Q0Eis(%cH1r+)cU*`5$3`}ae+=D9SvznP#Bn&uWB9{gl; zI*>&kdXk`Qd_G@cxoke6_uqh_xAQCklO` zv1^QHiMlmsTTLx2#Obdr72i=#iCO6TK!pnQ#0YB%7S3)^kcr)ByXX$&4g8gULzN90 zXJ+X9wBc3Nkx4jT*un!c!x!{FTFm*B##?v0;>9aN-P_lRii%0C4@Dtm3KnwPLMgcm zqZv)~yPV`H%`AI^(3sF$8s6)y$YGs{ypOIVW*qO_5XSx&(4r^CqvS}=hbe3Y$Ho~a z;w3FFND(-jsA)EQh!OAZkAP|_LVInxHtUSj9#c3f^B^nU!Mlc%pHW8sh*pxB zlJ1c@Myfrqd@oA(1u)JGSe(VXzs%pLhq<$UOrRmsM*30HkN_&b$`M4>8RxH@?{7Yr zp-~CVn8U0@A_68A^lb^Ylr1!BmP`~66&udJRpMx}%<<7M@?yJpW}Hy*J|Y}X1wT*T zFdIN}-cdt$ZEP6QIzdLFqsOQs6hG0yEsKp57z>@ltZ(VZIg{v}Br(iibqr5BMGg&V zR$6MX(2~*a?|M`DxFI{X8U=I8qVQN03aQBu(@T*G7jeWn0#lU^+dgGiF}v37zO5kP*1)ai>7TroQT5p1uBtri5G@I!M1S;?3G)Ds0&SBb|C zI#jUBThW?veV!X~@5@R{kE~H}!KxV7Hngl2CH|=x+X%vPCmZC~`U!j$*dePheN;BS zlPEE^)_$?rE7{m6TEQKVn`}oPT+2U?=AGf+1Q2lszX-iSFgbRRCj&x<FP7kq7mZ$7bbz{-8=y}9Bj zWsJT=>}+B4mXIa6#`=r}HF(fK<6%_^nOKEI(KW5H$nm_R2u`9K#TJmNr|*|_5@xlu zM$VnDP`jU+{&v#U3cOUV3UmF|x{nr#B>R=*t)M7zv&|vt*q3C<46MC)$DzB4zCeQg zP*>h$6WQhYjEf@IRd2}zGN_-ha7tBThB7Ty>>hKmRjq%0FvsMEz9EK!780C{+#+Q- zZi^!;klgF&Kpqv?^>LfqZ9XaK>SA5abWxgRlD=R3IJCE8%`Mx2uAwf}XxW`d8M45v z#wPk?lb^_%rp>7mrE#>j#2{Mloi4K1Lcj0oL|0rekJyDk5y#kz$p^7J{$hYq)j$bs za@tZ5sh@5ncZ+q!DV81{ySrEwJPGO0F(SZ~?tQx<(p+SZybKJCnH0_Yk?GWMxo+1& z5eAH@ ze~rQJv4mEO22=m9f6Ds11zeVXnaVl$^E3qd*3x znkUZ|-2tU#>T)YoJq=S-tWL0*rx@7l{ub!${FN$fwlo(CXd9&`*8(EXxNm2;o_3yLr%=4axp|k+6r9Qf+8`eCr64Hj-&8 ztU5%U20NDcJ@?Zpc5Eq_F=$_TbzbJf)WlbpT=-F-k6hGdR+~6{r{Hf`f2lZ;Os zQ_q&pe8JPuB2DmO9Gmm*u(`6KrTaY9_@A|jKo%LkL z;c^gl^DL+Q4EaU-5JdFv0`zeLJ8GscELDx1fSuGaw#RNpxNZ47)_Km`?loV^uX1WQ zdiqG~@i0|O-R*BhweqyU2v_1*1kfn)SB-SRxW#_5+-RFc0UO|T9Hu8niV>tK7=s0V zc)_M#Kac(XHD>STSoo(}c(L{fG0HctOBt8}*qX^nvHmC1VUCdO56Vsd(oFq2VioF) zc3&jXy9*_!@elCbvx%&2ByXFGva|r#COr+Vw@f zSF^Ralzjw9<|#D?&XwPyYX3OJ^KJ(hP$NmyPv2Gmxc54$IXqojt2lj{de_rFh%$Wp zZ2shFNrUmsN7qdsnOaV#C3d$DIOe*YeyT8DxAa=;b(5uc-dbyEE)`o(sv^um2W@bh zRYc|sJC(J)PgX2~SY7gVjy%xe(+SA+Qwm)QbqX4@?eo>^bvw;`k^!9Qc_VJ*Q+w7arVei*MhQ-UMbQOcg+Seleh_&CiWfYd(O z0u*E1&nDaB{JI`nLR>`_9^En)?7C4SCwY0!>Rr=cCA)8JMy^L2>Kt^u)F=~A!2;XH zN=lI*#ude;Tgij+Ytci7zaqpzOk-=gf(gi6t!7K91wfm-d`roC80qE^WeuVv=a!c; z8*ql5x6_?i7+&=Xh=~Y}%fA-t%k!&Yt@`uBiCaHYJ2RPZv+@nqT8jO(KZ^2c2G@2- zU9n>zDfRG3L&8({eNO3O`-p~q3Pp-5{S@aW9?jPCQTRnSL}WvVw94_uwnATUEmu=JB0mT@V8PWHA&flPkN} zWJA0)M-zX8 zddf7Rnr(`u9pF`S)Jy9o5YbI~FJofinf$&p ziP<#RYl*6ZuUKmU6AWIC7D)hDGI+{Rn$7jIJUXftS&Npx^gCqEu9T2MGNh;Mg}#xq zd5yl0Na;>KvmW~lFbF5%s<)q9vuZrS?TQ@mW+{13E+~1l(5rU!*wpu9Eb9YNW5AR4 zsp@N~Xv5tVFycU^9{H|LHuRx#vkKd_bG{8cPB9Ws^We4_OCSTR>kaofG$ziq<6&k~ z#D7E;_2!fVa0I&vfAnBU(mE-~J=t&4sqa!IORIY&diC!ZWbK6}=+q1R>Jrkeag$`G zE%MfOOq!KBPP+U&cky8MD)&8;z+mAoC3GA8rI-91!IWo#d{_2I6wBVjwI$VtooAR* zLzaqSD>zU}c@f5{oeY6F3!REMR~f*>nILYgX;T9xqDiXA`tFTyb6R}+luq~Nhht1Z zn~#$)^UW(B@xDVmuyFA=(4gUz5BlwJXva1uUs7-kd1Iq~3`czWOU~)t3U;exn#kU? zste$*E{{5ART0}9O1KUPJ-xP-Ewtab1iL(-c9T!JVH7&0XB@fil3b_~X&y+9hT48Y<`9JJ-BW}1j@XV&fo(~;pT*n zd=`dI_cP>Tux<<-M3I? z%m`_qoB7oxwstz7#)oM*K~MT5k0-&?k;+qP+$2>f^$2?6vvpHk90D;+YP`m22yrqB zs+ftum2DWeVPE~2uG+J2?<}sE0ZMVZ*#P%zSwuE=8e3}i`fN?+*Sz4Bu7u@MieB!L zb%?<}H=I7`Zj^MV(q<&GBL_(H$MK&VwN8Voy(7u6^R255q;dShhD)G_)+5KE#YiGg zxo6v;aSc-MZ^g-xl&fYNKzC@Ql_Xs3)3++=fqYisG8Z#&h#`qwa45E-i9R ztobd6U$xb8dqeny(fH7vQXIZN<~;p)z1>G?h9C(v*HRN?c1F`%^J2&U^t06mHgHzD zy!$rKR9b*{$~vt$P;F-yS+Qdq(i?UjIn8iHjmIA-R36J~HT6>Y{!w zvcjd}1DlNer>;uEk7DQC6rr+t{n6RM_ZZ!~E>}W#HEbifM|L{GXgcH8gSYJoCsWLMG?N8dNH`#%E8O z9iZu1`y{J024TR~bM&9o=5N=iPRa;(G9HuM+qyE*M#W-1PP+c|eYMri{VF(0D))WY zk2t_Fe~Qi*^-dtcv0bOQSGjDGb(Fz;#SBVC@WkA2Sn$j_W;4<;L@f1_hCvI5+DpA>Z74S= zf*UC2o)o>m#>Dw*_S8ZE1YjwF>f zdj@&y3hykW?m>ac4BlVOlaT8Fg1`>gN7ZKu_1WHcWRv(=M+iuL=%FOQ=I+QTuAJOA zYq2G(!MJU8dcG+P)lZf&hs?1r9v#)=I<8QaJWpFsW3gU5J9Z5-?cIsgt3x=}A3Cd? zHB3<4%=eDsO}e|ixw|55&v`}pyM?Xn@%$j~C)$WxQ0;E9h&Snn)kkPynGd7z0VjSj zl5(Ph9X+jydmBGXzL?k`z@u1_Gm5;XmF<+?l#|wis-NAJPeyofp+-O3Er_QmzDOZq z;n_J_h4W&9G(|Lq`i{ZK-hydc&Jdor{gFMI$+_w`aG3(SMw{XQ;vy}kAN&qx&iE=aRGc;JX{h3u>S?7=8X`Wf5NGY0v#GaHL#MD2} zxp9@fL6NC@b)$XjlllAcJmPB?<1p&ok;*=l%x};sMI#smL%~88lIF1cvR+f?1pz_o zOpis`mdT}Ch8L={`hKzEQ=dk1W8JL0pYh&M9bsOtX5eN*@A5v3<&TWT>Bl+rb0!O7 z-(1lU*8Vk{Cow6xHP7%f_78?52Cqw-MmOcS4U!WW?s4hph%6kSA;GUBopbtYI-zA3 ziAtEPUwN#uw41w2v$fgYWdv7aE?cXjUFx!?qm#k5C|qa&_fjPBCP$>V09#HcZuCwL z2`#S-^oSrF#LzI`E?wuoq*RZ$(1Q<&AV5|W~znYg;Z%Zr|nd;sOg7?tyf zF`+KhBLe^MG$-iJG&iYCjAV1FArGZmT#9=zuV(irY<`&z1cBCVCP+1ZZ6_OkFs~oTDv5fz@C~V9NLY*6yy{dQXV3nmEhAOkG=7YfQNPV^l7>kmn}fLXvg?Bq8bQgi zMOi5CI*_*l{dIMJ5yu1N59QvrzGS-xoYZk?>Dqm6j`kkb-lux6Tysr2>|LFabYrI8 ztYiDh-3E=ONcSI;S`JSbZp^b><(x+c>@R7W$cqeD4B

<f~C>1y=jwD(?Xw~Gs(~+5^U=}-^K5-gRl!eCX-@2U%pks%EEXUrzz>eB9)?u~BCo z#v?;!VH+(7MwV<#VFu7WAuZeCjj^lx3&{|T z^wlVLn@6YwpIAJ7e1To)(iXm*Bi;+4oe6J0|K)2V;+c8IUmIJZn6*u2^9T4ieU7(T zA%dI8-=XCXj{*zQGr!?HVo0&CzI{yz8tskn-u+^A+eL<=rznb#od}c)jOk=@YI=_C+m0I`SBu!$GhI* zPqqGRkl3GDy`8O04j!4ANE1hrG7?N$Zjg%{)!wyPKb-hs4(_z9KZVO@5W&t#RA7kd zJm#+DXusMkGmzTgx^`s{pI$28_m6ngDa#5Dh>6JGJV-3Wv zsfrwW4u&$7PaRn-*zH16H4_Q~CEI4A@nt){%uATE7T|E8SJ@$|O^B33gV44{cC{ce z83JrCP+LA7;Wfpc8Lrh^fl8q|x$-3bH6FwRqJ8_O;xNV^rA-EFYWPL+{YKC= z30X9Y$$O|4h0-%r5u%HRgqOil%k=@w2`jI_v|d(pwe9KppDBEh?2*5l|3k&)u~Xqa$M{+8iJdvVGsES z7>~M+)sZln?r%MRR(f2=UX-UJ)d_A=odhubgr!azHHp=5huu@sQh5TVhcYTrdO60l zUu$Bck+f%99yb<0sf+bzf|AxCKOQBMXS0n4AK+1NbvkUb4Bto%V&EQRsu?|fmyYcO zBX4IpFskU51b==ydJ+Rwf$1V;jS&4w5{ob>Cw+A3=m?HZZ#|1SKS`^Dk^f+YN~#eC zo;M0j0hPx7p>Tb@hYQ^>?XhlvR?ZgxyRd?`f|6MnDG$pQTLxun+5?tXka|}jk7p3V z87rN7DE3C%t74%fd)PG|f?#7|ZL$_)WaHB62YcsS)dXvXpP34&C+sI)9sx!jJ1-N? z+J0tTq>C5`pGf9f0H^a252F}+K{-&H4Nw>2_&sesqke0vOrO)UbrX1Uyy0VZ z8akBlcwk`~7-RjYxoa^V3iI3+GB!L5iy%$RIkjlRGz?>$U9K5hT%M1iS1k@#Cp3?0 z0XtvGFXDojAn4r?yI*E_ArOTi70cYVl9T zUhnAFrGyU!*jYyRH#V!-yH8D4IpBN9brY+xSLxNk>5H_nhdTsPSd(VhP~%+EG@=6) zUV(=8K;cqlpIlI8t89ykzfY~TyzCp`r8Qz7meZppW!Z&bxk(e&SC%Z3>fb;d>*6eA zz*E6^xu6N_twA~G7XHtwA$X(-1{R#3FuJHsmWo$V-ht0>Tk z-`ZZ%p3cKU&joZhjV%1PFe;Mu7$a@$YvOs4vwD9iC3h15VG;!-3o=5oVaaN5fl$%2 zRJ!pnmJH}JC&qt48fPq1Nvb&{&rpvFJj<4B+ss_7p3y_nD$s;ko0ORy@h8yNG+5--7^9OYJjO@zm#X0h!q-t;&3cnb>$c z#nTTd(%4160}!FzGPvCY(vLvZKcj3oLhd3OAWVAL!K#EQYTW35G1a#AGU8HISh>+s zt?TnUG zrP=hoEdzn320&dk*|y+A_nI(}A$C6zRafk1|2O>lcj=Ld$ic)KhK~=1@&ClHYbvV9 zXvzMAU)TQc_;nU;B6@BPCL(5LW)31wPIi45Mqw9Ib9>i+!0a%LqQ;K@?m=>JvBEHl zng44YJu~-ric;Fu*w)Ha*dFkmPNZl4Uhpq~o$dR3|4l_wiP6{|@SjtW|7-d$UfkH( z*}=oa!PS!SpQC>*H2F?Ty4V`KSTdRzJO8sZY5qSuli%6Le^w^Vt!%CSaUd41jNdEm zzE6PB+|JR}%feb5nCO^MCKb(fNBzXBRh2+m{}1B+`_uhGyh*GdQRs5^cVRLik_K``9CEqIavO2 z{r;a2JtqqX$3GeR|C?f^JGh#f%{m8^lq~0{gh(%NI71S|NqW4KMIf<7WI;!2G8(v; zP@+9jiK>c7B2r?ygbYrq!=lUIyPT)5mDewJn~T*Mw-J}ECl`Gm2L%p&PysKjQ(`^v zFtI!6+mI3SYT;Qd zL3%V4r6;-7W1%VL;(LrkB-@tApMcW0#%Fl=5T01hNZoOJ7nqyD_ z0WmNzct-+w_@`!V@)IC!hY78NzB+oeW>Mlnyjx?d z4#FcC0a1dX#k-D(c@h~rasoAS8|9ZmAGh`<1!S{-aRmnUSb##^!hTY28qW26cfNW; zh?S_uSHXktg^4bJbVE_`W|immC4Gv7fxw{O4xpTzC5?B9bCE((_lbvhJPweA#0?Mw zjd0$p_&v&T`@t`!ui_nFmkN7p*)pkVNsXha001tO3x)eC0rF5>ylCu>gxks&_W|=W@cn&pi7wEu7XF9o_XBY z*4_YI@PNKd1dw+~I_CS}f81jnxdC)heFtmrnV?=t0w$LLqwc2C2557*}wc!ehy_Xo#!PVtM- zB9gU#?1&K(4!}Q)^=VVUL?iUsQpNn9VDWpKDKz3PKzC^tDHdTr$sLQ~4m$ceMEr9b z$^$)=6R$KzNc7^1=@8NWUe-zhicAmlApZHmvQI3i@5_8(6!tXI%eU3k@?{-tr2J^> zjfS*<>JQ@&=%{F5Bu>sqL}aW13SwpDUPYuLNvw@G&Lm)9e=?XjXkaFO2%u&v&O*Zx z7znUzWGTca!()eU<3Ey+vFjHSD<|CES2*(|vZIrz(eOR&izc)ZA}41oN&qXk>eklT zRzt)<*N#$Q1vHu(&qe`H=Sh=F?pTb2`St6&iL6?%m1Z&3PaBr?83R;7eYZvRJ_rqo zubsBbqe4ki)K9ri-ZIg@7#G;YE;E;ag8I~sbo9q(gNGbHhnA47&;qQB@S!|Odew7^ z)B42K%)Osm3LLquu}D`)2DFBLA4NlcQ*zF*ju5vAW2?E$1$p1^eA(*9Fq`jbi9KcM zB#tPz|0wgus>Fu>YQ+eNP&vw_Y>Elx8hW0-U-}$%$ zA&$ISHb$-xOU0)=g-p9#^W0w4Dqy*K6t@WtgrhJrCj6`!J8a8K(`&$m<~H|I4q%om8}Ch8W4(1 zkB{Q?<=%|s9dvnRqmu>4w#T0)q3e_e{f?c8rbkYBV%h;(P0c?PUW*CkCKM^le_f11 zC#Y+lL`lG&S**27<4$3nos7Wu#P47N#vU=h?#%#KZ#V#@THu-w=71yen{`=2w1QCq zaxQjS+rT0y!=mo!GrhdGGMW{IxGwt~*(UX7d&uiQ*B2SFLOLF~BZQX-ofUd^$M?R} z4gOA?g(XLE=H9?3F|!VDopuCh11s!539FR8I^Xmvx8B0ByN{qwb^Z2jum!Y^>~#M` zWF_1zgNi52B}uA1usxULtnL8Lw%8qAy4#8=Q5dsA=U-MZh-VVgc2=$+oB8-~5iA~{ zb`g=?`xMyd=f<>re^jP)XZKG&^s2+cA<#Yf>fx(5USnSp8#y>5eI z;|4$o298EE~Re_I)t?d;?j|gwG$;keO*`o$*FYp z7Tw?9_3c+x(;th%s)E@hvNr?;s3Lg>Uw~4=56f@L+lG=9` zh@4x&PMK=_Wkkq=+p=*%ftBuS0#S${vH4k<`nbC&ple!e^pPW`iR}>htEFp0_@$d9 z|1G;=mJVifDcxX%V$Y=#P?4UZeBs<4>yk=MRLL zpp)ee^l)Bvi%y1?zfyc=gHOW`qikLW2_g!1U{YOX@ScvEH$aac;|98MU8Lb(P6dh9 z$v$2eW%G7^%1PI4OJ$Sv?p2n^y4_w6$21~mzi7l5S!atMOzHMD(pEoU%nOo~P6*u8 zSs(#742_Y1c_*^96DxBBw5X!8ve+8kH3j*af%8-AtyW!MfUIO-Hdmzuv>CwXCIc}9 zL0+7T4~im<5N!%Nh>s3QTzhC|?@XSM^a1oCf*MPYe~x zwQF24lDp9qTfvgQ+z(IU!$Y=9DY2f6aef?&E=NxkS^%kZp|-tLd7;kfqHNwh#Zij+ zp=v{w0I>df)$2})F9yLQwy5%VFjKn{Q*I1aCb8@tILh=2od8Td98IKp>3aM}Kjeks zx10#}W(`Z+30nS!Y-T7h;#Pn^B&-NRXz-w9cd2{D(-Y$%L}*bAR`QUho!P3n#KP)B z_`ZyY*>ItsW+%|U&jNjn4xk060b;}VR$8SRWx~c4GcEY^l1$d|v6wT1vnkM&k|ak& zOph{4ru;j`^sgUA@W7|!hc-Q!#^Y5z^>q}%!eowA%z*)P)~Z^SnHJR;MW%GFZ?ecD zKN>PYgK^clkZHHo)t7JGt@`|pPQaD$PMe7TWP`s2WX{w0A@hTf=FY37RI+aY0`4lE z!O1e1-~-g;%Fyz{!k^%AR!Qk}`Sc8P6Y;;TO`Bih83uncZ15=ElF6ZFSLP#-mPzeBFnvif+RcqY&h{*+TFYF(9+6Q&@=<_e5>^YAh{y#H2ji;Ioz z6#KF~Z6_8R)l2YLGENILZ%G4<-zZwQ99?b8q`hz5w>L;DbWcZvk)>=#raC7==wTi& z_04w>1+^W=@ak+M;>jo}31nZFgIGU-Kxip(CeZp)o4GklXccr^(ilqcE1o^-=W5x* z4?ol}jsEpbV#pGE3N|Fiq$zppC)W%;ukQ1sf)L|K3!i}pAD5&m;JKGZjDC&t{aqV^ z2cS=+2eq7ca}#ala(VC>r4I5E3f#DOKdDAgsD8c2~k>mK4nPB@oTuhECCwW%d;(F2eQ{@ zj@z{ihEO?U)s%SQHfat(S`=0JfZ6J`Y>rxbio`5~Yuh56R+;Uca!Nbd@`W z`G}+kd;G~6M~PB01!x7Y<~fHkK1*;7EkF6L$z1l-6pr+ za8I}xhxpw0b!R3+n`@9chTXhJ4f#K=mfeXAiGCeWw% zE!rh#iMv|9K-unP$*K8mZ}Xve8D~43@$af0pNCh>-MU4tqsUpKmcuUUNgduXw#y6^ z+^!3NG6Su&LEZS?n4T#4?CL7t#20vh(< zAA9-1a}i&r_}ti95i1Ft6mGs@_q z)=wmtFFjk2jlaE$y{=8*wcBJoa}CW!Cjn7Lg*&d0@GYfo>J1ywWgKP#u?a4t#_fnX z?`D%B>Ww*2TLwh4TEHi~MwMD@w%Zv8gB&W zWBHfz7enP~7I<5o?~R=qZ%Wy5wtSuzxUC@f(z}HGbmG8uy_N{sN>wl5>U%hJ-B1*` zGut`t2Z2e7XqiX)1BdDtt(l;LnlR!ap+^2S;@|BeZmCUtEns{egOK&V%fV z_yz79t0pq7AY|sP0T@e6(k~w%c#5?#J`(vQwBKuq@zY?t9|Yl4S6-056Y%33x|;|o zqI8E-HPb=tgqvCrHqGuG+}qyOJmN|){dcd)-;W;=8EOeVYDRr<@0(QXRC-9 zteWTW8tOCQ@4BP)E)mskaF?hHh{_pIh^OeVpM>WB2W$5btx}0HMT6oHBsz+F=1jF z_W_r@vqR`p&aFN5YiFEZUH}a0d&Hu{SALVXM5_HTx#?!R&bVwN|k>dnxI9BeHz(Dn=U`w>4{K9bl>SWz5mxF%+KXTFk`0vxG-86S7wHhW)b zFC9CsvuL%@I{af>msC|Nt%qh@EUH^+_u5%a-b*;AjGgZ)ySqc&S&o&a5}>Z-nx}Vz z{%B=_ws)Y8{I6`8yWnqzh4HjMm*dqsdr2vmQR~@8m9h4J_vAZfMsel@_%jZmg6~#i zf1?P}3+ir3vB-W%dyJzB4+P+Hm2~STgs+a{Wi43D|H>)ycq&8cNIXqso?|8JfK=sQ z3XtiGzv+0|PWEq_`JCTZ=Jf8lf<-DfHA9OMv7B;yNQ=FQ+XUc`krEU*?Ay0Lf%vy7T9b&R|-UIk^v0}&8tYGO+d+}*sE)3n} z_Lnr>^n(A_@X45ZL9GqjIStCh+<9hboMK&zb|dX#Nlvt`$NgIx*|}3nsT-WOjb<9( z5~{`#50xiY91jtV*tChD-aT({hKl*UgIKU;ZLmX}EPxBL$7pUM z31a&32FsM;+|!i!U{pc!6$I;R<->VU)IzDt;J$HxYtt#p&GEwaIXTzpJSDtz_N80m z1<$clUS_uq=|Ip+kBp+6@vnta#-?(6c^x#gRT3^lU!<{g!htaP?;4SA*(7(9Y80lP zh~G*?gkA&lyiX`xmwF^8LRwzH(nmw4bK3jaFn9%vI*<#!;^tn}khh}84ug$Y7_-<$ zgF|mRr{I6&o7F?M)TGz4*nH9U?4}4sim7_qXrd_&(u+rqqQwqiMHzR5pr(==*378U zKHQZ;V;*G`GpSOV60axIq-C7>1vkx`(G@4AGIJK)w8w4W#)?WJFE&XS!L++Aq9Q?z zU2{l#798%~FZK~cKlfNHE%~*BUWU8G@{xb6UxsP1#lTKkB&zs6^WRyKb=(Ib=OVJzg*Lwf?s>p z_|#EPhdG)$V`J;TKldm}nnBQn3p z;x;7QEpUPWwnS@69VAT|UolheFHVHh_~m9nbV*T zTiaI`$n)+wYgUbz$I#35eN4dnQn566wzZR|WIH-(Lu%!3KcS8%Srh0NpMY(@MEI8d zQo{+;o#aRCzDU`?5F6zJvm2=SNy(9Rq>AiXC*6icS55MCf@fguj3|S;x7y~?i<{K> zDU@3NUC^jvni8Pq*k($ror8rR}tPL?zU_CUfRP1;r)y%10V7gSWl`3`qoV_ z?3zoqcPGtrO%B@y<$s`cv8Y+yPghW3UdhFztg>JyACao=ZB{bcYsu8KE+> zfZk3@n38qtkTr!34P(;vMd#~)OA#BSCpsy0G1`?~P8bXtL`}_vgft#)h;$)0U(Kii z+g-|MCtVD@kc(7V*%)-~$xwVaeY8KEEP!q1{5x1>DSf14Q_e7fL5FN9ukWgM3jpsB zUjF?P*(T(Wt3pginuNyr1S@wX6EQjvrX%GOz>RUUx8vExLJ?<8++*L-Zoy^Ta;a&yIb2hH^wtyyJRn@HZtt@0arJ(K!PlN)VZQ=szhw#QZIAn!`xZ?2i@!{C{p zO=`|4+NP!aW}yue3*~}i|4{985i`OH@|I8OlIT%$=$}p0o5p1`_rl}9&3dh94pFdL z@^4QFV87y(baw*Il}36zya&jmd7;g=JSgH47gxWuqddu-LKrF%=ETW3^h7~k#)v>$o%ktW#J`>aN=DyB7EF+)O z)#1QHmllMT9U-9wPYnUbMnrbzN1IkY+(22QojHEg!(j11oD64)4FCgl<4UeJ{-lDo z27+5&WpbnTI|To$aHy1ZKyPt9Ft+rj_Gq%vsS+n;IGb})&t!Y_uoZ(P+e#TAb%ISI zYj#FQFG$y47sz4wy8V}X)_UjPiSvFFhbA-e8Ss**4)htn6Z33^j~9LE!apS_Ez2Ze z?WKesFkKR*#6?l>elD803rN|CpkwyP@<3G?brRESxK4$4>rwT|LEw?hqw(`8&Ls**roG7v19Xt%iEAlB-*hVy|qSFXho#?@mDN zRVN`iFE8x882Zg`NZ;@WS?>%cQ328WcOr%){tiNm=ZC0%fXcZ@-xT6nJkxY{riD4x zN>gEr$8*eD^!ts#Y9z>?O7RHm;MsxZ7H^Hj%^jR>eGYCJws21k=eHhi8Kf6Za5DWoMw8S?t^BT}O}EP84DKgq z7p#(nPP5w8@92xp6lj6R^Xy&%GH!eO!|;wFco?-lD? zihpAceUBjih=XafmM}Nr$^rXcBKExS+W6OgicM#JhTaPWX z+k&yoNn4w@=g>uzFHH93=U(Q0=I|HPLRy<~8Vt!`LUx0!Y3a?y+0j9zYQ#*}TkdeR zow#I7{LUAkvGB|Gzrt^Z{~(+HJN%YbRuhpI`|tSuuRl!W|KHulK>v@vnV9hDnV8uA zwXV_sU!ZU1f7N9F3;O;aRQw-J*umV|_&-tZe}~)uOu7FW&i<$N|G$(=_fOdW#~lMc z3qAY4!npr}a_L#<|IaBGf@#C|qq*R@L`k0BQp8}U+2TeznvfVW0iWI=Nx^dww~1oC zV6lu_(-Wmhv$9&+l9KuR%q{2S$8-B7>xG-0?9Hd@za#J`Rjruya?=4-O$OT%do}h)aT;wF+W$4k}Rc zp;i=-%gqa*A|fJr+`!2T^KdE!ih5)rAfL_X)@-g80)gfblL9hz2>va;~ z(gEP?f;R@@%(6nskf0v`y9ppsOpQPuHgt!0_0M<#2)j31fL^}ao`J8YZ&b*b&nuX^ z7Eyvtd@(BQGe|qXj(&hg#X4UUya*(KU%(fUpvDYk8gC!WzeC{CE@&rN5Ks{T4uGub z>$%Fm;@-8vU_yX({aPv*t)*+#RN)s$mV*R^3FlAzs*uIJ25K15=2SVHG187Bw=LS) z2?W80a(-O`U0jeJ1ch>a2{I@DDc;4e|Iv$~gW&@vCZeFA0rP7E(c^iRA?)eLGThSZ ziQd(vs|f_~vL<2m0c9UvY2w1Uhtp;Q?f{-IpHNAFg=+J^=Y9F38_N_WpRI zpYWJKeK_Cg);-T&Z$Juu)^jglwsxi`7kBp%Oqf8s?kE2zr#38o+#A-BxsMm;XT#+N zcN}7uj0z4R1u=DaOj!vWpM)9;^3@c@8}ic@HSed@0v|^Xkj^`_Z*!&#=J}P)yR);k z3-QUALIX{vf#G+<`@02L-0#v}clXD(_{Zg~2kKKb=_hsgrvqPER&`~^qeQ}Z*H8Y#WA`mkAsacq$IATc zg?T;8Qc40yfV*2iy)iyE=5Pryz-Mo(cTm5V&o4}TV4(s!HgrJE2*3|yJn(Wwtq)(` zFDx5k5ce3`vG=q7D|qO;-#6s-*N>=+61>t zjmPF^p+fwSrki`1nSMDl!*(a-zY#jlLIS^|(`|6(gRv|pyE^@knVNHhbM9&-p1&>AI(bK8 zLq>3REMxR}`h4o5CQfrRFQ(3~C6G5LXFW6t)Nw^-CU+~x;u+&s2fU~WBpcwOM?7Ws z#mf~<8dWrIx(@E9MV2#} zgWB=bqYuq)VAXc7TBj$oc&d8O!!c$z@rvO4qRGH~C+Z-4Q}LmTiXM+pC<94*&0Noj zMUG#r(-sOB>mI0=Ta%G4yNTMD*a@MNKm^-GOmI+tBnl;Uwv+ZmeT6~e;X`oKNBtrq z5%mm-z(WXA%Hd6ydA($ZaCtvQ&B}7x_BvJXHdRFMRwCHaiH&5OpYD14 zV2-FuEmUx!AYAQ9)R@^iqy$cEkGme46oWy@o;um8o|a=J-U{CyLU=-trgG?A*b6K_ z`Hiz|u~mZ?w!-bY6fE&6C5esBFN6o(NR69Nh&`mkItK+*O2hNb{mW{uXUH9UVnM*Q@H_=H&RJ%FsV_dIxoRV0zG`goa|yrG%+5QW;h@zEhS}OdG)Z zl8N?8UNj+V?tw{Tga#p!NhwKc>p!Lz$+HC-sdq!|3w_^U9}tqm?WS#W=|TdXxt(d2 z>R{4J+zX~8sZjbRfd!=C)gB%yD`9JXAT;9|T>ewNr(Tqa$2|fU98OwzpTRzMe*~G^ zE(-rk@&TfH0iX#U{&7@~xfL*tNPTILa70@(&wBaiu{Db4n$GaCY8$O5_U6%h$$JsC z@S4AVQLbyaYHjQUd;>DmPga%ge??5lne{+Iw=& zj(%L2Un3o}cvWFIlNQ;bNRzz*ahM=JImOIbR-2F83YCq_MFMMSOwix;jbZ&xx^7!# zRH(T#CA)7Dd110d`x!P+5D!Q0cA>Uu=fTXxp|PA&%hMbV?xQ&*@R)5BOL$UKmGWqX z`}JV)AwOb>`Ov{2F*vhWz9b3VR*`uXL4Rid+8)%4m(;B)&aHhO@yeL!yAj%7M+(@qPXI1*5AqsGO(Ow{84JTtt!{ z`Y#r?L~I#HWY3>c%wdkFhHeQi;vUkrTb=Ro9~m|4rHXeV`R~+ndhL7f6C0@UJ>YL;w@~ z28}&6Xh7jeQ&Mj}FAD4NOHI&Xg9&vcI#jRH4Ft(fj#Jn#q!ZV8QrS1V6oFE#5o^k) z2WgFVW@iV)uI2&b@5OQ}2d9iH$rU7yd)Gd2x!?9LNA)z*x%>%Vy0DU z1uJD1YQ|>C=f>#Vej+!-_G zILWSzrTBW>T?c3T;v3JRHVI+LCJc88{%8q z{QIj8Q`-qUsjIELg8TBjmKU1${EVS%%3#T(6&H@Q5g0K=F=8}Uf2rk@1YP3#-PkC% zCon81_-ZL1_W*i3T4ipgUHK8Of>z2}3WsOPKuJM0USium-sZgFnSEy$d z9q)#5Jrⅈ9tS>j2@qhe4jP{<}2HtlyyfZ{~Z5Nlycuk%w2xT?q{MOn46k-SG9ck z!bo|>6#3F`X>Q`Dun3|y$%thZw=2O9@?{zx61z!Sd6yu;%T304QTzf`7M5A|&+{Qw zzxP0@1736 z5G-=_iaq1HVvREV`(Hd2?J#-~VVhgQg3QnV;TNKPng$Kt9U(5J4eNnxarbMILE5z>(G)!^yHII)M{G2|Pm{v$&7VM!vg zT%C5qpNWJQr9li2%0c)w%>t(Pt_>cWS0JO0PN!C|Uk96Q7AgJ}KY`cc|sa zY9^uV$dg_5lmL&(tg6NBUc+4G3(~){N{M<6vTOFYNtKQVNMqKgMrm3;*W{w!12j~V z;l7L@yMLwU^d{mA;`TJ9k)**?5_^nkYgShosi3LZCo7iEzwS!jz=`O5 z-l}Y%*gN!4qTEdP(yTd&qby|9lZ$rYTO?-)e7jg3yxM%Le?Gq&a_DMI3L0NEst>>? zH7+XXA6{pHYVTLN71-F9Oq1d}gz*mDA-VQpqvy;TfE5wfZYU1p@3ROZD$ z7wXH$S=5kYrJn9aF{ocCn_A)-AJs8NDFXi4~qw z-hEGj=e2byrydF?*(t@x0sze1L1jL8%KVD{W0~MEjxG!*LF?z{pU^<<(Z<&a?@szk zPo#A14?XkQk$2%}p+$3N-21O$i?Z^3?r+{CKUZyZa7fO&z2i&60U++*Mq_Z#184gM z`hARt=Xr94S5NEB0RN{*mqibo@kd zSPtHwVZ7>c4Lm;Ew48m09Mm;nrwnIhTCYW7p2pgX>5u|bv)iT5RrrRw#I37G#cX~P z-qI>MRqzjRWp#sz!w^fz+Eo&G5}#3OURj$M1|x!u!#HC2*eF7j8fxxJZZ(=;c5s{x zNnwYtSweH4RkxZss~gc)xoOPnW)BbbcyBVlZII}>$)&3CH?-32Y&~I4^{RFr=xRxY!bIo9Pyqp1bw=R5M z7Fgt2={Q0RpL_djQK<>+s935{Ftwa9xZk$vsp|i7VtBIMJ{=chrZwg}D&rlV=0q_j zho3WYyV({)d*_uf?2)2SZZob7YE3fAZ9I6I$hg8IPSu+x1fr$>eu$8o5iopF$HwA< zn!`SMF{P>hiyaZbFWqfzFraIqplYooN&)G4){ipR>( zpLcieC^3Q&k+1;jp3gm_MjWv><&@aIM8a3< z9m4aLHA`$J^ibivDJPuBfTQ1zAJgNu?MR9r#)l46`o>itIF+Wuk_~F4xn}>Wpa0+q z80RDPsOsQtQ+8dp+Gcr3&$ieGpBTBg*2|^J%(JAk1(MwbRj5OpGF<cYtP#v+US=hW^k+}?U7(%8wbTGHyYEj{R=6C;^sY+ zqJRgFb8Vt2C9cGWt33fPlrfo&u^mN4nQ*|U=F?mn1D8k_Zk%+DnTN7^`gbbTyL09r zwp`8|BO1wn+n3c98~g@0<*ZA{2Vn?Z-yRzUswTI0Z%m9MxBd9>lZE4T)TQ-muFi8kS zHmg99U|tySKh5{ooMbf)f<7jf7{=Vemcahx7lVXvvfs=x)F+a^?8jgl&4GNfrv2VB zNxec&#{o{{rbv9To8#G-)x(5|zVzCJf ztbKU)%rrVs(@_WMXaICP#fES|T!Z%z*iS5hs>!PhB^j*>E5@!EHsKyiB2bLR90=ZI z6&`o(D@HaPJ_Y>)DJXlBNWvL~HgjP9A=3jcn714@F(0||WtPImz_>_xXdTTW0{2at(mzF7QAil*2hyYArV}#!cweH+7L1FsHnrk`@tEAuZ$T)&`Yk?Nas=3>7@vEu>un- z%1I5GjSa+I(8XHYa*d+N+jooRUT;%SMzJ;u=83jEdTi+whI``tSx991B4dP>;q>>M zkj0@tWgw`=F@NjKXcMuy z=y*Dc=`j6xco`}JTABoLT(U8)vab00QkGr2$y!pRYGX9Lrxc=}9`mVJXSfGHyHkz~ z`gas`HNlk8a>_Mr!W}VMiE!nv8Acff#}>xoc4V~JiBdJ*c2{rM*=YBwc6X{V8Y!~) zP^hR<|MzPFGsE&VL0QSzo@8bAHQIOt#J3a0U;bVAq9|1GGwM$8XxK-LuQ8< z1XbpnF7%bTiH(6=zO<6aVLoc@yK8Op{yP^+|B-OfD_l}Wv4vrLaOduut?n-=ZvFCy3H4AWC4 z(KV1)88<;8!y9)5HBD;q9jKd{^tFYu4H_d898#=g=Zcy zIwa$}pgpjbBE@UJ+!}hQCR^WIWCR5io&nc5%;Ak`oR#YSb~R*~^yH%%UaBhT1V^v3 z+R$Z3f$OaZZT(3V6fAIv5E-XP#Cv;EXa#2(nApn7T9z?TI1A4Em;Em(Qd?coNE%;o ziZk+(+s+JQA|u&l{gQTqihJ#4GskufyB_+M2qAo&$sr0zmV!MB-$6cBdRl^dPa1S8 z?B5x`2j)~_@Q&eb?MhFEKl;U7%&R4d!KLsfd|5iGW(?3KTf@4t1HC-^<*R3@C*KN?+gB>3)kwb; zYrt$nIcfV^QD~eX%aX}6c{@QPa`TTz?XVZciRiGr@2!TS)*-vTj$YG8J@+Gy6jzLb}PKMM)*ytVfeL~-WSzBebz z?RX9O{Pm3v8+a^f+g4O5>d;P)& zm+r%P@+T?SDptOUs9*NmqMeR7hjuxQYAE{{9EQkh*l&2SI5it)=aO)P{?K}V;q^C6 zB>q>z%Jd(=@qZ_*s={jG>Z1Q$SpT`_e<7^YO#e+-+3@KZ|HX`1*;xK>2rI+?Qds|6 zuK52O4F1o)`rkD5Kl>{4e|X&g>8s3a{~;>N%Eb0xMrGNUnb`l2eYFuxX>kjUMTT`= zI}jMDpNB;jB_=MGDn=wG5jr0o^l$l8aRBtr>-+Y{w&%}JQ@8Du zMi2YR+RV1;jdzass=D)|yRr4I3IYim%-FB}gH*t%NiNT$}nV2%rFGHa=Ztki08k z|1Sc|PXaFB&n+xK82sanov-H)9BA;@5lnM)2xo_%{UWvUq+7-Wv_O!4?v=>4Zu*|-8pJgC(5G{W94BjTev~;?-|HzuYzod z59Q<()DvS3*mWT{VvJF z5Adbqghaxhq@^JwBnJ0u1;*D|e(v4bgYDGD_r>Jz(N_Zd?xwLr_oJ?W4C7ry3wS5G zbq4X|1BeB24(`10!v1s-0sH|ha+bus&;}5}h@Z$fV1iaZm-4BxejY$lZ}RIPK(D?( z-(3u%V-w(Tj`!c8-z#6hxjYLiE6XQuig!KM4i0v-ezde=7`>DsfjKQe(oc)H4I)Y$mnWSUBu-^q0&JHWf2o@}jv9~{YFF$&b6y>GFjQ?J2q)$(|= zKMjjN4sSn-uQ%jBtnoj#0ut9UGQR2TKlMMplX|9Qi7z{#NoHH|Wk9n*g~Nd7o<-9* zUcpMJI{$XgpIT*9C=u8Is!2E!6P-8&yq;M+?DG=Pr-0Q{zWC*5U*ZP{-*?Z&tUS6f zxJ}si4{Lt+yN91xSZ3Yjn6j4v*y4#EDTKw>&zH6cI?L9n8+K#_G$21j$iJ*Wyb?0N z{rv!41Pgp?d>vm3Ou%7aUpzTFphCpgj~bi*_Co_K7{Hf=zKPr%n zkLw|hwm9s0_T`pC2tyyt(6a%z`C^;QXQ{gKY@!MzyICfm9@iL&1U=X$*C!siwAA&4 z-IO{KS8Y3CNp2i4=g=J|BsKZOXpQZObx-%6gwv5x9uq8}c(xhMzCVW7(e-K!q}%8{ zyBZc=(6NfkCO&6~=VBdV@J{=*IyP-JOWmFBxa!x%vEd}$hX9!J-Ki=pD}ftjS=o#L ziA2#;Zv1u_U5#SO!Pd{Xw#j>U`a~CjVfxP0(xlpIdI>T28lIh>=X24u&Dedzdb<7- zKMo1aA%Vxdyt!B8!%;D4)g;2o1joKtdv8nu^>P-GMZ}gupKV#n9~EVF$L;hv?S~{1 zs;_Q_;(;WPDP-N*-DGVbCF$Ux@%ABODzed#K5h!ZdD_S5paZB^ZH2H??bZVuqI87ncRo)0%o$02ea9a7TS9GCK|Sj zG(x#%S@%ensiO%%qvOS)YLMq!7>@&h*cahK)B9@^AA@wX!IRK%J{vhycBj4l2VOy_ zmSnN?a<3A-v=5pXPXl;(&x0kKQHVlTY@XL_bpk9y#u(DuoZ9}@{KZ~7ThB+RIwDbF zkq-M`lk-)B?opFVWUNi{^oOA25ed6A!_zDjd+Q-oI+v?F%$WlI`b@e4xyYB)c;QCq z$I|uLiMp$-1RFeb=NJW2=DA8qjlUI5=pMUGS7g{7IhyyIC7USnlG2V@Q`Q)rqb`@s zV}-^Bc%c3qDpcyY-qs7HsvWf8dm?=el0rNrzW5A(I%dq98J}KvguI@njO{=%zk6AGT zm*FO7U2OK?`IK|R$@+_|$}&H&KWP0Z<6c0uwCV}OI+6t(o1{2%XyZAW7N|oD0ZEh3FZdiImp@hvm?#zP!)m zoY3i&yT%2AuH3sFdTyf8+CY$iszqmx2{fzFG~*_8XS%z_#pmc&6-E}zM_-{^P1MxU!5G$k?YWfFcDW3MHh22ZsB3b=Z=y>_X)D}l;5@OxxO z{FR&OoTY&W!=G;PFrk?Os{kU0-ZdO=o&330iZ2%}v(eV_&d8@8Oc&kkd1)NNB4XSFF-vm=@9*hot9+azYdr*He=fNu`&(eyVi|*Z5u44g$8CjHIv+ z^eiV->*feI63XS#1{KaPO9&hoaC~ZdC;I5UYP`}K(O>Yp67C{hC9#(JlO<2qitKq+ zw@xLXgr%nzgO^L0yvRhn$djSVrYgAO`wyvb^3ZA$ymJ2}(0d9k?b zYJz#n`iYCSGsowumQ6HMUB%OFdpR%%=6CD)B2Wch%fm01Rv(Zh3FaBtZC)QDo+Sqh891u-v-Xyo8bqaVj?3Ix8oN5W|LZ zl~+Veh4k%$lP@acwC{oV0=HPTm5Qz`55`rip~-RSrTYCsxV8^@LbCdM!0GZPTS`mW z3WTL1`9w^XP!gh-{tqlv9qP`g5>*Eblw^;s-`~Y^H4%%%g)kJT+bY3`yQY;@vsid7 za8I?~4!wV9a56SjhW+u+tz^V{-ZSqi;&smorOHLbbbJMywfjV1Z~EOk_Gc7Dz*f?( z6qN)d84ni12E&nfMU2JAjOij+N7mHY;T}jU6b2MQt%vSSvTUBM1bi*d zjqk3x_h}W|L-gt7jSIP%zAG--?RR}PqYcM!TuqzCv`mA(rW+I_mRFVE|D|Bt0@}6_ z=ifmMuI+JJaKddrUhx#MIJZ4GNiREDJahtNg*0Si?B#uon$#_SIv^3%1#$m990qBgd2 zGO3V^1W7zw6wQ1h*@n8_Sx5#ev1IFEr^KA(I_DFt-DS zC^y?0I~1O;R8J02~D&FR(zCdu4r-GjQ=?Jf*g{wfLaQCqP^@z@&J`0*gcOm*s-TZWYj7g^^5 zDY1e*20IQ2uVdaggyU=kAhDvVO$&E-jwKa{kO$=8Lv%cwzSUAO+v&tX9_2YE-fuFT ziHx7)-aIfu>b+AJ4Yx2Pv8GijU{wcGb#A?33pQp=MgLT+AW7OD3H#G?igcyi?s^oB z?j;@Ri`H2~n+Oy4Cru0Mf;GDJGO{rE+n%aCv6PkG4z!GGTWIUmvJR3saYUFx>(!^> zV~^O*xBhmZXg@y=QJIP`ATtNOd(wSTQMGqLzt& z?UI!ut7}jr*I`(-Mnt^6^w&^p>G#riaholv+)9dIXphYZ*CbK;;m(86KwmA!&7DVc zGyJcEP>)E}=PvIHJOhRZBvG)Q#`^H0NMTB_RqnbXqz{h+Pxm96pP@)^1#+A`!+ zbsKZedn8k7wD-Au^9XI#$;KDb_Zoerq%wl_>)u{h1-509-C`nzbca4ij);9NzK?4B zZ+7ju8fxnV#I28)3{^@>UOObzreAZE0i*kp7m!4$hR$ez6L&%e%knh2eaI&t-ySO} zj3f5VGQ?UXRUV%CU&hIzDrDbJ-=DQD&%m0*Q30`ODylkQt89hheFxR;Zy|ZnHwQ-< zxpirQ>pEEK--Ol5*=5x8E@ME{!lhJGWpy(?`- zYD<0R^a4&C)2%9r7`bI@=ndvbh?ONeEsL6PifTtOe zUDW01kBnf{A9b@h1?iM@e8omqg&{(He6yAgC;SXu)0k+RP(ZFNm-wNZtaZ56 zZE(^>R9>dhOJPN|1b=NY;;J3T9R|Gg_|(09{)Lgfk#c)^U7H~k5`MNe%06_h&=)5B z)PaJfa6LB!`?Ow4ru>dc%Gk~Iyr=SB%j9|Z%I>f=6&jfVF+Ayb<7Rn0mCj{dVI2AX zWZ9WO9a;FZ=lW0&GmMcHF<5DA7x{ua0-6lkiu`(Za@<3Q+Z)KUllj0;?)drZ~%AUm6tm07}aSY5sU?PGl)!LDN1j<;n^FN4jDCEUIi0-p6yl7A*ntm9@D zrvy@+!bB4cM172z6U##PCny=`7RD*N%tLtFYfVhXV-9hm+`GO%1d|p^zlhZ6uVI$5 zPi|l=ebU(KOC=>?e}0#RfX_EjKw+ZKmyWnwB={#^Q$W5nKjR0ISm~Mh@P?3Iw-=c5 zy|~=JIcp$rOl|;VO~oa55U~@$tjKh@Ckr1nt)=FWx@GN=_?Q3)d4&=lzBNeL{6pNX**%Co z!4SmIfNk|Bac7{&GaSBopd>bE7v!t~TC-45s)!sx8Sc%nwDPq$Q-z2`cH5eiZtjpE zYN>~(^shr4fl7H?ZX$=z-tlOPOa6Ax_(;(;h86LAWwo*eONGko*M)xMhe~D^J9Fvl z*7&Dmj~I(J4y+t$y38|jTAG42<+pO4&jSkb(`J`}%&7UmS;K0%yw!-Y_9cNYry%wO~dN zyE1e&!Owm7$kd#$QKZE|Q9FGM$to1)rF2BBK?M8;F%WY1b$ zg2^@Sy+1Z5K&-)MM7sODkaC}yv{ayw!}|i3ckoJ5(Q$t6@c^$KJ06w3>S31^MC2we zc}?}ov?NT*S)^;%L^405O{Ys-U?;#xB}Mi!;81eWiz)w`611VyL6A$IXlnw~6|2_g zk^jUOj1j^G!VAtiWf8?2j|rWA_uqaIGY>7DS!?7eX@f!Dm7Xq9yPyfIkcas^Evd3( z;06OmzP~GcL5+L!NK9 z?)?q!rLdOoqn!gM^a^fg>f|v$C>#1dH75n-nJHDe*8-hC3|fv^v)L=|m&f|i>#pd6 zqJZP%Niw$Gy5cmVXrGHY_HCo0CY1}v!`=&2IXc0)+7&2euOWXr_?oPbGsZaA1h@me zC%eZ+X+!>Cz&fL8J(h#Cj5c!jhKfBmCi>SMS=FDSj-vRix>aU|J|AY-j94t~rV|`w$^-=n3uJ103AiRR-6Js|#$d zT9k<%Yz^&T_1mV3XPM3 zM=IS4!LVB6{Z*UgnJ+mk+Ko_uQ3L-}A zI8;30 zYNX8FCv``DbAj|cQuv^~Cu)vvRz{xvE%k!=P_JZBA04r|`b&OpsE)YO#HJ#7d4wrlTt-3{!zuHYEg>=>QfZ%lO@7C9 zSqDiEEcE_Atld+PC_%%Z>Bec>wr$(CyHDG;ZQHhO+qP}n-t+w%voRClJ2W&2 z39psrxKvpB9tX`HXCx_M);I}PtCRTsn7CN3Dj8ZtOXWC}RO^*YhVo+`nv0fpWL&hC zF82j8n5)lLrD@8N@@j85g>(M26pD2O+rp0g5j$9?%5AmK8Oo=w2QiC&wUxB%$xgHo z(Zc>KiTW0|S`!UqKFfzCxdRQvhPBAsv}U-P%_0Ui&9M8^$vGy z>|_0F*mN>va4Q@B{^l&mMuE}rPg>$O)jLsc8qx5`WU4K<09B$~G zWtK2|xq92tBKB=lCqBiXOKlwwn}DYX$9HefnmOoTCKdC#d`w=QQ}?Fa*84hb%02;o zM(r?#sRZgBNdBAY!axT>fa)_~HA}g~qwD26nQ|hnIbL(X*_25Ezdgvj%q1`Eo*@fi zeE|_0yAZw*#~z7;dV7JAwCVpCNqBYK163~++S>i2D&;>6 zbf&%Hh4&kk7hM-{-`+iD!RM9 z>&||3%aVI}Qx}2CpUanA4WmsQ@P5e%hRJAY3Qy%9RI`v%FF1p7XJ7V5m@|x2tAltF96cv1?r>9#DM~ni_OQp7fHLTo63>`uhMN5joTmPQbhAKu zMT%W-C~s)N(boPnuLrB?@=)VxNHVm{a1c5i^3oEObX*)VQ%%i8nh@Hllh#XY?)Fk#e5+`Ck&UsjF6IC# zR-WdeDMHj@w7rE!;Xquq3e8wOX)iJ*>MNHv+yZ_WYk)u^)$q>tM}ny zvb{)Y)KmOh{EyIwP5^^AV{LA=Ll3? z=aTj6iCZdt)Sp4T@puhJhsb2BVdZD8vrLS+F_PEbhtcf}^Vu3&ZnD@@HB+RShp)|c z>NL0%MkVJ8T`R}%HZjjj47X^DS9H}*lm3qEGkTMGbw_OB4$ncA7_a@7u}~W|%}cEG zaKkwp*m_NE^SC(~Iduzn^J*FFM1>&y;^;B;XCoGytsKo)yk>$m3JzdEM0R?fI?XaO z`Uw1fzUE=4hQ|Tl0&)XhEq*DS=9&Xb4o{=@GPBzRfLdd?)w%QG zzEK84#%`yjd#pEna7h;K71sN&PnvGKA+@Ik=|J5!Kar4=U{!(wtOTl%S_MqhiMC|g zey`c<(S8Xfm6hkt2an9aabSLq^}{m-8M*j)S4k?vRbpJz)(F?N8ao!o&q5#(qRd-N zJN9iJWnXr7`GJF=e?{ESI9t5}1g>#M1XT->^mnmYTMARV)8-C$LMdS_DI3ET6-vfe z0R*u758N$%R?C0avatS7amW8(%c7#Dq$H>GUo8vUf8Vk&u>6ZzSQzjb82=4y?2P{h zVix9qH~0TPxPbrS@15=F^#95A4(5)Q*82ZU{QnII|9{~3|2;SGe@pWJYZUXJ1m=H@ zV%Ywtb^Cv!7!J07jnDr;2N+nG{^R}sztsT-Ru)Fa|H@+iEuy*Azq#Z8Ck%2j7B)7t zH8O_e<%M)~`ls$&L%MB5KZD3;Yqj`A9^BkeV+UB;xw=BZLP5+7Y_qfl@7>(oplq@}72Act%pb_3j(aFpw%6O;|(`n!J$mOL%gbimH;L>iDGvbU;%<`2`1O zhX)74_(w=?PppH!@j3jVl*vOHo7jnY#X~ia3j5^D+f?bf#a7P zddf7|y9G$t!cRt}WXRHo@| zY;I|EZG8N|V{C0;V*0IwVL}5lf#ISOL(7YL^R?m?2KSw$_L~8aMMXumVYLC6LjZ7M zYc~3!^6v-*zSEUl=^eu3d2{1f;{urC+W`1bPY34v!FThI()I^1B}2=LUFAdh&4gFi z05nl8nE^n`3r@xv*q!Ga;(zpg9R23fXb0}8^NPZw@;k20{q;Hbl}=0V&W;}4J^Af0 zFrjd#QBe^2_-*>qEiNnT=IV=#&qnGS8yN@EGd4a1@cMbXd*8KBimv`q8s+mczM8rQ z07J;Pawl~>?`u_ zi}UoW6<-t?J>C1%^vnA8JCC)gx$gEgdSK|FoyFI}-~VHXcJ)(Rj(WFSSqZ@0=urRN ztBGNH7;6n*-}shhCaMZciW=iPS-YD$%Z5N_T$%~0E4Hgy|THo6E_!{v3VGUmx(%$e# zeXOMN@#rf!!wrk^A1EZv>HdTLWPF${(340F&n4^FqexU&L84>BC<{ zs#&mfpRMKHk63C_-^I|Kr{1A^g?|@$jXvRiV-rnSKfxM+()@q>VjHG@M|#IDY`@AD zwodRy@T~6PzQj%5T`yuusd=!e`E(Y0X?Tr(!ABqF)1Ue73gdl6f6s6?78 z|0eqCyC-Ih`#bQ~3315C37Hy~jg1RY*sfGu)HKNS?aAOZ0>vU$$ z0t2{h*#&d|o}nRdOJ<~g?{$!u7Ko$JybpU>C-={eBewOPjF=rjHH6t;nXmvlB@^2Z z$qx%UP0{575f3*g2YM7mE2@|;11KHh&FvtQQNLTIRyPT)BgqDjd@?Swf82t5J93F1 zG50|qW7pA?xgCxYYe!bA*Y%lnfIlZWha+uuoIW*9qlCuwhGn?(2(k|~wg3xG2ygg!(nck6rJ&Qp`8u<@221ih5GM@>?IFpsuiLHA6xrcY7d1(S{PFp#+0Y z&ai+|TI{3BXG)6AB2i9!&xVBD)FF1Yu|gx5{8bE+A&^e<0a4jv))>|^oE z(ghFCFzKTp)iY0!dZEh}H!ouSmMP^b!$w~cfp8n)I#riXRORfemlC<6YISFgRo>2X z3S;@tNJUQ8Lxb!&mf#NDg4HxivRgh`5gi>BMfGu&kAnNanRjEu!{I2cO0(ZmFljjOwYGw67^9m*PV3NH}D96zQ9gH zL&cfK2*xN_G&(zQXQarsb02=e){|d_ho^nTSwGy}slwV$HZMCelUSs(JsI2aZ%SLo zd8L^KhQzRgO%o=mPJ6Ei9_pc+OS?tr5ZbJld+BzXQbIn!3TVhtiKVLHu+L5@M)FH$ zR!%~SBj9i*g~am@^@y3qg%n52=MrN)5L{S?`5RLX5y}>se{l&`#n7siGW%?hmxhZ3 zLIu)3`(;*|#y@sTgUQ4<%;B3l^3varzoou&pU|iK6ue?uxRZir1D{$J4I@kDVqMqd zo$(IjM3V()=J=yL_G3z$-eR?*Rp@N#iA%OyXQE$1lgwQcNKJRF_PlB59bW>SH zcl~k23t8Gb>Z3;S07?gVp-8gwIgQ5jD(eYt`_i4fkEz&Umchh)$Woxp;J$FL4}C?$p2|2Vv@5v){_oc!$+4Y= z80bh$Xs8ZtUXU0>6+h7QWFR-KlE~0?$h$+y7-guRK11`h7_T}K8XB2xR9psM1`>$Y zBMrJ6IJXD%ck@qfO@D3;J4(LuE~{J$n8z+N$WuJCyj{EZDA{XEVLgDQ8XUI%(cDiK znAgxM`*yXLZmO$s;LaIdiq0QvC#q|Y2QTAJBGF6klhpCEhQQ^KzN-2>+dqz@u-m}UCwcabnB%+~`fL>tKcY@& zKez&#q;Q44vD+SasV>&%sx=jt39D!(-8_P@-^1Erd;m`k=yVkEFw)QmP=*-x& z+o=ATfkMg@N*9Yz%T;(-6rEK4_FJ25wkH>Z$DW#P*T|U{J&kAouJVy*=rLUXB9FQ^ zPPZ-7><553AMM-WC1sWvx|(%$I1_m>uUw&czil}Jbo&jdqBkDEe%#(dj7@OgJCxbK zA~UIWZqNZh#7XOxAqF4g*uxVm?y>fhe!ri`C~&{TX*!AvKhB+dvsmxzHm`OlLux zx@fKJ+h_ea+ZBdeA*idwYrZQFG@_jaUJW<0!C@4!iDaPRYfb_Bz-Y>|{D7N>sJ($! zfU=llsgi11LoF_QEzGWtJfmTGr;vhKrinO~OUeAJlW!x<;~q2vgL%TOV`2VI>9B6G z`is3A#YD^Z=2J6-vn19Dlg92+L0zIMp=0pAkjzU|ke6%RllQGvHm;pZJW=sXaQzyb z9kRFR&cDOCJe#7nk&f$}@Aj3~1VKt|WT@&+UIN-$Vo!BA7pJ?Bd~7TBifk|+C5j64 zr>#!q1j`BhBHS5KG2drazpc*+0}Y}I-;+Q>5Ne2Hrb!20PQ%Lz7&85Lx+y6}$ru0F z;KsJk{iXR!XLb)*mCUt(|VV1dFmMM zlJCuI!E8P0`F+3j`sUQ)6c66&33Ny&<-67GF|oDRc+QP!#vh1Bunvu*-@nuFU|6Dv z|H(8wtUR3aWm!3Cpn$vJC=@V-d&Y=sp+(VmRkD9g&d3D72>lK%l+=SY%zn4}vD~Iq zfsugjL18VpR&gJcvPGJB>=xE>IdCsRl$G~ubm ze^gfDDw5r~IJYh8Y0#}J;p)StHTWL-0%yTSCQO&g4}5Ad>t;-7WokXT^yX|5PXH&crf>A^+A zp<`1v6>`|EKjp2-eu2fyYNK7+BXEO!StuW4Pln5W;U%z z0sY9pm1MH}T;MTBJLkefK6XmGO(-xlIb*JktdxkpUT1ph{sPC%5am6lDuJSM9Hmh^ zj@0b-Yd~V!#oaw2baB3_l11cwr8;k*l6#q9r_gnU>0H%mb;j$O@~c@y@4zmt z>8@w0TGze>gmg{JVOu&Au7>5u^eA0x>F)MXqJq^h7;*6jyBF!Ci>W{g2?>#p!{h47 ziFH)>_~hh_(x0KSZcEpV?*}EX)oCG`ETVF(K+w5|U|v=qi&o zm#8&dAt6!TdS>nJ9J9Rx#X%dFuRU6gz{d_;H_O^di+sGO9-%BU+$+uw4v&}Wa zj1-20dk56)%xmk?91}bT^cS*TtrHjLE(UimAFPL{jH{T?;16v@i2;ceEdbVxc||$g zGNG$ox(6Wf`VM*}XMKv*4QF@Pk{)Da@H`==5i1cFn{{s`W*u^{sLU9LVU{P2Q=w+q z3ST0f73ywoWF}vn^}nwUVkAiw)CBxD4?TZL7hDE?!>?Xx;ss+t+Y`K=r9RWmv}>Zw z1ezwj{MG0H8pAxi(M-!~0YwuQmol&1r8B~cd}jE|H8=+Yf1D4jWLz8XNndcH-?rfr z9ZM}6+t)bU^reUGyDnxWH>#4F&yTiW($xe=yIkunHi?ERx!Exf2yWtdQ!3NKjtP$8 zDQQe=z+&-V!@=2FzZobm*MtBiW!A-og=;qCiV=tr)Cls+mWr~bUqHgPSKMSQI?7(jnZade~NI zAlT>rDT>i5-%K5p&hu;UV!MF%`+?g|;n7qs@ei8UcGP&B?})Ml8o}LPKXvqVbZU?B z@R0YcX)}ezI&*;UII2ER3+#CvtF5Fm$W@acnwi~~$ac3c4%YnSG4W}#BXX7D2@z1| zArG3Z#=gJqal+;MtSXsuEHbQdgEGBXLu#{w18djM)}!3x@Upk;dL_4R(i0BPbQopu z`w5DmM`;cw=q5Cd>z6)+E`6?f=6rlS)>{Y;drTb1C#J@ojXankH*x}g_G+HBU=leY zYjX}7o|Vf70@I(`k&8A6-mt>>c{J2y=P|M&EH4dOAu43PfczS;VDj&uSIJ(P*gAPT zt_~194qZ(qIP~*&rf2o#I2pMPv}w2DG3u8&Fq>FS!0Bjez~*(*T4mQ%{C3DfO75kg0^dXd|vvHpVlG8v0+j7e*dq}dy^LZ_!X&4aHy9iYJt8Fa4;ZoAw#?g)+HB;-PayeWV#>}acBANuq+ z$#=J%>fqJPg^yv=SHTu`ve?-dgaZ({w*@=hdX#(4Ds6z;J(MQT!j#6jNCq1?*&`K5 zspC%&v1{wtLMk6oSr1A8#+waKcYlsEH?WHG5npbWVNH{6I1u(qpTl!0l)@nrYA0^d zr(Ev0a9ND37JF8&eOkdQq`A}|o7J|B+>+-_uZ+ob>{*wp^VK9WRzl1$+&w z&9{SrfQb+KuSHk6n$fWp-vs$TPg3)bICRr`2EyQ)WLp7>cH0oBH1bDB0?b27)fihB zZageQhpgb5LJ&Hx_+paei>MAIfnvR~By4N-jrqY)?Lq!4IQ?BhuEGv~Wx1J3n+|fB$nml=5 z^+gm+_n2nv*5_nV&^(RJQ$e-bK2BFRm&z`+%&Y))v{rl^#RsJpS}N4tFc`96R8}Oq zvi;^z`q?Zq-9{b(>AX3s*(t>*!YT719^{rb`bnu_7YapjotU7=qsZ~|Jwwjm_laRE zM6e?BjA(6@IofchOXhOkp%E+b2gDBpX~_SC_WPjp3-=S}%x5}QtR)OE^*`tc6+QKu zHU&oSY!I)rE+0Z$PmEbMoF5A{X_wB~UYJLNyArkmEj<(mhtD-ahD|zle~Uw9t-Ut< zFxpV=7N)tE_ad50Q%f_};N7a-0gMz{S36@s^E=;?xB@JIJSEYUT`Y(zgOxjrtfHCn zI`LMjTfko$gSg|kb!4Rjwo0d2?2Zo&n&(t*pn?>HSXMCFEBq|QsH&}>7}=kN#%Ius zG*8}agiNPf2qO-0ejYa2I;-PqJD@n39xNqOML=G08&D|2orHNN_TsGclD;+uaZ;EK z?j(s>ZSyCNTE4b2&gv<4+8YdJt`W9CDc>Bb?SH-F!N(!C|PR( za0-n$psVc|U_Q&{1X*7+!m`nrqJpBz=m{J$S!dO}d%3aC0}UQ}CS$geN2gj)v0w`dnfj-2AMmQ;g_a$iyy*dSgenzMux z#$e!xM&oX#tK}4FQU?7t2|563I3#~080zF*d)(camkG;1R>=xM^HZDI*QNxI z=foL=>-S!&DlIwRK_Ko`ntGns9f4SyCFnhYOi2>K-x#~`>Mnq$sAkz_fAZqf`#1Y> z7s@(GPaO#A3p|V+CAJPa@eJ=SrAK@f&4$NP*!qWMJZ$&FMi%vnCAT3|dlbLT)92rr z)?8^zpELSAl5xMOj`349MmIFts6xX>V;?W(qkDBh07AyhDnQRqzf(}p21EX+UKi-2 zbJ=Jz&gq8B35bAEZF^3u^?Q2Jnownj>@JPb?&!pet(j)N#W0F|Li5nwu+(Wr;`y1< z1Gl6ehth@-^0-p38*|oGkjK!t+*=|HL_C2fu{+jdZ6!sip}{h!R7dvH3?wHJmsaXY zq#01z(;eq!v*bFqW*UyI%GR9iEl@*DX0~y>l#{l1REzPZt>L3$cM~}D5~#ZW!7~N zSwD2@`HySro;X54x>}gcxF5z#_eli&U|GU~9=Sdp;(}GHKAoZYk3YUZdd`Y(azsl+ zc-D#?9m|*U{ps{3b*G2y{Wg7HK>z+b#6#Mqcz^!aUfAbrJU)+$Fu>|9AF?O72j7Pc zTp-2zIM_p_?%q)1%}y~IEu#gDsh3MpWcoFn0rY-DBSL4k5&;2wYy7F3UA@Jw!hp|` z#k?jvf*B{(CDZ>entCM4K<=hYkq+7<#;#T&7YTm4G#!#wpOA5e5ADB=5&!L`voO50G60$Y@%+%GSN_nR_PAE%<)3PZqNzYVUy%p>hw7;t=scO%9}7z z5y&McP_P^CeMLyYjA#-LS zty>?(Vk1T8(bDSx%T)pb)BR`)kX6r8?p6WHQZzQh@Ac0tm1{OH7?W+Fbm2f!;W9;g zCjc)J)uniuVc5xHwKUj?%f1&+CW#hN!4SR!wJtXin2!mean!lw`5-uj{{gZ+`+UOg zV)CT28XL1rm{&iy{hgwcn?xte1bvDmYNxipMx(5=E*c-6_lT5-;mSk-jhXQ-uyo&vjdaz~utJQC(od%uE zl0z^0^s{-`Rc_8E7t6lB2(610Usp!eu7NWh#NdHVa5J4}(+CMSI6Jrb+t4@|Qg{Il z@Dc3JOPZBL#`MvA#JFP}Z{i8lNzPT8Lk*!)iuSe?<`<-O&gmI{h>(( zlzvE`2flUrY_WR+(CHT4i>FyT3xscrGjLbeTqcps*NDF>X0MO1ieAhR=&`QC1lLB6 zadg@|qAs*|z4?IXfF43bK8Rt|9TPv~yvl&U%8KIQK)#EJ2zPRspFj z{WQbZzBF=^2w|=ko(-!>p)GbM*X(%U4k5}DCGXln1bKjcz>Q1toq7%E}zQ__Q*cHl7u@IRF8ehA{unF0p*Z+RCZKZ1w zR_93wEAWE-xifk1uS!}x5$GU+R7jRj@_Gb`&uAx;lP&s6GOmF@pgWMEvhjP1cC%t7 z#1i5?cC?53$%>(TWNbt(qP+THq8P~v@eJ$ugFq!U(jikYv=ap@0zXGVeKC~Ft%KP` zae*~4g+?x+uE0hotd256jj28%5|^4Ztz-QqHoARtz7#V`#*!P0p^EJK7!ia}_s!wu zYjz=S+-HZ+YkY`BhAo@rxn?zh1o9gH2^?fh=A7cCV^4iO2+n4NiLv>z8fu{xwjqie zKT&V9T*^{5dj!hRPUjIts!{M-TTV6sm$hFmqJ>=DpCSE&DPhKh25Sq}IW7fSQK*YN zx_8mdK~I(UDcynSwr#*ZVCLjG8Y?P%!aG|h@`l9()og2iqdb+;3@;IT+ zJYv(QCENs7Ccwhrpo?%QWe8H(moHt4a#|ay+1-KfW9EKE*=gP>9)xV;@1^nFBd;^) zre4|t9*lec(gHp%h0C#W64ey8LwnV(pN1WnqfpA~Xr!87n8t3M9?hB0mO&4DTHXC3 zd!wV444azoUw^=Ud=F{L4j03WF1;4)TiJ`n@92L5y5Chmt;(inobnRrkhQjlQEotc zc-frj+vTLdog>7h^c-ek6VvGW2R6nV_5zif+$PK660?|ky&z7MhxqN3l`I%~KCoKV zFSbf2^G!WJrK8T8nJwMllzZgp=<}q5SKzehh52_aRH_298c^uGYKe$HPAQ57!9n|0mN-nxz1}P$%vo_fsBcU`%0?7d7Yuwa9Q^E z5YG=F(1uc%52{GNWD-Rc)ra7q{%2mXXpjrd{R2t%{98k>n!y#J)g+AA$XhpPv0bO2 z{NmJel&UW0<*FcQn>-2>$}a|Mz^f@j>XnpJkJy#ezq{T^3Q5g%L+3W#xlbbjLWrk3 z#TDUZvwJ$@ku|kdsDfilsScwdWXO6HU%Ne~Xh>E4{4HxY?qz;SES?b2UK_z4?1-93 zUV&UKF5F7y7>wfeaRfkN;~s$CWERi2;2^+mY#~vQaKX;3GdjY_^wS6t$xS$~ZI5h< z`Ef<`SU(YRUASs)n~Z>b7+dSo=7V0at&887Fr^`a#xq$&-j>TzFH#Skny>u3{=PA; zYV%+m!rkP#E9ds1Buv_0&=5QxhE!yPYfY1$v=S_-HSRenK$<<)nb38=^*`L&zTwy@ zfANURSPd$ot$oROA?7cu^GCfsbFq&Nvo>^?zgg6L)@2x2833oXCq~s2T3}xP^aGNr zH*kdSGE=*v(TLW34Xu!2`Jw`Swo~Jg3Ng2CoJR62K+W)qaE^Ad3_{e|G;JT0h`O=f zDQMs%99@4On{onK`Q57Qr36>|&e_g#i@c_GC8gSKI5*O&<)q1!sEWpo7FNvwT7g7< z%zj8IndUqTZBz;mpzR!{6f2vz?KF1j2C863jYSXVhKMiGep8W&#B>gUY+&ph?>TDaTGhNn{B}vBo8EbPVw> zuO&xQhyaWb7kQ3oUENo9CF^AQ@I||XL8RS}*8^I|Mh1VDw+fzonBe_>DK}?(6W;A; z#7^Cu%{@B7HgU-`%bJDvyG(Xu{j{SKVxVLj8(D4Jk9bnoF;b)o32{_**-fbHb1#ay zlStD3?U{xRfbd9Y&A!cITOG2tJ)ruiUVV`ug-xrMw3 zU_NpidYQlx%{xFsPoy6@wxtV^1)o0H3d`#s$y}<&k*zu#sw8(0PuGJIpP=i!ZvaT& zb@nq~E#0Y`AJvk{|8BOx=sB2T&!GQx9B*+r2+wwTEyuVj6biCM5I>8MDh5Miym!0N zyWSr+8zRXi)4$B0ak|^_M0u>2QWyJl8OL7DZMZV319d+Wt?ecFa1yQQdTd@nn63Ig zW6cfG&Q{h795P`RnC2}C$%)J%!Bjc?`uAv@m+?uFL}51-wT;YC>C-O_u&MO34AiIk zZKn;J3M|u>4*~r5*ZUg-395P=tSRLK4Z2)zw%?O@4gH4~nF*IDW`czCZCvRUkHGcJ zS_U<|3;pRj=mz?8_vL6dMPl4{22*ggdZ@~I#C(g#0XZ~kjkCowP+z)+SqHmbTy{{f zHg1;{AMS*2Zst)}2e_e+dWD4Ncr{)Q_LEvkC%FI_Nd(qhJSW|Au*fRpkSOLw4uk2x zeveR;-q|ME(!pei>0PvmjnE^rvZ-(9BR^(iA0$8`x@0>6M(kYBP=R~s!XX}4V4xZl&eQ*^zqXdEj(MDXZpXB=JH z;DbA>x9mj5J>jejV3dI8N1Alrh?vUlVQ6cUQvZrvG8lwdHqR5S-vT3#_dguR&;eNyxO_cd` zbM|`Qr15B0#z_^vuyMy#bE)f4%5%c`*4xC0__-1>H1#1p+}a-gIsJz1_)UTf*LmRO zOKXC55YE7}BK@-xH(0VV+6+x2XBr5_Z$c5HYg8g{65r9g0l_)7Ie)G~XZ(sesm51a)ZH`6zq0MiMmxx~GL+PRBcE%RN) z%Wj<5m*r8o7;y63>(<`14j18IvYyR&T1W)BJ|Tm6UzU8TA2hr#&5lH8TW#tGhQ@4N z_1Ah=HCNDHhUf!+hX_a|W3a3!nS(on5V4rC`-r zJl-h<*%&P}7N{;pdIupHI^mLVG}BXh+2%#a@{dEuZb)3Yq*5-#PCc4^Ala^#KEG1u zGqGTd0BRy7I%T}68$DG;f^l_T=eF%sAAPAN7N(6BddITepTK8&Z(&bmD_0s++`_dhD9<_6! z@%G!TkcUHq&Bh&wZVrt0I$*AZx8BU9^nwoR&W^qMfvy!36RxR1AeJsFX)5Fz2S+f^E*a5w776xAoVl0s9vW$S2YMSLHeWY1VF~2YQV^q&&nMo zbRayP#dvK#AS5d!0V3Jc8L`)B^5Ptrcwu4POM4D_hI-P%$Lq9gSYb~MIz)%6$7V#m zw;S+kDt(79yp4yOxU$5OdJU|^Afa@k-8Z=-RWKJF|W} z6l5fkQtVhO;uHLxcgPHqDXHPKbe;^>o7SaiFMyFsi;8g%?C=RI$c#I?OJH7jjb|!2SfBaIX5BT zn@eJFb87W;D6OEA7Wgn}=Eu(&J~{s1{x);Pw2oJzsYpa!!RD!}CIfK}tCf*ee4e|k zh;ucg7l1C<9I=II{8a`t+hxk70@OZ3xOdK3C0;^YAlApXT6rUHEa(xfDaHHsm;KsU zD6-6uPx|u%pO|&}8c60ODi@0j3xd6@!i(IeKV9J5Kd@+LrQ{Zk3>pEE2A`cQ!s$%C zz!#77t3INNVZ5koyxK|)5WD1e>0tJu-TGcoMDi>7xscdGeS?iXHzT9(R>nqOo=l5j zum(qPJUjGby$#8Kra|Kg1&I`ca6sVCJrZ&njp0ey z4#!v^;CUESq-Zaqn&?_W{+zK)sz}1vhQ^MJnaxtm3lt+rLwsLQJTT@?O0{PdnYG9cnDk>KN63vIwwF!kUZuLzpEx^oTA_xgR?1;Y|xK+0Mi7KXQ z^>u+VdNBRx!zNU0NGuYYTl~bfquqx`CsPLF!{06s?9RupY#(1uZZs;V0}%T*mxp)FfY- z+5$&VCjO}ng`}RmP7b{p;#r}%j>HaD7m$;yulg=Tgfg}tb%P!AQTIz25fxV^2*+tP zRc8v>x0X448Q5#t0Pk#4n(F(aRZ>-P7#xegk2g4WU{Ep{v;9 zLf2pW9@8Fhb*WwOoNi_um#kut1e}-q@_%M25&;^Q!lb0~psQ?+xP{vN=$>ml&=oIE&CDU8m0;@BpA>fK2Z}sIy(c+UJ~T zqcr35!G@uJuEiis5nQ!ND^d$$s_8s8dQ$pB-ke%Z@!P}mq}lcfoVC;w63`a_V2vx_ zN>fcmybtY0bo?dp*-RJXu_lMzndAt8*-R_^5tEy-q0&PAVLnB0Ce_J^0^lN4Y#|42 z6KGPCxAkC^lzYYWxt%Ve$f(GR!-ShfhRZG#Do6(xU2?rFG!uVm;ponphCI1XyrrnI z^4!n%iP@kvHvA%&-Mbcx%paA^9{%p~FgEOQrI7hZY?85Tcby1IvdUqG!Z7T){W z_}L;&6S1HeztZ<_I?kAtJ5^FqD(ao8GB*i6NGvat8vhapY$SKjSXm_!emcd|c6&_k z@uL)m!1xq+=4=Pdq4G{V!r3!KhAnk0Rr?}zr8vQP0c6;0Tv&pV7x7hS=_ zawS1I2O>5S;)=IKH=&IPg?~s2-Y<%B7w_;~UD0#sV=_N`-0PU8;{pHKqukft%JPHl z2C0r=;RnUoQ;O<;4nT)0rHSxUzNr`*Ej)MDiV95nt2ZVD8OCw3P6Brj@glO!2t>PY zu@wz;+wm#D=pT6?o!o5EB1Jdw3bff|8z3Gq9PLVtPH(*2yvrL6t9N(LLQ)E9KwGzX zP>6xJra;M~lT>L!){$sWA%wnYs=4XkeDsj6E{#Wx7am4b-NR3 zPULt^)*97iS9DK{6erbeuEfa2g)<85DP3I0`vx=(_jU1wRp(?S8GLPtLKx*W!5P#J zqXx98K8p&CEpmevkqRoVf|=1MYM%#kO22R#KbXc)|C+J{3LNs#?o03{FRMwZ%g7}G zG1pxGkPsUUh}bsZv+34~5X*~?yAq{pHTO=4R{lOY)%{-fdm@)O2$lp_;kOj_YAF}~ zfsXPC7ru$#Il|g}x62sg?e(4mP5IsQU#0G1Xc+53beJ?_Dxh9TT9(DGw@W)Gs3kgg zTn1Dz_|2j8UBK*bt3Z-tD-1=|POpJpa(mxfhkD#7?ct8|&MhhIn@I;$h-SYhnAR6O zto_81tCleAkbC4C0Tk-I$0z`+NMbuEa*hd{ROXrj!aBc63=JppF7hvMurh`dzk=|- zl{ONd%GNh{Ki7`yKP#Tfc5ie@!)a6q>fzQX6sl83=&@x9-*&Up3Fb(iQIeATd%684 zKa~}r^?=v_sFwzL$hv`hu@gL8Q<|k5fu34W{qXw6>Y1TaqsvK|ObbICKK)|APdNzl z4&ANYPQj?+p{TLd^VMpFV7g@Rq&J$2o-(&VR^u{-2uXPKDmzQEl}Fi(lv3j}>7khy z-jHEeXlSBecJ`!%ka$DO2glWFtmT~QoCeN{c}%K;b|p#byAL_3W8xcdP+&+-IO$%5 zX{z?t1pegbP3$mgP=ji8W#ntIIsM4-jB!di@XSscq&KF?#Kw1|bj;wm+x>y)EH0+r z|2(|mUt$wUq>Pt-GV1vhC86lK9LAMtiSI?qQj=ZAv!!iXqp@*npY8$8YBAKRPS)Ok zi+F)v-U{8N9)Rt-NQBaS$~n%z<$F1d938mtRCT0Pc$T{+G58LB%Sfb%88 zAS5%@EoD=qT99m%4wSMfq(#FALzkn5{3Mb0lqSdn9wB(xQNwX~iZseFvh3lTA8tmH z*rNpM8|SDX#IVI+_>F0O^YwE}kEatj6on-p`G+naYP37We>^4eFJ5wM&C=K{0l=39 zSQJd{&3R7Nq^U6p>)jA_6?q+~Ub)BJOoP>KKnDTSK z8Z`sd6s9A}=u{-=(gu?`6Xf5=gU!b%Wo*D*IxcdpVROM#u%&FoVk6+lMI#j#SKqq; z1E0X_igEKpL0B243BHB;R}wzt9dUMb@QOWOl!9I|6@nP0VM);e$4gar0r>o5Ai69< zME8#kLf3Kz*O3HQDhIh*B2#rEi|5McpAw#8rmU&Cv`C_0gc)9#(Z2Ie;VE2Vh7(&g zIf*Fou20+wA(T^1qw~$C_JCl>VdX%k!b_Oc44hD#{I9T5*?YP1He3Y0gdjQP3!++_ zVX~HM=B$Iocs*F3@1Z19^8zVLUB1RwAO2?V8V^my$2Buc)39$3UCRNBWS$&H09i@W4j!3wr~O#T(xgu3)$WeWrP7PSgaVhyrP9N^F}OBSRT6s3cSM8Uo$zm}&7WpX5q~a%7z&gKR6xGn(>Mr=%+ip|9E`3gj z)l7%BBIuN!g43wJY3?F6l$}6bICEV<%r%7Z`#+ZDm%(<`Bl^|RO3Rg?A<~ZDm_WF( z-^)2JPKn-9eO#^`LM*qz0#c@G!#fN%nvTyhCw4xnW-RC^?RiW#$m6a{b^DlGd{+B5 z%C2>AI{t~Xe<1%Cf2U4`rj4?aC94^Nwu%bTojPj^OCeaW$^IQqQWef-yhl=Zx z#5!~uYeA1q$Q#@Wo*Rw;51v&4EqS_|+i%3XHa(;~>1^=zM&`Wg>+zhA)#EDA~a8#V=ClF0HcUf zJk{(Z#1#TH`niBqt41M&&S#G!T$KufA_FgOqaC-10P}Aq1GUXtIt;?Z3;R9C>QG-w z5Fhg8n2NbU$TL+565;S`8}zqXwrzj0 zjT76pZCfX{d2(Xgwr$(C^XE?0y)(CJre+@g$KJcEy1J_$x_Ym@7T3RdH&*4IMXg^x z9x282j?{Q~ayMl?SvR~LG(I-*7ORLhMA||9_=BvQ^`Z%}*pZ_OOoko3&*h+r#A)>0 z4V5=l%wNxY=GHgFh+|m!C+@2HF!{&L{3&kN8mAB{&0+X04P|AO z8NgmQLXH+&H-F%b)o2;SSyxELSZ|#k*4Auq8u$AF31ar97fVak{w+~G(pCkzJC>5pji^` zcpPX<=cj|C&5D=6WAavo+ZJrt)QR=&l&q^AktXro`Jc*}t#gHM?4iTss*2T}u6;GP z?%R044UyW?0V3q@v~16W{nC*a`m`7bQE(1R zWP-7z!*B+0HeQHU^eo2UuqVHPA!Bd=8xX7q%SgD#H8Z`SQ^cZ~1nKq$Tj{G84!fYk z;Sbf(0R=^yr@^@O?WBpg=Gc#rvy*p=rs)&F8!B(eR4B}~ea!ujaU7Wfs!%T!1Rv%U z5+cdqA5&$owo>9rb>(Cu*0XKHRokwl2gtPO8&iyGjRkVJ{Ly%KL06bvdhwcrdR%Xm ze^*G-<_>=4_f>ln6L$y)E`3Ye?ENBP--}#xy8HFd15hOsgb3PF{x> z7|%C!q4pzWOshP8zn3TWT}Q`W!-i_!8KT+N zJ+5dw!v=KT&Wp|Sbp{JRhQ8Z`O;vNH07%XQ*xa-Xnb~9U1ej18R8+xLx53*zxmEvI*qdw+k&8{)jWujMR^6z#SIxQV zpEumeOh5DM1ScuySnT5i%{lvgx2MdqOin(& zBhiHw!6s=6*CL2bT318;ti_F4S}XBQ0$!=7tSOM zvZ96UC=#ieu|tuP+Z+)&Rp2Q=n$y@-*V~~>7`LWm>i-ypM71u%4_ zRtluSuoE1)Ia@fenT@G`quBk4ivMqugaq{t?XiM-N2`tFFIcj3Xh-l2;sn$v?(q3V z!&nJIO54}^tq#@jR^2{?XSo#0v(AfF>zzWKn9PTk4Qdcl7v1i;{($W?7cZPyuw5<* z>}VwS5c;P5y}d|tAuVxAl0NcZHFvyq7$7bANTw&_$UzgQtssXY;meQ(xTSxN0!bxY zFR7MfAJni>UUX1TQPumRpkY+rgtI3y1Fp|HwXe-}-D@1o9v9{LThBcL+i`huw&zNx z_L{rHGeUlsD8hxb7i_@wBU3{&;j0BFWrg1pxLPg9)`ROXEAfQRy!1#Br7SnepBy&- zvAIgO;qzRpRMo(SCmXYgeaaU`g{Z9>9_Y|iIQ4(li*rPc|Nrx|@8DYha2YAu!hg5)W4x*3LA z{nI2(IiD8D5hls_iYOa1CR{|=C3}-%pr7K$}}HMCf}C0nqrMe_-Vc1n=dM@&dm*nkK^( z0gQ*-nhQIl#xH5v;o_ zI}^RXN9Q`@g$`sE^41NHa(8X34}&Pa2Fr`Nv@b*LjSN2%TD7CaaYx0C57#t zp-{*Tj;-k&1UqjuloJR=1Q2BAW(=dR#-vWr)|q0zVo+*Y1;t(e1p$Nbiz=5@35E1h z#>C$kxr*8Ebf2o81_Ix5W%+5 zzNTNkl2}o{P42{aT|Y)xiuOAlmC^t=Wu6R`aw~pe?Z<=t0Qz>sYdN4(C|16I5M}Z{ zR=P__(aFm{5IWvt{B3uZAy}#ieV=ulcB8*7?R*ZEEEL*488Qj=9V7F5Q=&~y6Ap?u zEJ$Pv9m(k{6Xa>wcl*J;yQsq4O!ar0JnR8;CpZcToC{&al%1Ci&Rbbr$Y_BDBGd1f z2nCI(l<(5=CxtRYxr9r~u*TzGnzdhi%nH0uRy7i}4Bl`ibmCG&Y#hwc01*=>BNJO^LORC(n3Qlfu(mJ~v^BFf z`5E~cP;xf0QT;jd|LBeo1PB2{0KWl}0BL{>Ko%emPy{FeQ~(A510xq_6M!MW2w-Gq zV`Bg?2ABX$0j3rJQ)_@3z#L%iVQ+3?3$OrK0jvQw09$|^z#d@#BcQM|1~>wo0L}mx zfGfZa@MEm~?-GgsP)7WBi3I2W@&x}&BEiP=b9?_Ok>F%z{x7A(PnqRECkPoCm^oSh zUmX(7;PNJBtlsvFsR^3a8%Fop7Y>QwU3 zu{lmxoX1<=Ke8XD#0$Gu&37#?a%pF-H|@G72JRYU*oYkv$NLE216DX?QJ{{FkByEF z?=)#?2*hBT7XTx9A`<4+uK>ZpFB3up$aP|TW9X(oklZqusCh?+&_H*f{z8TV28_D8 zKm>s56F*o3dq)4jO7;Q#yiqv$Ai>_8H0e7AH-3(R*T z2w=NlGoW69yIcBRJ=dYYnoYJl{M`FP#vqs+f;`_z=l!^dd`%YF_L@+tuO1p<#)(%FAa ze$lz%0s9vb0Z>!cr$>%JJmF^?qYow!mzt^;EC&Vj1my1{D9h8`kMq(R^eqqK7fHYc z1#KVJ3W|%L0R$h7bmX(D+f`QuE z!vM3t{dEW8FQB07f74HN(%pZuBJ@Qa^!$@nDFKBgd^2lAFnW_4-10;6f2=;#2mNrP zrCR~D>IGWz6SwW98G-S90r}!r`b0?m<`4ajx$`4={YEc1I6Qj`%Xmci{1&r0hj4g& zAKwXR(ESqzJ`>Da0sP=66W!}aUrD}#zjyf5t*H`x*-tzoghwzk0gk$Jg!ZBYf2$n$ z5_suC2o*PmjlYF34XOL}7lglJ+V5B; zI8gto`#DNZ9!ei3Z2irEZ{q6)O z2nauVJD)$E!C&m&j`Ypn`dg3~2*2Ggj?y3Uf&EQ~GxoEa5U~gJ3*!LthT{tc8pu8C zD-acoF>t<^@rz2dV6 zn?(}W@p@LeJNT^8Sv@@wN?>^{epjhuw{a|F8XuiBzwhiu<))_**xGp|Ryoh^oU$Zr zYkiO&e0*X|O#HDj63<)L%Io47T^DKRrGmvfZEPB&SepD)UH_Z>6|7lIt(+sCP)j2T z5|ZQU45JlNFd)e#uk(K(_YykkG=aD16Zl?;YqS zu}xtFk2`7}co#Uw{b-L($=X5<^cQx81X9DwnK)6KQxJQJOk`WV#O2jKd{h*EYa(j3 zzUA>?>x>h>bIjY6%)vB50koK!4%?gc`26;+uCRc2*TRX{5|OiNGpb*fNkI*qvo+-N zWnvNAZPK!WIbDyO>93;6?(k76afXwS3_sAR8SHDDF?9kycB7}vpu_L+)3t5k(;8F@ z@(r!-h&7sRjQoF_szLxAngJ5rg(EWy& zeXluMBO9*UaxJUhL=TL0`-_E2mNc5PKaHB6Wp*3(`9@WbVPB38olpAIYn}zrnd;NC z{SPqx+?H%81eBL!?PQLedvhLoa}JYmjgOH|u)H=FLp;enX31eMz?-U8DUlxA(q%EC zX+c?rMR`h5OBv4r4Ve=(#T6Mz_9zXw(Bf-QQ?vP{_*<_Hq_iYU2B=Y-Faq0!I_h>2 zerw-q|L^$_?CL%rU;Yl4uY1=Tj4+izYBRXMkQ$b$RRv6T&sCywD8)pC*OC$l7q&{5 z5`?Cf*K!i9&Jjo1%QJi{Gr-iw%#nl7Y?V}!ra6$cCGdC9ClQDr|z87_l- zTSQ3MJ~_D))eD@Wx*ZF7Y>sS~d7+q{x!*N2ApQX*G>h~L=X$Pxb{)-t8>Qm8<&ngf zO3?>1>gBNq>1GP3A7;vlm_Nsm=(IQ-T%L!wx`&c69X4YA(c5Mic>CsBB%HCMi&_t1)735hC-aPHeoiTkRGkhoktJ;%Nl zXEt2!Z28nym6xGj{V=L1BNUE|`Ya$*W-AR=*XgTcFOnB7=elI@$G~5Ow5Hgj*HV5m zQ#1@Y=I|A@Ai4sQ~BW*J(l>K6lYI8rRFtM7p@ud{j`F-if3 zIc-$FXHP+ejl9FUB!}IjhpSP#pQ08PhcTYNlFcdIZ#-9p_m}c$8qscegG>g)z{z=z zu=N^wZ^1+5ua?TAml6wxw06yQ4oU&0i)_eKuermK)w(u=*Zhq~w&p{(bU_nVpW%n@2f?{;EQ=LIyJgX6XXOh~^X9Oov(71)u;IY)!?+=S6V$?u!e61gZ)?h5Opx?bRqo-5*&j`1F&EOly}$ zvcJSxI-111(M^d6Dh|gv9z-b-*cPy26X66>SMTh+2kYcB#rg7r!63K$Aq9yc88AgZ zd0#Y*SGFUKHOy!-Z~zVV#NG4*%bWJ$opmP+#)Y9;kYiBQT#}WUi!f>BmUzYK@Swyf zLCI^8#!&;U?m^H)Ik598#yG{8FTPy&0xkcp7l@3P4#VnraxTvd@w)0)#$NDPQkG55 zn1_R~_B$=1zVT&PSubiYU_{qP`tLu|cDgwl6;ckK~ zzA3O(Qntt+nR6?2Cmi{0Nw;T)iI!HAt3<#P@ zs9_y+iR5z2q8W6EQn}yl*MAD#M01caJfP4?LB_bwq+dBnx2rK%3!k|RNV7LhIfoPe z%GCL=e_=ky8`8zwfrI~&+W*`8BySmJmUx)dSwXx$VhY04HUZip-CEG4q4(;g@7UFA z%pHZ}B|ce_h<~(HQ!{dCZ%3j~j3LGPPDlG*uZkU6_2{+;+U^C*+1ncV%926*K4)T) z76BjDCdswzG}{_SYh#%yc$`X0WwVcq-E$EycSZ04Y9h;~eH?MDERiBQ1MMI@z(Ao* z9JY#Y7Am_+=WS4|$Hv)a7r@u%jSm3*u$JbG@O8;(P($XR?*%D6{|OXhJ6;^7kn6+c7>@3 z+2z)>v5#}^Mo{mIZ&MPKS^$HHv)#sXeXi({T9oB{sGaNmXCaV>2X-V)bZ)1nnD7a( zi#-`*7Xd@;6Gt_B3-Cs<6{x|(0uT*>5&+^QIk=Jub^+?3!IRWXWqFHLrEj{(8#@|s60Tny4(j*(KA&Yx!BEXf0@j_n z(;a%g902xrP1}`hif%+T>dOIax$uJ*67#IrOwFd8pWoM1u=8|&!1s}rX6;fWbq|Hv z-~afIpIsPnA#O}n_J>G(wADxdt(I3TTXRg5vF}NxG3siKR`ZFNqtc^vXnn`@KK>Zh z!+meQYD+Ey;}b>;7^JSX?k5+N1zW`D-&Y-M=thxEd?N;B@!F+RT_M)EHDGnQ2HlZ` z@tL;GDA7Ab{A0>OGq zC;{`H|58!-wzQuSO!X#!%DvXyntfmu`Ay#AS-?s~!V^Sqk z>QvoKjwBvb)Xxz?&{B-m_9+5N<&$n`zE&lV-%_ldT-{oeQCNb|aMuBAOXv3)xJI2{Mnvf&3}ZonH@fcBEVdSy3B( z_K{%n8!8HR`fow{p(!5an!cFkFBbGsrNLi|BITS1tR?X~h152Z1kLNF{MOaS3X-** zH(5r5`{)b_!U0&)(Ay&+Z1N%YiYf$oq$S}+y0lDAng=iFl>eOJ1F_NIyP&-R9u+7^ z3DeksQO2pffPK?K|NPhmF@oCwiz{-?AvhNOK$GY z5){3gjVn?wG5lpOln$Ul3BE+|U+xhRRu?-tnlXJT^2VP}=9cAf!^VBk zO>_7Roi2Rl{zVgJ)rUS3j{97ot5jZj`GSPdU?9Fu8snVNYJS^u8n2m&NGI_8+Wn7Ot#J7bS!ON!B zH}zl#-z6qY`G+Q7%u~{{t5q0&Gu@jn(%tA-P?wp@-eHST7dppC$)gy=&iQ61!@#D1 z$W0<-FScyvqaG%*Mh5oAGviwk=&VC8c~Z9azu(95sb7&c)le?*m%{LTHFVA*iYXJG z-^Eu6z?Po282XAJZXta?K*ZoA(WURjAemdop>TMZn!jIBL4S67Bvax`uiDe!E2l}6 z5ut1F`O0HL_iJ%~APEZS^uo`V2IZ4KE51?vjp7rMh-)!u50n33}AN=GFNyGxX< z?}m9+{MRZAdeYh$B??`8;yuaU5zTIYD;l7vkfM0uaKA(24L`Oss-0ETZEC`qO39Ls zy@tm+xX2|ae>uEZZpeLkq)s1F0`JRfKp>sB=-1r9YMu1LY#>QcG~hWVz=LZ2?$Msr z?OQpWD=RZ#`?ClSf`g*U0;G$65q=KZ@>F@}%R>FmCsRy*9;U!$E<9yDEi~X5^y6J< zcvl8x5swod@m_H|k!!hNmCIAxa}nrLX}?|&;A3Var}Yg$z=#e0Cgf_PRbg#yYHsy2 z)nRRoID5S~ez2)nKKPoSAgU~L8+w=@=18GL+Z5wbFL=H!8s)6IAAy!z@-n?+K5Dh_ zpoG$OB}K*wG)zN@6Sae3iZhA5{9{+wP(dI;eX-*rZK_Nl|Ks5sMaUDp7O+GHI^LkNT?Al6i1AEQK zEA+Y!KQZ{hIy~Qo&m3e#X~au+TgT;2N_l>Y!0hC`|Gv++$p< z;i%P_a@pMer^WyW?WUy}MCYR6Dg8F~O6PZgHCg&N@TzCVtmup-8gP*G8TtX3i^$lIT}YQ-btl8DEKu=)&c%-JX#V=M;dv% zR>0{HdzdQ;2BF)hXYb$BFDU^PRSK#S#_v^UTSWiFUy9g=$wG%08pN=20NL*LIDMVOJ_v5&eF<%e-N0@ZZq=K=A4BIV zq(#*RANVlXpmd$)`B!eEQOr;^bPv<&WDK`yvUUq|mPU(ItKiw1Ipb}B9rA2*DnL$4b8Xnc}yI;ddQ*clAQ)DQ?bv&Rx z#t7qH7SU*h`hv^on}>HI&*^~0a0|-kb^=?^ncv0a8$z15Iz9f( zX<$veKtX$Sg;W4gvx9s>DQ;HhgMu_V>83`+vIZQq(J2drA?z@?f+&=(fL)6x3d=P%_>4#A1+= zoTD(4L$N6?Y?(Sr1BgWH@9sV^qG@-0=+vy6ZLyN}%Q0euR3Kc2b#f^3@K8NaP!qs9b$FcBI-p}nSkUiZ}{$}u)TnV-y7IqzW zy-nIP%#)a*$n-IK4X!>(UE}2s$x0NlD8B$sN*Sf<5!7BPtFi%YqKFtP#hLxWb9Ek{ z!~o$@5|t>by2uO0VRY3_H#@mNeigbyRbDZ5LZ=mKKU40*!kub<;QU7s0!=HYtDuKM z<{H4Wxsb*5<}VAc*^iTL1L9Q+7HJL=z%j4){zniK?r#dU-UghhVvJ>BgY&>F0@?I~ z@+dfDOyO>B7l}bv++k1=oLdYO81bxG^}AW*Lz21OU@r6Awk!WAbd?Ksyk!pWpRk;l zM#^-fe5ZI0MSgWXE$C;X1~FguT!T&&54m!&f6M= zkcK@;Ko)uJ2*s&$aJYHHYo%Hcs`PE3X%GaLgzHIm0UFg`H;_E(ugj0fs8~?o)FlDdi6dQt4x- znf532;vV?9RG$mt=gaq*uxMpr_144?x<`?*s`k{9zDT@u+cj)4u;ofg)I)WtkOs#F z@?RuQWc*%CuSZ*oXIOtL);NX^X1u`Us?Iy&3|}=n4b`ikpp8kb3AFW zH&}J8LNXa01=k%;hfc<#OPQ#YoP)z~L;R5}dkQ~l9?lo0%fi=uh0wDgytED|-}4ey z`a!ph9pEVgFxF=odF1XCu!5)e@~`R;XgZ`X7ybF*+K?dNTV*0q*6kG(}US1>}qpeIQo1rHMk;{v+UncS0-yAUId zeT`95%#Nn{2mz@l?L@!B%^6Gsx7OgDitlEQm(7X6_3NI(e;{OHNArL2C-@Y3*~7kj z_TZ3dBIE@KJQ_| zO`=+!JSmw8eZ`jJph_@ehYD3*{pQGHaShA?5r2HcwRHOGLKodAx$pjMY8X3&>QZJl zkT&99XhsN5}Zl(D_)*m>ht-cqvIVPR3NGij>a9oMc*gLmw}<%ST?tbh8*HM;5a@S52;D2_a7e z)8~DWxD*-39+F&l4rHTo(7~(rV593lLV^jkaSfZs`WzEIcFv; z#YMZyWcfyn5aDjMXYhH}0%QtxXwk*ruPhoESP)qX)193QPz{r^fc*6Rn`hR;6JhZM z{%;{OMrNpkb`@vZ7-4e^bXdLwSoQbR31i(3I+6ynw73z_mD$_bH$^3Gb|Izg7J@!NQmtof|E_`BdR~zp?D$t3 z0*4kuWR7dUf4{x?QEPEoF>u2nrpAyOU4s)v4JwPlXfpGBpvX145O(NnDZz#eJI9+1 zhR~w4v5p0Gi&`$V(3+=ExwYWJG3q9ed%I)S=2iUdfQ7DR!xY9P({E9(Q@hvCM1ob3 zL|Z^#4!sxKsR)NvIFmOXsYIbTQ+Lq=g?T$t7*Q$YK|~=fE+OZJHS;^ zm0b)e#GWQWp-ZrQB1tsBOK|9GXdyhbWhr$Ge4ZYCFfN5%tBKw)m|h-r9YdXw75@a) z$Bf6el$h+8bAEq0BA$~9)Ox^OTcIaGz}T+}^vg-zSr%#LuTK3z6Puz@eheE8Jucs9 z%ZT*X{ven*Z>3H;77mfQUPBO~2lb)kq;e?TL@;T-h3FCye&2T*+KRILr!EAY!j8Ha zyu&36r!!%CGHW#Xi$p%0rpQLu_u>Z6Ma?2jvIA(T0OP%nj$p=No@CV3##B=TA9r`s zuE{?Yzif?_d9^Emd!d`)j<|RXrul;P1%+#i$|MOJoBK?nI;zf2dGR}CI+9^@F+wxMq9o9 zufd?F)_8&QA|tu@FWNdG*DmI7&u8vb>mpyO^}WhnAU9Rz6-zW0%4FblA?6;ePl=~2 zY``>e<_PO`$e*$>^5?LY&P2tkfI^A#QUc2kk?=OI&7a+;6v2PgYf{fdCg`7-tW`@5 zSwXtzJ1>z9IBVHOcV3l$5mG~3083eo`O;FF2dZz;hj&3cXsFhjotdU`Kl+~&QIoc* zfI?u=RkK6|BS}-Q1(@@N@unZy8b_w}P-^>iKgVa6>>a(-t2yFIQ54vCtXim97#$Qm zCPazX6R=(JaFcjeO?)Af6{a ztw%yi&*YeH{8T~=dK}pqqdQ0M+sCd3Zq9~gFo(i0I@)NMhTiQmhdiN2xHVbEb$wy& zzKY-h9F5?xKfULZJ*1#tfADGG*))pRDo=PR@#eusk4oe`x^wMC$vQ+I_tJ-#Kk`kE%cX zGwqgls?wz!*Dsf6%Ye4AflND0DAD(7V!B1_327>8(CPPSoX403YN@o~QsONsN+kF6 zb@V+ypuisu$R^}n7z21D-Qp=LeuuZ= z1Z6MOm>@(Z+-dimO?3O)5j4ek9FK-aY+n5h7GIqYT6{Aey`trR%iL1Ex~n`E;!BGw zonk7h6qm0E6Z)&a{;$Fs!>iS5WSiq9xa?ig<91f1F~)#{{iPn}Um zW&FGC7o12ZF4~qYBD+p%Vh#RvbXw$6(4Y5(a+6Tw`qko$VFgC{*c-{v?H`BwXB@m@ zvxZ?X*?auK@aRYfgk65K_>oSzNVbMiDqR8LC`>Cgd<-wOj-jT+BSa5$>6 zlz@vPXF$f{^InC$j$9A)GvU&~j%QbmFh+i^ww@?7JWXmyYP*1VSJrU%oMP@NzrYG$ z*JlC?=G5Ebrr5;vc5a?BXMz4~b*>fo%b6Q+cI!8*V?EFW-noTXbDqg5Fu8Em^QmFS ztTsr^J%O^-*P1Si`lq+5`dSC`nk$I^UiT-5*i=wA#ws^jquPx*SRmF{P4_3$g&syb z;iDtl%a_8CNVjJyp#Ot!JStmaDkAgPM7I;RvoyI!#xWsplyG__>^1Yl)Z-kw`5Z7U zUc6xgS?$i{0!?5hHJi#%bDIw<(99G)eQE_GlZIbv!Rl}>Llt$!nUkw!Fh)Em0_S#rq=s`PwMWfE!_)33enx-WzmOSq+PrM6!@a@cq!xZM_V zaRKBd1W40Om3z0R5yCg^T~1ZtbJM}@aTD`z+c=FLFdPlxYAPR zbiEzJaIn6J^$ja}R^GWmaYCwP^SIeiYgBJpjk-F)tXD_0^zm9X1=cabrT^XCMX#wUa|UXtCdGx<3r_X?iY7&KIqjT^B?Vqn~wB882@ z*<87~^}}@${d$Dm+g&{r$e%!Ps)ZVE-QD>1==Wxd82u7e%XYTA+sYh>SWkwzE0(p& z9lPz~E*%?QU9gx=W;0_b+o(2mt2-w8(9G#iy9BMGMbTH<4VqAswNsyY#LAJOx6C#j zA71>fdUJuPA>fSB(i>8FYtv-2Rx9~2U{S=DwpVEimxsTnO!bGMbsHIT{#0i^d;^Ep zo~r+Epi&No{{@Nszd@z4vdZ$mCH@Cg`U86YB(%(&2!Ghm-*&dnLPB=#gj#g}lPTq7 z`2UG1W&fcw{|`N~{~$>X{s%ewAI#`~V@3ay6m|T;L*4#67Wy9$=zqgPIT-(!XYgNG zC@0%b2<<QriSjo~Oxc-%tcK%Wy+nNfAPYw@3 zAgn6++dBrLZ(v|%XkZ{*P_R(rTnqdy79(Ez%hj=|p?Uv3HKYXv^W=^^5vZ*Li+XJx z_(0nRsNw=hm7Y)4mJb~r2nPn{+7I?J`vnMDfL%(-pBP18Y771%N}S5}dgs*G!glvA z<(NMg2pf^kKRGoub63vIzl3gO6d9}mloCXTwx`JsOHcsEzm0bU`C{*tpU51HR$CkQ zB`tk(b2Ht)X-fJ@_DHA!7RXHs1I8bF1?%Dff(`s*mPz23Im}l(E4hfIe`rYIy&klS z7c+)i9t!3Sc}*=?z-899w)UlTudILb1(1sdxPKk!$`!yUq#G6!$PWRsXKdhY+uqOX z8);HI~87D5ZfJt+}}oe7%)}YaaNVs2{TB9={B2QQ6(O@pf~(1h%($peMxi-Z}n9f(6iUEO_U z6-ZwUXa&@`_d^T>P7d-WS8|Dez>fFDllwoyVq0rKKXg^Vw(g&;DFJqdp21PHi}O#r z!Ea&_RaO5|vJr575Vqz9;SY+pOib%13}0?P3MmAC{BfL5bzoXQp6^d4ccZk@pRU+3 z|B)X)V|`joU_=`E=QiE98Wp+eHSmq;0T4r7Z9OQ*YAdjIhc?jmcXU2T!$*6BpU2o* z`YNdVH}#W^aLA(qT&{{RFiJIg=k53QZF;r;=bdwrM9KdO~| zIb_hZ^ot9fEo~sX%~z0#i)_Si4n_L^=!X&H^CPii_-pJEJQOK?K;D9+C4Wb{s{>6? ze-pX_)xYuo0qv={Mc4you=>Wh?HUC83fgie|0Y~wKL7*M2->zaVovotxcE-~7A^j! z-jW3Q#Bk^W2VGt7kh$Ye;D;Eq{=r65fIa{t5c+KI7~WDwUx1gTkU>8p$YY#4=Nh1I z?zhZ|JG~pa?#b>QEr+J>p5|!dui?~t8(3F6$Pd7$md(?5pj{*9N8;zDHttr_;FsQH zP1oY_1K>q9>Yo4hTR^|rPi6czWp)+f#QOFp09^77dmn8uL4Wm4zdPCgsCQGz+w4cU zp4mG5bA{KOZ&I)NM-c8$vjoofOHp&=x5 z-D9HTR86rJ%u{5$9`mVst8Lx779mm>2MybLiuVQerOka{hCL0XUU|z!`S5_hQ z_GEHnv#@}lrWq9u6F(}LWJ8o=Hj}z-u$Riili;GFZ{s9uYb5upBy;H=d!Bh+RA6IJ z*A9I>?gj7aB(e}n%Gsx9eqYHvSw&LeeAABA=ZN9jVdw7_r!xKPJQ^BO6$2S4+^3I$ zDGK|cd7sRs7ralf<(4Z76xgS(W~agjYiaCu8ZH1qm%|rT`lRT7gx{mJ9fj3%jZ_X} z)GV6QX&*pxq{(bz+DMcFiW|n=PpOjMu`Yc5uPK6v(7T1K87f73naEMq4_->Fy97k|M zqTb_Bamk&Lar_%c4EnXLLVkCDQU0z5hk7Qf80D#osnXsb-q;u&6{*KxndK%UsY^H_ zvO_Q>)8$}|4;}e~D&A-vRO^eGglBS^tR=5IseFIAx69l2IFA?=@pLeBxp7NG$^ND? z_`$}DhOD-1H;u?mNiE=)?Y-};C)X@)^22m!)EP3p@uDSmv(XE$wHUY|8o4|2AKV4wEYQV7TT8+ujLoZ5!|VA;(U; z)MZdjof>}o0HA1&EuOIq;)v0ECgWEQ;M587#!0tZIlJMLwLHrVzx4n`?Fxl?)Y zYh=|_ZxC}}Z{(jx$c<5#Jg3q+FwVDS+?spr1T;mA{PI)dvR_-mCfT=Oz}-ts6d%`BshG4s6Z z&|q~Br9>w z&Kf&#e)vMWYsWh62W$5j+;CG3<(~p-`(<@clqv@9? zO71i(oFjP;;MUM236Oi9|H#5w4WVwzhaq`*%@{Y*#WB)Dt{31a*mWPe2*ob><3Vlv zM;VNj)vJ>N?H7dGPbJ)BPjAowww%-N-nRw)vsM_uL+dK((84F}MVz2MtS0?W)Tajs z5B`>zjZ!BxYWgIJF(L!X3)Bv;L!KM}<%PC+hj#&W+dCQBILbsIL+JK2WB(C>AzqxIZ>_z9}ubrMYtb zTix-JvP_cQL*1b(Q@noWwM;G}7X?bS;q}{nG$Xrh>J!L3sBJ1c&;l7LJd#!kOCZA` zS4Aac^I`leLAx1^WZHBR!L|jVBDPXCl1JFg&M3kiV|cEH?AX2U)l(dnvG;Wo&1*-` zuEBr=axFn>_uA73m6QK2SM!SVa%ke3@rLma60LHS@+&V(*=c~eB`B}J*sYkG(B~0; zYSty8z@x=gf)T6iylwg8)V((e3p?W1)K?h6rhpmsk*pTRnmRk?_^xjUQv9P?b~Uf2 zKhFS`%vozQWp7md9)4{t0}v=@v%>}k!6xKAH4X|${eZn~W!jNNbmKam9FpR@hv))z zjx@@VS`BOQ&M2ZvifnH>*=X5&b&UhT269Ih1N-e6C0fmL4yyE}=|pX<@=X?1s9X<+S#FK--?H zR^Z#x1yj?*LvuG^U2;~E!ZAr6^Wx&qqwcqXc33it;aQIKNj+{LG2Qdo;6|1Ysqki@ z6cTbPbbM_-hsp?wQVSjqdqE^05)zCC6riW`P^WUICVbYfSVHO*-|2Y7(>j}%pMhw6OGs@B`+=cJyy0^H5%41duB=MsO>u*WY#=y3FoQ z_ht~{nMS#eW$=CeoIJ{dNQ9fI;1TQMd$!F8=Q2WO8wAq=!(WM?GWLgv3zPEdyRLMS z=FC`16|?DKqMDh)hX8xB^6HH9k-}5Ss+xz6YAbWx4NQfcIdhhJAApt?C0PKa4{z=W zP3MrS!e#P%RDut+KpQ|r*DwUKmw2)bIKKc#2VtGK2cRFj;3I^x`yxzqM|FWZvaG<7 zoilTvyDHTZKa4GUWC+K`aII$K&i|Fd6<>}{KD^+>a3ZYf#eT$Kg48+p(@INJcf@)^ zilET?p*|c>ob=NS1}LY@D=gP%St% z!=hvzVJsmV4Ur%fs}OVr38~>aQBe#Z%-CqSZ-;GOAo+4eU=(pZt|Gz@n@$F19+&z5 zk#x9(1DEbz6t&V^20;d$0hlPC7UW*SrZuZ}bbni!064&M1bDZI-MPo;Z9=HgptnTucZ}t1-g2*U4n$dI+`yJcg)!QN#6ZdY}4L* zKEK1&IVv>0nw>zT9ct61c}0GH*w}X5hoTP1V$a+Nfgw*S4@Y{ZugC;qxUvIKbMt8` zZ>YV*r;G=kQ;RWBVCj|oP;{w@FgkqROUzU@4>^~Zn@btsCL!!`hCsHP6GR_DRJ(R- z$niK+O>Sk9F(F;SyTp?Vru~(s&YZL-?`k6$q4QRsz-cG9ta~Ll9!Y1+-Y-q6W4WCE z1}=sgkq4^~NR@4m$rY!4C3sH%*v7h-^t;xiE>?mo_QVbupV=`QGAZ%s#@hp8^EZlp zmu|%(C*j}npB)u6Mip0$(*EUDO~7wpY}9mpdyx)hd-=xdC|0Xp?q@YyR;>(elE0@W zZmF_^8*rAkwrh)V4^UL?0=FqyA|ZN6aVHtbvt=)Zi8-##nSq(7Cy&{g9hC_oQ`cXH zGE0bU&lD$Qpux(ob+9ti3BrX?z%cskXvW!Wz_~Xo4dAorbS|5P|EO9ZS+(M%`aH{g zX(2Q{AaACm50DsN6TH_@da!|?Gcn#k)5ct23bX+h-HzqX!247fB ziI>76iE77)sPaz35V^=<;${69oDQ+VJCNlhi6I;&ugoyxYFptK7A9|k zPmqjQJS#dIwtk$QD{_NiPm7b|!$4(+$k}62`mu@Aq3xBTqJl}a_Sb0F3{D+73>O7D z5ato8prrZ|i$8N|Z#C^H#V`7#@C;%a)V2Bzm*za2?sfo$jR85+3O2RX|7M1NI=L59 zGeX6r@jDQ}VCKD*B%_4G^Q5Knn9RZYMwfMg&~*?~WYDpj_~g^3GeXLxCyke=mPoz$ zIr~Wp%4#&tn{ro~mhn@@+s{;s`GfkqW*^hQnqQDkNqesGBZg zqfpI%^+$h9$>89qun=r(IW|NyOM+cqF`2|k%NC7IML+7Nd~_^MY3$o-^1-jWY1ZSQ+g#eQV9^Bk5$h~>>wK8cnlI4^ksaMo-A2wIZ$8P>P^6_9+HDbQ zl(_JGZb&<&_7vihz4q4}WNN2_u$YZc6~VrPVV!-Jb1O#c!2%z+u%h4Cd9*m;I0+CB zCyZWe#FN(sPNlbr&n+>uc+#sQH;weH;|l+(=QUBdp0fz__iDBIxZ}EVD{4nd(H)5g zAXlvpMLs?qOZK=yLkR7Zpuu<<49n}}zpPHq1wJ0Twg) znG*1^;%0uet5G!&pOmQ+IOfpw(Ql8tDJL&W? z7%2^FG%3o_WxEQwII|fmD=-HZ<~3%3Lk%r%M>rLG$B}1xaZ2eWpBTkSA_Xn+L&d*R zGT$ftkP%^#qL!76OJMeiX1_7Vzk&_1O6+Et`(fp}*@d)R`VZ3=7WrbJEs+j*+Ox!e1?~ckI`@zbdD-2bPsb^Z zu~Io4NT&t_iL}AW^8p{aBz^IQDpk<2~tLMd6 z9r(j*XfS^JRX83S6#(}s3!RF?6tig#G}{!R$2XUvs9z&#wwe}9{w7^<+G?Cy%Et<> z)NX|19~d=>TE*^k34Xy^+l`!bun0b#b{N9{zH9v%dxfm-s%^%V6{$NaI9(&Q&Des& z>>GdJwoL_-mEEEb6Dh0D;_OQ;!kM|oZEVmGNaN;+DVnRdgpIIzzl%=0=1&K}VRuPw zzMUIr+C<0a6e{ZF?<+gp7Ny7?u|QA5&XmlERIx=;N2YDt$>lvAAT`W8?#Rq7wep8` zrYhG}h2GOU)o3nDvydz%2ke2RE@e8NyEfw!Lw{S~q}x>5b0~YI17klScj-`!D$-6) z`cpOB8KCT|)sVKMu#6Yrd8*f5e87{4LS))hvSs#Uk|MJ7Y(kR3M9&Gb2`Pp%T_1$_ zR~J!^2Gd>%{T;$d@@xIQ{C5_SZX7t=cO#sArCk^Goz~?70^8BqM`z;3pxgSK+z+$M zw`?8R+CvoanM;es#mN8DneS;j^i>AY0gNYRSNt^dk-q#=uYLPc%@Kp;t`ZGzs5GpN zVmKUJnz%ALLPLWyT@%T3Bto+j!zfQnF-f`7g#ag&If8vV?Cz=f%jSE*QSz|DR`)nv z;UMNYXo5!lCK;*&fi3s->ahF_}6O zvZmsKK~kbc;dy5nH`UV)%mPNIX%0x&RwwAxt=Fq)rTs};Y3B)3)V`;R3& zQ-RzivU?+r{{~u+ts=5Z&9Rlbeox76tCFxvFF$9l#S#3xXFzF}lbm!$Y=97PrO3ek zGEU!V(CesaV}FC8FZQL%QAJcj;Ieuq#2=__+E>j)INKg3?@;-=jLk^@D0xx+g->Xx z7J~#>1r;rlXMF*`3f&Ox%>W>SqD--9q@c)80u7m#asRQA?yr0-m=zcG_h}VB6K9F|9C7X6Fp++ptp}KWE9_#!wY)YW@N=MTJhI)}Rf>dj&CuR6b zKmkB*(%$LoLpol<`&*gIJysaT%yp61JD7Qtu6H-$1h9-cn;nvFA_Nuh0i!5JVoN8{2E~P0NH$B>=gYKrq=(u*O;P|acARZZF$n=(D z>_oheZcs@S7F#0HT5nlC8HVQmygM~Q1T3##RsFq-oslFM3f%N7ink?$aU9$OKu2*; z@J^-SD_(!(D`Yam2XZu70;d-Z6ik z^s6pALMEX^CoH3ZHHJQA-nLK9l2jz*3Go0EW8-l&EE6*Kj5D)DVFiFAMUFOAbD?S2 zS*%XpCH4TUvkQt$7Flc$+20JD&+D`?&dW_<4t|_+9~mC$0HeKHnMot08o0Lpm&}=1 zW)dXsbe@Uk_+og?M2_WZF_gbknQo+&iQNpZp^~uO+)W-yW);0ldzk=vPWNf&=jl!$9=lY)qT5H zOA^Jd<8r>o^2th3V(%Bt;OZ%ZSVv$lW)I)z7Vx1TL4+Gen3)CPXu4?)kB54pmC;Kj zw$+#V(kQ@RkhKmjDy`&uL1T7OkC>}P0 z?S4~yqZ+3f*_D!G0@Qfg;|yy#j!TE6ntRDZ%5;eUqPn`8SCg_(ZI0kkt_l%kAsjjg zrWqg0n-<`o!QqO_=!U+iB3RN&No)68SU3ke0}+dR5SWm-(1ZAZgI%@(UcaOCGTHR0 zmlv-LxWBHoOp#)}|58>$`@ixB(gNnlr#39Y+Ilfv{=N{n^)ihIs76fqW4sSxk4&!u z8lbMU3pHe#MNH((x{#N{W2*QTM-5a+E49Bc$tKYip^E5{sLjepZ4-coQ)US;YxpE9K$B#i(`LWa&WuH}-NsP3`hdY44!= z{rn4q7l)z5*VR~os<%1(VIr}f@2Z8ba4}bq4&h~HXNIJFfk5Bl{qnQcdqify?I({h z)u0XRZnt3Gf)JZ ztpJxp9GT8Dj!rh<)?^h_UVPfFJveRDSLH!};za05mPxH@&ouTWeaMJjPRzTDZn;E~%%D1+BSs`%3HW!>Fh5pqr}Mv~iTJ z&9LTjtblN2J&7RwM_!+A;suo^tQMt&@m=u1HU-M@E6oz-)!H>FK_53MqmKMHU1+DF z*V8Uj(6U>5Rl|PLWQ(ReGy*?Ce!p+d+HTIDT?ab<|Y*y#9lM!99|cy9&eS zqL(_(U&9lQFyGOr%Q6xAsc<=GSq>NJ=hPj7U0zjcmZ3rQRYF=BD}Jszk{MD&8Z&3% zVNMWUq0P5RX(9B|opk$pCs*I3nkII&IdhwjeO$@AdqP=G?Vb zI_h;B6Tu0y062!$5cLDp{uase>N&Ng>J8I%v<0bW(z}|ewbG9RLgeq`khfK5sDgCl;lX@%eLBvMH`#a#gb zIlePLLd)B@BAW4Up@_RW=qqPgv6dMmY!ehY(#{}=10)0DqWGxtm#ELmbP-h^PMq}K zHWYsC>aE{cjjLvG)i7rj>lD4=j`iTw4Ld^$0qVKR>E>3L4T_MZW&l;cAk`2*%XK4) zH~Q#SLh_cid{en0`O%M+ulMh_$4Lf;Rd>V-c&yDnRp3!g`q9}w?w6Qy)4bZdbj5kAM;<+6VlT^FAS6#PoAdN$u)mIDTD&+uEv!qbwI#u$~5{x193Mpgl zU&Z#!_)xp~n%65x%jV>Am?9g_e;P+`5B_T;>iV#tFkB9uKkp2YzNzuj{_{ONRRxb< zEDS@XxGUfqT5+t=^B5!y(jBw((V&X{!yg404j@K-FDD z)?~0$jVL;WrF?&e*HKFPM6>n4wB(@R=-V3J8cOBL>REbzZW&Ex z7W;eHZqUkbmy0Zw@OO&@f;Jsu{vHspi`}4z)Ei=C5DpkE_R*UQBCG2sO7&*0UFoa7 z@XIBhM;N9I&>%5icS4h$G6nKHTJ<|N%2c#>_|d7fX;#}}?rCQnIUK`_M+XUCw?V@X z!1(=E-Az9ypg)!YqLyM^A|u)yTS#c#xt(X0dDeL^#pf@oU&JT0&33aH1CBqzhxHER@s4YFN}OQ_G&{S7w*2LLY=o`eTp-qw%hJYQX$yw2o;MkrH-Bi_Ufy#!R^2hi0kjg zNJ*A131D_1PR{sc5Gi#t0vB*Fo&OSN2WiUHLte55?#7%alPZ+NCq1Y8xXrc?lI_EW_8&Qi6d5B5oHf?*s5 z2uV*fd-F2>$g-S4VNxmR|0K};4oz(mi1bSFAx;wv(`uM`g$W>z$k3i3uzy zXlrFcWl9-y|LCc$g4_~&Za^YBjV5Z{D|{3FY+SoSA5OWy09G+A>_bz3l7OT3ev%jD z%Q8W_vArphucTJ0&W5P)i>GFkb(!uZdvE=r8J`oke*uwPMdn^30TN*9&H@*svt$!X zv9eg0nKX^1TseX8xR{W~qT~_m3Yw9gN(IY=+EBJb80LL^Bi)uD9yfn)(TAMZtHx6_ zt@{w<59w{j6}g|LKQ0>35F_G6LDZeX(aU43a$RYV@h{N4P`ONOfb$mWCaFNSYnZWpvcaD+l}0qyETrqeff zZr@G=aSbDQ%vW~{OLHA1h&vN<(qUSN`L0dWoDp115!oJhwe90kinHuv;N7+N z#{wnM#R6wAZ1=x0YY$GSpxwk-lDCwhPCcUJ5{NI4;xh@ zh;TP5wy@g{nXxMkcAFjg>(f$)6HpHvmE0gKB)4Z<~7w{d8D>L;jg7$-m{Vl<@aKAy3^dk-ecsGmnS^WrCy#IFR#ob*UR7B6T2R9`bNrMPC*@ z&{|Q)fGsevHKIHx043n$wL zg$%PiEjB(@{<`@&9UKO4jx>b1h4p%t5f^G8PQkqCk=Se2V|H+{egH2{LY=Rk^);26 zM`!8uq)B;_;W681pBy}m`0SkWG0TgJ4bK2;H2&}@zoUxQTdO1{piy>5(ZI((d*I*q zKJu5*e_0M{^t_LDRb(+1>4$ksnO>P=gK#T3BD!SjoxteW9$9&N)k6KjqA@AUY9lJC z+y}xaujQ}V>t)!-W{nBU^%w{v`>$YXztL z$hty0`>vtq3ip&gc1K#p*Hcx$)_EdLF=jqCElv@RQ#e}5CS%atT}yGo+OH5Os?G3A z8*pJcD<-Ixjq-IBs|`D--+@G6v9s9`I4>CI;|*x9A+ zsh-dmM3|*;cd#9Q50UTK8=NrC#6Tz`Fq6GM(|y(zoe$$M$Z2D(zgLZf_D3;n6Nt9Wb+b(6yvc$IP6f6c$>xzpO93cmW_6fA7PH_W+2Bc zclCZ*i&^UP>|{s*(V=q`(R=K^@TjpVyli~Q1xa8{x>%tDZ)c0%L;&p89zBp$oiSzo zWc0>T?hzknRdV{f^Q^mmPC3tPTn+=(URXX__e%NQWF%)$9J~|ub({g3sLN73Z=YDs zJrejpG{B=3f+6Tyx0Kf&FmHrg{c$oH}?D;-hZW2;Cuv1>PmzaRa$-ls0 zJRS8cmT8MxHy~xiw;qO1FS}r$81V_=d~XsD6PzZyq>dD(;jriQ(p} zp*pf<@#0;${QkykU0Wr~ejNAxPN4%9)OEo5zNcev3Q5d!y2^*gRNZ{5zyBWg>kb=j zB8M%;hmHYwlXVrFU#V8##oCkVW{?mij~sfVK7an_(3QKh*)G)Qygb7x31_e<58fO9 zmHslR9Yhle_N7l4>=Lpo`Z5cZn*+VhY^DP$<)c7PRyL4S9&~g6JWx z%&N+X{1JS2f_2ub#2cGlD)7MCk>^J=P(}dDz!8sf4ogIDRN}YeB8g_`m5L%C!NnxD ziN8B>bSx>9JB{b>5?3KiMWGR92Caox}G-WiR0DtOwS-)0ra?x<9J!pPTR99&kcCyZ7uO8c5#6yLPdJ?+%6a!f5hQW_1_{wz6^HbpE zR1V7GzQUgS^6OM5BS@}Kfy~%eZs4rb=ffQjkWnmK`}qhDS)M93f2m9TRTYUn$g9}? zPQ~Z)7arE$P`{BFb1ALwvR8RexG|9YbsXluKj7z9ThJ|RJ|-}mtcS*$leD{>{AicM zbu6d`RMm?cRY0i?C~It`?j^_W(JsFhlOfQmfp}p1{Deunc~9Ij>Gr|$~vaeByd=Fh2P-YpBYsINQo&I z!||Cey%=KxZ8rzmbf$DDz%GYwK*nsUmxd>dONt`%EW)l&2xOn&IaCkxK{Qks-E4SoOSC$#uv^!a4F0m}!t1cpb+mHyV>q%wJplfUGedw zoIsG4F-UQSd(2lnxP{FIt^T{I9*KkB`+3}?#7jOip74vk+Wk5bObdU|;nZWu^pCO$ zj+`bul~*fF%NROee;LHp47O!#E;a>d4i0Eb=Xqo@0klYDF;EmVP_E?b=2kVW6;L3BF%NNXHJUCsoWrpZ2YqPPjw@tbb*mmeRE zCjq#<)QEK0p@l|l)Yj8Wz#3f!ZOd=KR1)`ujSLHd9SOb$k0Perik7LcEEn>A}wHZ#7iqdytgg!;r zAuU@WR0q1py|wr6!;gXN98(ts&j)dH6VxMGY_w$I4=#IEuX-$C|LWgp28fay3bNsv z9dpGmdydchHR>`qjPlUn9_1p*kQG*es!U7O)X@14N9O{6{z~A{2pIb|FM{fG8!^L8 zI^Y!{WR8#eio=+lYP`fl6Zgi*tnWSUwvI-k5)-?g6gL zLM`q*93TY14O2zv)Uj>v8Q?5#>t~KxWM1DnH*a>(HS`+A)wb&lbi)TFnT)67nw`u4 z?!RL0(HI+_cCN-RQhKi&{f%P;zKh%?seY)QG`ZzwF{)v)z0JPo$qD{^ zIiS4*$+7Qr>%uzZcuWko@075y5Xi1dBQ2DD#-Z1BaZ-)3Nj%6CsDEiDO2^@h^)@m=|Ds)7jKoZgGwk zO~z2O*cf_Ii|dc1fFq{EwLKj!Xiy9|!+TyCiJ=j;<7obaKibL4WMYckvr3xR@30=o z?R={^EguJdyoc{re}z$Bwd6TnRuI)a5fUAJ23DYNmYp5<=_dTBzE?byAj>B7`YdIm zmdGfRq0MsW(i2JuTHqQ(+_ff%jAD6!1HwSeZf0inq$*-b#GsXw%q}3~o&=L{q)C9m z_u2n;FR%m~sjZ?Rg9JqaXWJD^vff~_DkygSae6v3?vB3@mKKbvIW?)F z7b06Lu!dsJ1pe(2S)EYEx49dy>U;Z0u9n`bi3zsfV|K9d*#CIZk!!#u4lk=xv) z5k?^NmeYp0ousa6#lzW7@+lEDqYPC*rC1yPDxA~e4vLvv>9H$=ldQ6BwIVi;=eVLW zJDx?HQ;<;o9B0`$6+dxr&U5fNa<$(1*ZYf88msC&LvA;&jtI1>YK#pn1f;dfkwg3 zv1f$JG=5-COFf%947S#ND8x*f&2a}!K4V0*qryesS5AWdFdGj#OTN~exzx|u1rMb#)RrETV8;7d zUv0G{%OLnw6UiB4->|J!!=r)SsVSI8Vm;`=O0Uk zgQcE>=@0Yh=wkCvEyj-&gVx>1-sayB$bSNl|BgWZFpYRN`sPqvT>k|<(&N!HG5oCi ze`#PQKtw=xLJNV#WDzmfL!L8Ghpf3Bm3Ip?|r7j*7IlA`S;pMdI*z#D0PK%3AThnL4iPO35r+8-PM6#tKXaxIKeLxzpR5)d z4WOMT7aMDS8Drj*FGhs%4QNnk*cUbkk84K^&=~_NLL4hOl}jh(nS{sA_9RX5J(i_c)(9cgoX&98Ux+$_6AqLwEA$rbtY8;78bUM&rctU{hL+=-z zDHE1L4%iMJK#1L|qM2)pEk2iCq2!_v_-vej6vRg;$&TqDJPA*s82yhMN)rV}RMgw% zMUG(h)HlS|ZU_3EknB{$Q2_S+&-mbOL@Zrxkce#zoax;0c@8T-Elx00e@`Fj-;}eH zt3Erub1CPKMPog`AU`oJu$jgAWndU!Fghj%pjlq9UA|F8#73L!=2Bd+ND>R;;D@5E z*s}fQOm$f58-q$%j6O9CQ}2RS^eFy)B-*#{KM#;8-@`U$iQmGvInecRXb>cm>Bvvt zbb@}Nc%D#vvMd;+C)c5flD=OskG`ZTONdAKeSW+eR(7GPzzz#KH%^hED_D>LZofc| z??^-G%bZiHQvvw(;7CLYU7%))=1qB5L%a6C5T1imclHAzNtTXAB9+O|_r;$jWAq^K z;vk?%XCbgo=`rx)rKt$u;WBjTa^+=VNHqawwU}-OgosZ4Bpl@3(F}=ya#C&!Dr6g z3yiX@jEyd?$)Y8Td$B2h>yj--woXeVvr|==oF#|X&>l{;K04TR6OgEN&+khW!|LQE zPKl@aWa}JBoC>g*OvH<)ZsWi4lE_&8pN-N&Z^HeZQ;x1WeE-mdU%YLQBe`IytW*I6ph z@Fj$Vs|_h>>pB04pHKTtqGhnmr^3_mexVHR%#PNSmyF833%k?RqgUix`rTZmD3hti zM#rN?;?rj)IuSjX$+EVeh)|P=TxFHTLLR2whSiXBv3XIHP&t046Oa?T5t0pl)qre+ zwb@n^I*|0*xWuUPlt4tNCD4O5`re`|B+z`ZCArLu*VN=?wcz<2^UB`PDMU~V%{$nAbNe0WO<=iJyzOyE)lJ^M}lz zyOv$N3=NY6$1+Y}&89#p1X&(O$B#jWHNuz9Lc8EFz{X-$sMzo5$!x3(G`oY9BGuxF za@$N_dqXH*k51uvN209xxh}6ktX6xD>30G>#hy{8Dr_R%Y+DE)rLnmM@?AR|_A%q< z5}-Y8Y92Gt1$@r(?D-)_+n!)I8Ccwgqyk(bS~TY;bzEILbMow&j3@o)kTBFV`B}Je z>tmf7+RvWD7u>Ijj%TCVyDArU7mfw1CnHF6DqR{?95aWK_UoLr$JN}43G=x$3`|u5 zq9@1;k`T3n3|a_yR-P2$UTE6!6b;P+!xJ|DxKM8tG8d;>eq(akYD>+T+_8qY)3l7M zcUPD)QjKz@-nm~H9ge2+XVk8du}Ll&i40Hdn1RO4ewO{-w5#j{U-z-8guM-rTtLF5 zz4B1u{@DR7M^a4+OkKY62%wMgR0w0RVVy1Km8k9?UWrWRg*m16Q)KPyuWlbD4d9$? zywo1tn9Sw0Orx63Qu0|tRMaNeEms%pza5QnG}b9*zwVSn`cc0r;!Ub|7t2*v7hBSD zY?_w(lf2$#{BdY#d;Uu3HJO}=2^GRW-(*8;mySlu`3xPao2{KDj7}E&!!cfO)~ISz zMr2`YAdMHpHuWH~B;axheDmzAn#?PueT?0IumO%4p0}f(A5JtW z6@a%S{g%j~-L0h%PO|(Y5c-M^P@hLlaCufojgR^S<;>nvQ^RMfKxJ5l<-<)MGjr-< z)!5VsxNI&nt)nt;q3){7D6+jF;AuWAUuv*+7%X#$ZQmf%^LXHm0%J9wcxk1vW{y#l z8{M>An=Gdq?rS!a^BGjr{Jq~c7szT&9wu! zeI2G)r&zw0KqRHexn65?j049WRy1Y%&2o%Pr)XXw9Z@fXpp)&5;;H4N|kMJ&D=I=2A zN~L#s+LBO>)xTHD#r8@~%MIjREx*mD(lQlMHBBvXHW@pUMru z33;}*dDeOd$LPNV`DH*;rmmS z9b>pO!FF|&vDB{Vtg4>WZU0P^c0HS|YZ*9OjTM9|9zH%#;5udS@V=$^vQ|?gsC~R$ zE!??HAr@O&S|~=g$Wu5AEgZj+O*o!c--ce^7G^(drQNl?5rXdP)p6E1h??j)x+f1; zaj=qc#u|Wfs8xCBPa&~XEZ^#M%W@YDRz-cY>VLRh|96Rn>0ka>|KAeJA0-u8d7*zM zmj9t&ovj|TtfC++t8lM869Cz5`uiNx@&7;@3nnm{U*8AG~*7DXe z4jhY@pf@N)KUR6TZ^3I2i0>T0Z$Z%C_;>&iD2M<+L1FA{k-Da&C)>{Y(IK)#P{F>E z-{1m}ke~%MR^z%4GI&66GmZ{G5Mcm;gGE6^g?@a#bO>aRtO$OIU}OQCdI-MJ0DQ=R zA^D-~i3l{>VyRi&>R2~5G5{&CtbAe;68_gJY!W9C9T2Y=;} z@J#~J)raJHbHX4to5Ir}LAA25^;zcHE;xl^{{j*Qs=UO@>W02^xjO*O%#SkMfar)ILRF8;bNZKn5jR5bCp3 z0wXA3RsDWN{9@7?Z5s%_aeSRX4FgyADGt1ML|_UN($>z;ocOI<{b%sId6j<_fIc@g zHn9)^;0(&weQgE$tFw1>0`zU-b;5J1Z+ZlD7pS(Y81OM*RiH*^kcX_66UA4go&VGG zYyNf`xh@s~0H}cwH^;|IO`8(N-!sz+3LtqAffW0x+=J3HIjQ1j~!=LI(32u^g~P z7=XxI#bdL$htm0*5U`r}y$|-qghp$y$uXaWga1`?bv*_zRbJ1@q|O5j$`12t@dcwHM^gL&qr>AvNRP$Afuh=Nwhmcb)yS z!iz4EViFl@HYCsL!l&XO<+nTam(Or{uN6XUjs^i02^;`noGz{YP7_Mt&>#Sh!16hW zpZk|QKA$W=G@nigfab=GH-H96{L8UeU=X1HlWrk25TJ|0>*j?8?=A0Dt(_o24eQ}D zMh*1K`-cT}o~%qM?Cl0qzX-`_9!cqCp@iR9fRER~7syEan1i)<4!dE;Iwm_ml8e#s zJp8CZP~q2d;Qn zn+M&2=efmay<9?TM&}X|(ddc{qBd`wsW8!)bd$@B_@KPlQ>Ph`qE@sq;W5rHvVF0L z-hA194O|Ch=Ba^hOoz!)2x(KSxIy#IY<->T`e(K4v((L$&@M zl~g>Ga+~D6lr-b^PE9i>Sgkoch7o$l@2x zP22-z$%un_Mw$;MtwUR0ppEJm^143_w3Z1N0MiX~TP6hXVn{kZNjO0$WS=JjMNG#S zeP0v;EVh0!bubtMt^VY-9WC!q3OU_8QsaG{wPXOCDfwy$Ob|#gX;Fu;55sag@T^^u zP6qy@`y-wB!@iLMqU{0k*fFbPUpU0<9fyrFUMD0b%DRKiw3n&s%iQtxQea^D#De}D zRGxvODrLzre=cIdDaIq9f*x|hQ^Dmu+F;5Yt6wl>N_&c}I<*Zl&6aT^89!-C@<(2? zu_Npb=*hQGc+c%n_r&}q^^a+SqFz05Ny>H_+oSHsuXN`K+IVBDl25z?w3#N-(gsY% zs0_&AX61c%AT%c0e7Tt_BA(aP1pql3}IPxW3Id1n}W_I2? zM92#?WM{GCQ&^$)N9`JgRj`B;LX;7K)hu5s6+1Ji5Zd<&uh7yv>`sDVXkQL9O=aWC zJ;%$dh<0h-z`jOQGPE>Bf>HLvwpc3L%1VNrE(D#yVTE5c)K!k`PB|tr-5JhPm9{*- z;Ma>$GvP-}0zL4MBc5!puDAY!`y%&V3 zBlVw2%ogf(4{)tpFS&<4oFXb{W$`;az)@d+wna^A(qNnYj@{wQ5<}gFfDK`8Zo4Q< zqKE;4Fbih6xD7GFrz9&+WRXk4cSg%yhMJR}J3gfe^)Ki@U=trX>f{@((y!aKj@9D0 z%ZLrux*ga^kShS{SkEn;=Ex_<5U{{E3J$d=BI%nt;tYRZFEdoKNSx*W;>f8srXh42 zYs(GmrWL)pX7G1M`K8w#WtvOG=5>E<2>MM6&lg+hv1-s+)hrCk3oMctCJf-Ll3Jvx zn5~hiAgk>_7Ww#$6jR*%p5{`7TDA-nO%nqZFqS!yQ$k2L{YLso8dd(R*V4D>MN z5|tkpk2u&xz@$Z=&areCyb&l}^E}bDj2sw{l;BmWn0TU{5Y6P$(lgT1j4i5+iKIa_ zTcSI5Dnz2x2^ZH}5E2`$l#Chbcbb$kl7pPi}tG@T{? zJJ+LfMGV0u-)9H%kThaA=v^^ew3NbXWsEe5 z44k-!y*P3vhD#8Is~e(79wt<_-Cn}@vng?WVzpFB)kOE*Y>De=;mSjPYqtZ(E(tEf zZsa{n^LJaXfkg#T+ZCxXLr5+{K%``Sd<2>MuaIIJ5a!92(sCkB(f&V0&!fcrWabBM zkC3;lx34t~MV}eQxyxykXRiU#qHlTn;7#ldTr`~K4X32I8V22m{R#?{4#F=l3vB35 z@Y|b;Lln_^S7|y_!|Ue{1od-_MTnqE3v}7d`CVHM)kn7zdEIH?IH@t@R2~f-h1l04 zDAtK-XH56^dkmVIy`*^JAT6-x2ugZIoEmGmIT~fGP4*ySwT0h9MH_|;4f&jodB1dt z#Zc~jqm<*my7Rcbx3XF)v`oWOeSw0EX<~NaTWLw*GaGKHwO6!^l4rQ2ac-nfB^Et$ zlo6>ks!4EGBdG@7%CmW-3r+M7cL>Ugg-@PgnSS?C=28A8b%n!!h%6^r}ng@ycV z&81?z;o)^>f9gH>r+o6odB4R49~td#nyuT(_fPlOkr4OO5~$VCXt#gD8y$?s-T+IJ z+EQEU8hu9&w8V=h9HFJ7-FY2$VeR zV!UD&d(}H453b|Q-^xxNpeu0BVt^_Gw~;x7S8ix&bV0ax1c4=h&AGz>kKR?Sr>~H? zXnUDdmgRzjrfApeh#5XoXaGfG7T3PP&{)4RLfRmj_LX;gXP_z6kQDoqPy(EKgryn{hO)q9P;yZi2bZuR4Pq?BB& z&eRg_K)!sJ-2eL7G*o#PlEM_dE+}*@J-9|@x5*O5c0E45)v^hiKQZY2%&2H)L9#LO zLD>5JZBauo@$e<~wgtGk;`ZFU`};@QLFcIWIp?^>s_n@61e`=}5(OL0S+~z9#&6H` zvM%L_!A$nYx_ErBJ1dBS*;KO&{iF5}Ur*}{p;xm{Kx4>-BFgmA>OXP3IdZ7xpOF;B z-RmlL(v5-;85LpEd5>`pFBTmCzS>hk{o7fvJD7!-!+{2_H*^-N;wu4bPhNv``xJcU z8?KQ2L76w4Y-v8%A&JM49O&LO+Pzf@I0UiYcI-)03d`Q;!BfU~69lNUO!|+&t?Obb zI1d#(jY7Oxc3L#6)ujiA$aF*DspNg}%^7Q^R@%+Qo@n1cy)GjdOM+kf6#l`AGc1%e z${~Eax!MH{t3TT+7%L_c_sGBPLfi{!Oi!ud6^#<>`NP|bto)CiYzpGPo1t}LRyAorB3X-G5qI)irtIT)Tjg@haCRWV7yJcpbu^~o2nBt z*odf|$My573RYwX^h!)b-yIeA+l93?8c>4GLu+$9VBT<`KYb~}&`#E4bt)|bKNJ{I zNAI&H;H0Qz_i3R(*9MYzHCVsTWp~*I8$SI!VPOC{_8#TY0YXE%*SFwfsvEI$d^PS8 zj|5!|HHJUolB3SWk{|eTHFBQ*IAFYEdIgcc6DcznrHO;w|NGfz+U^y}PzunJ(GjKF z?&(2m`=vZ^)1u9=A{WMN8A8~qa`$@Z*1E@TkqQat z1FlhI3E4%3L!+}OMGa_aJKRmeW+f;-RvZbppsWO5%JvDX*n}75Lyn%!5|03x|bNSqA?qs?J;rd17H@ znFu5DORq>RROSsIwFatT`KP|f54TMI!lO#2va|isSNzI;<0Ac|8$qO#k=XEy_gvJ5 zB2d90eAd#UA%Oi;Qc2m%IrRZY0gZPRW7>x^S(1pO7w}ci%Xs8=O~d@l8H#Y&xFvPW zlK6%h)#Wk{L}_<|BzRYDMygCSas)*SIKr9O;Z8f^O`8I#UkU9MsDiYx7F1KnQtuyZ zn%-OHkBpUGPs)#sBR$)d_s} zE`k(DQOn@7&Rno4UWj-%MUT79}+jrFLr$_=LX#gkx) z*5wJYH6y+slXfus(EH8Wt1I7SmGZ(yZ}-;v&!TYiFqWO$HQra5m|l6L!m|nl;sgmr zDuo0$&Z&2jMbN+$grc|Uruy{N9w5QN$ZV<^d^wn>*~`;d!V791#v?jx$W~U=fq2cf zKN%b9#gvxac<929vK*lw9kyjC&5=@H@iOWW`Hh_EZZx8N`0UC?)B6%^bfsS>=fb0Br%^$&k9KY_!w*oT3Do%eDH8P`!H;ww(2bBvm%d(an28WK` zc9a2Ib3`$iejDBJ0af$4oVkVEm*!j`W4)Gdg#Lg}u)^E6aed}}0uPnblTyxr!8!>h z;x6W7W#6Ifdu6TE`Tc|a?IFF7#OV_1$_3chO{khUk`|_nLzkcXh_Z`95QAWCfk-^( zt~oE2p?fh6_E#j392*Xx+8;m9E}HaP!F5tFt4g?p-I5}4tBwu07w?eOt>eT8Xoq72 zEl-76@-|^Nbc7vIy1CC`V&^=Mrquu>dlup9?y_1t~>}`VxUQit{ zeiW64;Rd2rzlenMNpk2=a*~V{?@9Sa4-Sr~HN6(B)oE$JauJ2^H=cQ!CFDr+qqZ(f zr!M9uj)fT-zba@Az%X8t-Dlg@qY;4yqy$wj)?6`PxP2RX2C8lAn&=tN+NjaSTV-W5 zBpRNJE)7R>WHH1pd!5pfKquyD=!gWI(H-YE!;*~Iow*e3G$$i@ist1?jG_|9^$$g? zpN=%1P#FTbi574wFIw@&Xqwzm*)3JNlRT5>5KA(t+s1DTYq5oA163k4Y&?h`_w;gk zM2FsyX{C;&Juk%xWavmwtViH{31Gl}(orUiVc0(Nh>Y)Eu38`=m~RPpCQ%K$%k@?qQ=P|MO|-ti9XDgyNkGbQWDR-xdw{{N>nj%$ zTH^l^hQ&P!~?YR#72r7oyitW_h7r1-`Z~P)E!<>{YjN8G#k)vR7jNGQ@FC6rR3A+AU54|@!{^p&%q*5$x5=YAQS68-B z9ff=;RmnrqDh(=7)A_z=o#<^=NQ93g6I#o28W0X*RvVgpWM2Y^6OLLjjpO7~NWCe} zA8s8dZ0|`o9+%D=zSL!hws4pXv7^(j4b=rG;48k4H=aprr`A?4l?rb8?Kzq zZ%`Agwc$y{Q|IqE(B6s{A&wVde%*o@Wut?eGE)nlZ0HLNznN(a9VTQxsO|`Q3RJGB z`CtXFn)D9sBZ{TyGyPgu%tXaQo^tbr8dSLC9L_P9=R;wVKnNTlL97`_Q{SIrP`#mx(@VuENZ#)SpY> zRC{^Kg^C6wIqkX zGuaH;!g7@?t6fbsr@Ud&H67!O;%4}DfnWA(eudNIP2mcnx4z*C=11|lmm$*mPlj~t zq^Hks3`ZMWA_`9yJsPvasHh%`9mc!kn5zO;)X@D;3FX%$@Dj(aOJmUZwIgqV`)U^m z_k*$YZW!Bl{05m7j4r*XRg}LS`LHLLvTw=DRNkVRH8IN$M87qrfM)NBA4!wX`AX8k zVvP-Ovq!HSilzk(V$jfLc<(;95xr}kKH;n^#mr8J^xJG9tC#6)h&;@A8{ez)9|AQhiY-HP@wVnL= zvNj3&hFymlk)H5?NY^2!EydAz0r;#9>F&{DA9k=mm(p&Y;g<>P3(s~A{cy;lVDkq( zv#IvgJ-_k&G|TKmmR*ECx`WR_&HNLXZ}}>XQYZ6_OI@(z0yyAsYWd?srW|#*KiM~M znS3HBPc-VkOC*m@D*f7{xp){>km4PG5|I7vlZ7;kA|(4lY>XH%V^??x_d+>@{oe7k zj>S$X%v4{CmYdzu%n+@lO5o}^!;xs_l=T#BrU*&89g0b?sJ3bh8Jk^ylUtU>v~Qqi z0*gQUh5jVCZX%xbblbO5F-^7}PY?zTK3n9%LhzqnADGl zt7DVh%072g!U_!vrz`~i2`#GnwDw+pkg>S>UPv?t`&3M! zXjVnlhZ42+90Zp?DBe5 zftxVAn1(n9`c>z?9d`H&D30#LVGkY-`h7JA7NBOJ9p&il8{Rq+8yc}a%sdGQN>mx{ zE67(4h1s4D<_+BC_|UpjZR9T-Fo~ex%JUSmjATSbtLP->#gxtn(NbL2Pu~ySX^=Z#|rx7rT&}S zG--V23xe=N9fAPpoUwBBHBE|@?+jV?#hi2Ss^G!Odx;ZEd*Uz88{XRio{9S{O>4*N; z|J2}c) zKm3z_Hu;zUM>G81B4l>c zBfgQH)gD-&n||jou+Zi!Fh)rzE@mX%8&_3HmaW_Sm00!SqhV%wEV1jfY*W+nHOKPx z!1=;$`toh+IrsL1hp=0fPc*e3u#1m;Lck7EnIlo_Q13vPC-{jY5?VN^_QYfjKLq%L zm(GNPCkWxI^N^=*T69mwS6%N6zY`;F0jmn&c=CWi+zGt`CE~y%SUdIS4lHYhD9gCz zhiQd_HuZAKK*%zOJMRMd9^i)o%pLAYq6STXfrYgr;RlLBP3F17h^HycuS9^}6e+b1 zBt?r0f_Q2{&KRl;(azky3IYOB##n*?4ecsXW$Ot9p#>b4fq-)31EX24r%4$KJyhx6 zl@B_v9AP=P`idbEC<*A*2T#yZ-ZTVQ#8Zq6ARY_wlp-@=7q0KgB=b_pww{TrK(F4d z8q_E5^a>zYP$UTDb$sFqCG~gY0zzK%^yHjG`~2z+8&GIZ0`V9NA4X{2?KlD4Aog2{ zSSir_7&9Q)L(5!lLN%aMM8b~{RwOQ+lDWJ+roB1|9iOPb^ZO?B-n}CL77^a2?jGcz zP6h`*@pe~|2<*|6s%}F#wHo61F8xYHb-?li#5wdiFrsG&DI&}?GVlmI5a{l^g$=Oz zE?3Jw(FEU7JU;ImT71nfW}buy$O6x_ynIRA5CkBI7)TcmJ;!MNJU|!-xWJ9P_<;ep zvABM`Ta}^BEkIDO7EbaXAb{M@uFp5TC_;eGS=KZz3P^>7D?*J8@;JxOr1KInaUfpp zM)i7@;2}q^iC730Jyk(1VmHUB_x)V{F;hiAPhZE^` zDNARqL!Q^fYfs}Qp(7)>87HnR+&$os1s@2$TY4g}nW&J+u>=-AUn_~@;p$72Kt>k9 zkGuj&!tfEU;t{}q7wCC}3<{GHMd;aaruhmM_~s4qE6sM0fsJU4B5+Gp(oFJx1o)Lt z9xAUmFk78`cCy_GoCSaa^bvy_{Rlwrta5Q$Ci&4JU+t(!a!_r) zUBDtX-y+tuY{|v}2CpX(FE{XEaIm75W{v6wo(HQfZPp`s$NYBm#dgP!b|PEQE)m8_ zODY_w+A17cAf$qrRK{c-UEs#=tE4O+-$Yw*@~I+zo8LN8Q=~x(U#-}X`?lWUnJEdY zB5wC^*MKFrY{sOnn!=DWc*iKcu0r!ss*sw*IqmH3l9;t15J}8fG)x&UXLT3XIe;GKEw{Hq+4!XRZ~B*Ao|1SS#d!H8vaUf)Jq0oOdr(*#At!-lR`>Qa)CCw428& z&ADQ2u}#a~k;(X2zjW>n59u<@EbS{7iyO@_A7JPdV8J2JnrvO1&XIIkqErvjFny_! zPSn5!uCb(U)_lx+-_@+JF+Dx#?ReY*hM^_wV8(K^BTK5vRDVpTmqY1VAix{CKtO0_ znv(K7xo27UJlm>Mqb=(GjwSR{yBOZJ;V`!vG1T;%OA40kp}CVo{|*p^eeoI!*Csp> zT<3+OxA^ocwP9FQgU-@y^tB6=b$6W#ci60-boH-0rv-tQze#+1;Hf%|2E{*W99krN z=FmqwTFV^lqe~B+|Fkq5Z-DcSjV zsca&R320|%>7I?Q_;gBOdDMZ2wpe9K7TZBS*}T=0)H9UC+jD8m00Bkk4Mfztdhb}7 zntM>KA#5p`5eH3 z9c~u0AKn|vMB#>_G_lP3f(ehMJv)t_o6mxJTP+h67u}G;29B6&*sGU@n!iTV_c%D9 zTI5Jp$~=0{{wW3hX017N+BF`g4?;(sWwepjFv3nJ zamh@n`UJ0`tEn@dOG#(Vv|782f>lqa#c+)a20yxUmU%H~z;s4_@<7O(qp+}S_onZC zk9lokCsz-L3if!DM_Ytk&mIm}-ToZU;pa3-$DmwPq=Jo=D$4R9*1(j>xYVe{^+r~s zcZJ3_v#=#mRwyP%-YbH7-QYo?6QP+$*U0D$Dng1b`Vt&bz3S&h4`>@klNSN{!F90A z*QcT#S+Gw>535@>yFEu6+`-Yu+@y!2(!*ScTn~Fb#@bSSawf%d0dVV0LM+t4xlOn0EtrmL98S;J^RIXLUxF29V7 zYW9#JhP!B6bX>McR#p9!cni2`@oq9r?8T>WiCM&k=*f`JcsBa*12j&kdvWrBQ=0Co zowI20z^Ny?>)nT@JQFNurE`)^(OurMR+Xa`B&>p8Tvs7m`fqpiC%RHmJMZ zzftXSG7wl!YV3TSK(W&RkqZ4FO16fD`q@sQLoQaBPB^TkU)NNSTSa`{5kn&2MLKs*2WefsPuKCNNah(o@KBWqg)tJ_-*IA2k zUQWD%)&_*EI%8IT==NjrVfo@B!3K(P`<6m#s&A>rbQwOk_^WF2q|}-dzqP;K!{|gmDAhriZ#>rEs}tpUlUH|rTi8ZVe>5Cg~u<}-dkNU z)A`cgj-B=7)JSOTUKg=32hc{m`g8MBQ%ri2mz^NNT;<9%uAlJH^J)n?X+cqmHAVigJlv5b`DZqE^ ztJ^8HJ~ioq>e%QyOAH99R6}~zUUx4 z5$ZE`k_&9n-z8csKja|)Q=%m;BqJm#2}rc~{;Ncb>OH_q$w*I2K+nL)K)^~*`)8)b z$OIU4`ZLpFdT}rQA7xrEc@aM#!IIOnB_N}bqEVsI*0VLFF}JX_vD3EEv(>XQ{cFPY zl3x8a;d(iw?x%Sy2D%>-E;?owfP3@T^y|lji=GK!4*lihAIxLPL9@g-p<9SD%6x9N zD)petO!z!+IF&=Vk;Ge7?>yMp-R~HX=s;U1AR085>-#;<%%R` z(r8z)??JOqv02NpQ}c1+w$rwU`?kZ-bISQM?ijtag$_x;F+BU3%s_%rF1=?%O)5L? zhk{&Pib-FdH@5^B@M(UK*`Z}TfhRKE%Me!}810s(RKB84t|+yEj-L8ZhG;NYsk}KL z$P{*$8UoFpz*Bsy5a6}ZUeNe{ey^f9x#i#S)Oulnx^jVlRug6vt4lH`!GRATD0!9< zqSOLXE*$UW@BWUh$-_dL5)TScpkH}lp!GhGAtEB`k_m`xLDw?*3lV^{fq0?6^95U_ z1sB17jrRe9V;nP)2ZYNj(DL>57Puy21kh`iR{j}UicTT{GH^7Y2kVu?gV$35?K?2D zX8xM5^bJ4_b?3HiD@MlzAlPtWzRf;Fe1JeDB13;gz=2WZU`wPEnSki|AuI;s)Yp{* z4=MlwZzCKzmomVUC>o5Qv2FIs*Ay5j7_yhom((osjiitCEb!*cIX|B!3NljmWwGEZ zT5SA=1p4#xHZpFI(4_Yu2r2DP`7#0m_C+|3^LTm=O+l6L`aY}9Ec&fEJRU8INh<&c156l zTQ=F0+S=y81YST$$oaKM5(9(0D6q?K;c!@~_;?7jTw&mWGvB;>{ptkl)vnJ76>t|n zl%(p{0?%@%xw}22Y7v6gYu!84Q>dr%ym%ykA}yxOL&Wq)HNFp`e48_ZxgUM49DITj z$BHvSiJ+3}aTwb*%I)V>-Ef!&#m)89U1p*mzVYWQZ^Uy`gL_D4zqateOHCXgsE$?W z1G{m+5@aq=3crS46d>U&dH+87Q9=eT{-(NpU#jyvR#0Y=%#5akxP5x`WN`2~elW;# z-@XPG0c9T}jzpYdO(mm3jA*{LzG7+(rM?*6NA`WlfGNgCsd1}=`vhf&>CT6)Vp1@n zWr7w1<0j`Els&en$3Bv*Yk$AouNue^5%uOQ`O-K{Gn}%C2o@_ejoW627bHcMxi!_2 z6ZF(U@cS1Q_eNrF*NHM3=s9n~-{MUPV2{&^mNhGXeHcG>0Lww;FjsdiHGaOvIUh~2 zP8^jc<+6g-7ACSGt7|@1pSw9}ZI5f~mu`XypTe3y-}wi}C77Cfm)T9=KE*z52qp-vk7wqv1V}sWo=%n&M3n$fJ!BZ*-2s6e+s`y0y(X z;||OmSsd59OXJ}#N^X@6`Sw)OdA}pDP|iwi)e(}DzwLM{p~xgM}F(f zK2;3a@npQ_wfIbSb$_xoyQ<6fRa&+nwj)>1LA)S`#3u6ObgZq$K|^yz)6f|)6(_mc z)=iWuap`r>;l2fHCrWPQ_$3>7;>ae^XPr-H=SyNMTkTlNdNtkZ^98UCg|GDLNLnTg zlmeQ4`wm~5Q$DX^i{r@5kB%-Y?73sOlia`r_o)pcL56_7B%@Ve0qz z-lu*WRoujFe#j)LI0P#UdU z^*gYljBL94vu6whNgwyC1N>;N()%W-uo<~@l7W}^?ae~j80r&iaNq5S$DkWVEGgVg zA~Zy5ky;HHE=2qJUKS$rLyHV^6B{obkQX-Ao?|D|LuyIQlYJ%|| zEhQW>tkO+I6wYtzGQN_|ougeIP>45M+UpEihzrn9z=vPgXv7K_e@Lk{CZsBN0g3Pn z7sFMz?M3OU>V?)Q%+t-oKhtO{oIqHNQ(Iokq?J)8av2&n&Y7Y{`?^8Ot-_{R^oNtoPpseFCoi!S4k)N;teSBRC0HK!>!awI zINY@}*NubpLQrsn{-hqI#3m*%)%GvaiTA9hR>@ zOImXNt`qGranGpCXGey#2=p&691_Qjv~(L)tHb!$1OZTzoU^ z)SBH!vb?$!Q>9?_-TLzNJum|26Aj)@kEVC9>V6nzEv*7Qd_op$C0YF&IzF(9(GeE%p%^A}Gc}w-4mXUy-i4M>xp`~T~LAkU3Unutysv_2;9b378q_e%0UqV64eZLDFK47Nv1p(Gfm&4z$Z&1O%0@{G8Bg#!R7bQk{@) zQ6wS*A^WgJBV5Bf-V8qD^!&!D8*gB-CVo&r;c!TzU3f@+u&&8ACoy}uCU514+N8gK zl<^T>he9s2Vw?18tZK9S;($xdU_bW=|DDrfOn|ta(9|@s+0uTuTp4_W2SW?Vrq#9Z zN$-&?{#|{dWyJE{lcuP~5QD02jo=pABjaM7c`_*p9_w~>1hc{%p4K{!1UR`VTk!m} zr6*VYlm5My^-m+a>gBi;Wfc zsz&z4Hms>|ujw)1KT>{7Y&tZ2e4fFBO?KZs?Q^vUr8y2 zOtFkbi6lWnmT?V)6U8~d%MSgkiG0L>u;Avg8MEQ`Do8&ImUyp@rl=j+3ZWJ(2T=;B za3v^s7-R!i$B;Rdtr(%2G(BR^jb_T-DaiUjxLnA&#|=?lZLt?=3OM50yH^}D(Gs3- ztum!q;6Dv}rh+H3g`E>H7^2$3LIu1-Dx_RtEw;ni4mAklcZlftY`G-x>e<^BHB359 zwx>6U$g4MCUJx38K{-%P%PpeEjke zG#4SPr>W4lMPR%1cu^6lF~qUqSEcMJK6!=b^h=JE$NSxD*FIj-g? zdV;*+SdHxNTj$wl^Be_hOwviqTcV$boyN{=(rkCmvkkbU+0LBCz70o9xu#t#Y>U#k zrd0wi%x#P20iHT{8mk+Qrglw}JvxtpO3#zOj43`X)P{n9rDTzpB$t&J>gEvx|<{7Vm3_9fl5wy}Ll zyb0(4y;2FSKOO*nnWB-dt)UIzXJ3c~{H(l%g1OPlf)WD2(eA%o0xT-gGuM4dy6FLP ziGRLh{hDI`@5K81f3W@!*8g^_oy`lie~$BiZ-n^ouoe?m78h0g6>9*nFRcFs>z9h( ze}^^THGg3JLhQd_{p+P4v3{9e{%ci@fRXh#d%{17*3ps{S+ofL#}81)gtE>V3E{2^ z5J8>1eOmK{K_8n)u80MpUSmcuJ-c(_iA*ZM@rD~LVYYxq_m*BarGLG9<^C`*3tnkw zL41?E+|!*bAwYExWqS>k!4o=r<=2#~a+IkvJ}7lyJIkqjD%EdNswvNjR=g^^X92m? zkqdrvp$F!{f0TZAHWxd$O~w_oI2nw$l?Yp&&bt--7q4$%CUg1mW-AN(2@`$Q#~AeCfR_`0smH zJc2lGdK#kIp4-o$OtQ!XELf+k@mAlpTQ%}=zp=#%dlVF~Iw059PEjQ8+)*Cbk!;|y z(VjLCJTSIeA`98-n6|XQZy`QfbQ9IJ2wB9hNinCgBou?ael**A{dHlO>gh(hV_bFh z5%iS=PQcIiH{;)r^8a@?xTLs>oP<2!1{eI>xW)J)jQ?_jGXQSsKjPMl;pg}Jo9@>V z@n6E$PqX-dTluH^8?e{xpQ};%7d48|^t&3xC-#COoP~^JF;$H1N6rd(G=vlI6Pm52fF_Lo7T(cT`>mO>6 z;m%w*ad3BgY_@o=P<3N2dakzXP0|w_H&WO&7e6XbYlhe`Hi>DC%PeG?e|;(pILxF* zic+v+{j|KJ%yh&R(fG&#Up-qHK&?VOdohTc7Vs3!$R#iy-(2pt=w5bTI<_!+WzB|5 zrAv!f{IRGUTyb>pxzXfZ@)OH?==qaVxx`q*Nqt{Q`Sy58U?CQsjHE!$2q2!|6LJ#pGN25|?<_zQ2zB5np6y+- zjs$j|0`;E|jOl?y;{AaNGeih|%mViXtx{E!fTlkoG9lN%$4z^a+6C`a% zJeh9gp}2!BNAs4><+PSOMIy*Knyl$n?T~8>b24 z!x;Tdj>3ufu(t*qock{EP0sjA{8SrFDtJo>j62|fPD*6vmYx1DG?34x2buF@WHfHa zSCCYcD#%I*b|x102NS6gg4`;;>swv(;)svnR);>FKa)!L_X+2JN2-X7qBP$Nsgk09 zr!X0R3okz?%$L=8e=5u$P^JGZZ2hP(U%>oJgNOC!wHYrf2>;ii%K9Hv|AXp3LN)8& zXXtNGW%{v#^3SqCB|eD{axZIg0IUMI`&ZfcOPrSdF&lhY*!c&mFAsi?sPqu;$EcM%n?9V52CWdehp9(N!&Oj_@K7D- zlv%7DtUinI_*Xb4+*sVb>b+9!8N9JKFBP7S%g{8vb!yPw`QdZTWJ#BuFPl-4%L}Vc zJKUnH{ETk9l=IVv;0@1T22xFF^2SH`z}82NyC_^N!4?mO8@kJPr9qd-j?+o|iJPEH z3lAt>B$tmng6&vM0`zt-|<}%H-7l^1DiT)D}g$)rZ4EL!k`&Y zNT6(pbZu)OXrLs|5Ktc2NEaSpvQO{)z-7Tjvird@NkBbqjUY0xpv+J)QYe8KvU?`{ zh6&!iW*0(FBp!+MjC2+P@fSjGg6J?B&=bHIA_F?7P2sJl(_+aR0(Qa}$`I=AuuOcF zVct=vieKu$gkRbKSTS8XWLd?76#zrdT5r93%Brnlq=hi-+9-5DH8QdiMV8ApeM=T^ zE+bN?jG(S*&g*JUcD1w>m~$*%d*NpD=`-NdL}arCZ|(6uiM`dH&RRxp2&}TWdJpDJ zUov5)1}1)oS*()=`4Fc%fx1h|jl8hzBj&Y(Uo+jMEK)^}U$_@(CnAWWSd*`}e~hyz zn3>TLYwg#Vy%U_92V+vp!6v+g3bZyFDjy9Mu$GH=H#zGo@lt@;3hQo!`!MEo(*J!W zUinoEz18{W=682dC&S%n^@ky6W7p=XBZXhydx6Q+TvZQBEkY_^WW8shR%>iR8TAO- z_TKrKRK_1I3I7aK0Wl$QDbZg*1$e`M;`HaL&0k_F9pE*;gG%=+m4A`HzrOs(^zO&P z(r;B8CP1M5_2cCY;lJNbYxe&JsHFb^^*^BgBT&C=cpv@@D%~#v^!GByKO5qTm z|6WdqN$|=BGcdNaQs!88&V@kdn5$u1P++5djKH?G89$E|r(%2i2W58LV)%0#!eo?hvXsp8mQ~W{F!mPShD)U13(?%5^TbdbtXp zNyWNZyZ?)lV0CeGs_2p2RX}7i8+H16rfnl&zf2=ZD+D-%Jn}biBp?w)uC5IrG$2M` zOmI)EH`ksZA8M7L;IrW(MB<_OBwqvVjv?^8N13CbWl;pu7YQ$bPUlsEu@9l97tJ67 zCb|rH1rti`jOag}&>u*fA_KIg#o}YD({3r13VH@m!J#1mtMrgOi~cq>TExBf#4e9(3}ZNnW#;E=q380Sr#Nqx zO>t@DX}n@NEeOlLV>mj7a?{z%A=VFv#s`%SBzkoc;|vJ~OMV#zH8-|kW2s0!xypKS zJ1Mo2ZjJ#zVuu!-fTdPf)XFV7Q8-q$~KN=Nr&3i!_= zs+5GJvhuG5rI%f<|4Qml^(1;g4E>W-+8>fsy1(gI{tEA(q%zR{Sn~S4W68k!&$aK* zMg#?4-EIE0vLB5IaF5sfr$mmkS3p?Y;pqkkZ3~Z%YSQwHW`o488wZ0a^)?!bqE|LH zFh@scC2aT->>Su~$<8U9oPg5r*C~BK>6b#IYVbs}_iOcBx(P#hGpW(}Xl0tW+stFb zEoT8-(@OMV-7LK1OOndmv1HwxtY6)2ZahGBt9K_iUL`HTVLfD)X}Dj+-r7N)pl(~X zn{PT@Y3G61Q5}H>(Yu$6MNM?AhI^o;d3txwn9xzUXvdpWzMGuN0sELIcY`3IaW{7% zdEa(q5i^^3dF!})hh!WO2hTduCZ=@l6|7KMIxC1u#@`bWjW0s;#>D1++DOWtA*nyt{a@ zpg$vT0_+Gz-o3>9MARevnE@)F9KO{Hf%Uq|%RkOupdWI4(!>}w;5y5hfz6D{44rD=Ok>PdE zB&6s?ckWKP8Hw1C2j?bq595N|wRI?9+3j?qShdN@9u9?aGoKjP782xQrnst;2^tQS z+?FE)hf%B?#*{05>I8^ZUV7T6H=z7?9&^ZXA#Q~jd`{bx)I z@`{PbegLRs*}tn1zyGz!`=bltN2KWi0sHsh%kW#E{qtc?BdMLOa? zNdE`vKP(9UE~F_V@>PCD`p2fqKSP>VTvR|p@E4>3A@`>+{ZomG@#PGpKifV(2x`DN zQvc#W_?6(lGW`FTTev>q?Tg^JCl@D!>W$G1uc%S&UADtY^O`lTR zC^sJ~DkSc{@hIr2&SuU71oeA-CJ`2mifpneFSEkuEtHZOe3C+I`DWkJ55oHdk(nLz z{vZxBsG9VQN=o&7N-Q{9ZL0)9ejQ@>-W|MOG-Y!}0-<*@GXvDs9IWa|z>HbRDV`7R zKHKA!XkrF*%bsDBb+Q56g4&>tUM%1^t8h4$Av4!?2M5#MQsmjkK_qJ!T(nX~jowy5 z>nPo~+z&x=3sat?jo^sw$`B_jQnJ8t-@)A4T~_pgXIvr*wjJT=L5o33c{>Q9{p?^J zgG@MkT-Fn}S8z901RX8jfINe^p{9kW$qx5M5&>tyx0Iqd&Sz+dHFm?4@xe6n9~5{Y zYY!u^5T-=}zeH+)VbJ=`iU8{!7_5v}bB4h{Bs`Y9zugMuhQWw%rj$o~QkE2pG!+@M zimbVaF<9Ng-c7-osL|t3GRBPxNT25CqtW>d(`IJD4tK@Z!c}KsVUr z+x!gmkEVuy2DK>fM>%ncU!eZGEcvHu7V}@UHyywb{70bvEvEk%sQ=Yg#6bHuwjyRg z9qb=N4X8T1jjT5{z&zI+ba(zgj48z^j;1nV)Rj=)T&( zcAMz6zsXlmu%qC^}d{&^2 zqIKVSAL)hR7HxplIGnDl(XdVn&}=ThjRmYYLg!w@%q3oG8_1)kL;*nbio1HdU??M-u%r` zLr~o@$!arpha0o55~wrGBI>Ell@Iw0e6B9HQm=bi@T2DY`!@dr@CHrpnZQR)ohu*7 z8F+iZGn7|8?+?IDX5pE1xMxxxHKDJ3sAl04b-8teA0v#e_^WF#!Jefau(dw5YBmgJ z?$N`z3#?vr%!11087-ReT&ck;->m4S`m?w;#k6@?ibZ<-4YmL0@>*F&UYuX-1>3*r z7BT%)+j?1U^hYRu*@pBxw7+EQvOijUe?|1Kk@&~Am4B9MUQBTlgU zvU}!p16kZV$8t{Q`%EKJoQWF!8Pz`Kih;P9Z6q6L_vEJu+h0ptsxQ#O(ON>~q9dBJ z_07FEThxdtqp}6#E3Yr`@Bi+m2=0QU)cC{#yH#fFpcaw);@g+ze_p-d1o-xwncT*k zEAEHe0W!dq;|NxO7Vlkr5fl6T@ZD3@OTyf}7<+nU^-IDGIKSq%gt&?I4DQNq2$07jfm2*(_XnP7BDMf+FQ$eG2R;3N7=FWTdj~9&h>Tf*FwX3C-4FOc}_ng z{fol=UA+FYNUSU_3pj-J1?j(OD>4041Y>-eZ~t9gzyG2COaD_1i~%qK^jA+61MQFU z|97PSE#mr5q=Wcg#PzZZB=wKtn&wY&J!j*xE6y(Naa8~7FitO12aO4(s^l-jI5nG7 za0gtAy2-hCcsNeuF+JjXq*K?#I?I4z98G-tXZ`1aKDko;U#ivm-ClPe;e~~7_2cT0 z?mubQuGAb3|5aSS9%^$%0f_6O7jd2Md&sLuK>T&j8bkO-Ep0)xb?vansVq;@#?XgY z>s*o93GWX6B@UF19oFXB41fpYyYt3qN; zDI&ML_@M3=aee$(ab5ghifj2_#kI_D;#vprRfe`e*02-oVq}EBw4{MWEgGaM1tr$Q z;W0lofKsVD^IHtZYd{SQ%28wnNF8Aa_{Fo2gWS!vK2(ba7{&QUni!~a)5>zWjvB(i zEv1#>u_m3eR{fg83r_&TfUwnvT@*|S3H<`{qID32);WUQdc}JlWC+LI6=`8#*i*r8Du?v{R@n7ER4J>t{2Nc01cFuLt zxTHzWoah0wI5J$)`n%`4AGxH3?l~~m&vj+fNuzH$5*N06QMjbZubssFhUF;S(#Eg$DCa$|*#P!1p1J|QY>rNfS6L2+CEsGOtR}`nKauL&@Y^l42d2k@-ML?<>poQ4P2p;;ph(cXnX!$jGMTGy zA=6Ubf%4V0lY@ezLG$Q^bwyUTSmxK8(* z4f>_5{etu_W$pCKM-v-b)4N}gUN=mz)!|JlEMdx9&!vCNbz|o3yN$}xtAmkHeSVp) zJ2d}ex(??5Ywyd$sqEJONyuD6c*#~&GVOU#ArdlXrX)j#l(|BgMIjm}Nhm~Ribyh( zDRU&Llnj}NM27gTz3Dyn^K{O6-}C$HT))%Rp!-_uS<^jy?t9&9Ege1+2}`d0mwCRm z+PdZrEarC32k1isusl3F>$oM@Ti4%E4LW!b#jh6aZmS;4buzAKKlYBLUEYcT{jf?Jn&STYlRWEn`FRZ;L ztS#>8HBAm{&o=MN{T0^cUkz(lRr|1p#l89@R7R5$0GDXYT44LvB>K=HeH|T&ME_>1 z3J;5cK{l1w#I?b7Itvf9{;|k+_Hld~sJEs^c1Gv_^96UtQsQ>s8SBMq}Szqp1Qh zj)A(cv~ksU7uv3*kgc?Xw^p5{&&CVcdpd&eIqVSVo%JLdwLbe+&(nGO+H<86^^T6y z-zqD&54`7@dT^*~`>E-&>1`J^l${p}9u|ad%?l`?#K4^Ro{vx2HqnI=;(s0wAGYph zAnz)7)_Q-Hy;~K0e7;rx!Q(p|XMMyQG*36Cye^Yx_)-QEDs!F*rY{eSwqy-H+nO0W z+jPUc^$Pvq?ykD&l+$(vr@xu|iw=nANrdPhj~Oa?9%wK!vmN(DPqx}H^}c>qe5+DvWG^Y#P z^9v7clfbt0Uyg!-&~}&1#=>F4tYDhKGMt=mPm@ID!aj68kLXB?xS?=CuqxJHwr5FfY0vQ4>T{wt zO#`1tv0<3Yy(yokZ(f%@x`m0$$KN0Sb92g{NB6@%4f*vqpD_$C(A$tsGra znq8AP9yKvTi|3tbA;cMQ?xaU3V-`b}a4Btb8%ZUs8->c8Pws$=qzg-=B7z7zI(xJjO* zMbFW6)Pwg~hkBX%wYMoxUNdStoaS%0QJTnDU|)O8x7@@zOvc1DtSE*QX_XL@t}w?E zF4pa;J|{U&Pblhl_ls^iZ!J#fS!M3OGZ>gVp?x;2yGbLVUlYXeaN2+)oqq2zy-M4~JgNX>sbSyFd`uO_7 z-nWKsbEXY4+TO<_K8FcRKDp^)67DSJ(10?nW~=_ByWGzw{gAy|JL>27nVAwo=W=oV z(yabW$+OPok0+KFWESLVMwSz@mjfD?ICd<^MRqO=TP+9gSSUex+kWl*?jkPt?LnxIaZf9jd`+j79Y24ceAyA9F)5c}G_)12cF=3LtNt36 zFx1jHWTZw`JI23LI|Nu5Z*3G0MXvHIjE7zY9&2OoD@toEnD|YG8j(c&@6 z`BSLAweHKDlY8iKVXG%5mt~8S{OxAOyG*&hMKBa5?=2F#-#ncjt^aKN%VgGQ&r?A& z%O{a8qBrj}Ji27L+!1rOuy3v}=19uX&LpAqE$!gKx4RZ6Hl#}Wa>^_DO41t9u=~#b zL9t8;cHg%I<8}P&@8H-{w+yA($zS;d^bM|D2B@CQYsRk`TygUc>|{oUAHEs# ztoz{8HE6LRoqI?{$)A4WdQ8tv3t1N>XVo7;7P4~;63KleNJB_1nj{6;&A?b?%NV`4m01 zuR5}O>X_4O`|vH7=F+(G`G&;VX88MWzrSN)5TkBkB+j?-#^uNIJn6&-GD%UW$R^Ao zC(Pc&qzm}W>XD%Fh(JHqu49`TW4V9aO1r#Y^W_}BLF$jCll3~2xsS^_r#wg#Ps1&p za^82`D=uo=ukp&Ow({me9#^JV$^8p&9#u+=^@uw;B}EaCnJ;YVmx*r<1q6uCX_l&m zdnw)OZcn4@W1Qh_tl1=FFP735J%Ous6C?-(X#KonQ*e#eevS{1EF*H31L~GIfcA+VS=P2*4!-(RC}w22s@FJX3cvk>OF{dOf$-q3GpF1J z><&pY7a2_Je7eG0<$k`IeSz+5i%?Nu$GI(La`>0a94&(f;W~$s#QOK5j2ikz2M?=I zbk1*f4hXO?<64!21uoAojf474NCK8=M|HS#)qVNz#W{P<%W^oTn8&L2%CehqYbbH{(=m#GBBQ`Vvu^Ptfbzc;uN9ww2zbk)UBLU0|c(Kuqwk(R|l?b!4wE z&X9=b(dZEW&9$ zk_c;5Z1Ts0{=xM0M^M^yzFW`ImZsAZom|4{6}AK`1?QQZyiLPVx*&0{x;M_FS%Q|$ zzX2c|mNRd#2?r+t;^8;H3p7wiO`2W6bAGSaSiza^diH1b^^KK`x}gH!FrP`l{6#^9OO&ER`1wnBTL0 zk778__Dy|E10}Ap1C{PC{+)2X>a0e6#XRKD@puy*&cp@av0#a0%typDu) zM4BCzwb!@cIXB5oB(~Q55#3?>)Za(IKDn$c>cY-XqSeLsUyYx9<2OZjp4F!JQbca# zYnL!rXZ!F$83!Um{5+w_UG>b5phqJ@^PnX!QrAtvezuA5vz=E}Fu@1F+1v^rUSv_g6#=SzVbpU_GY5_v~J3$@DjWWAe z?l=5LtoFVLCACR$B74-&b}vY6YVzhE^DcC-DL6TM_Q6)t`5eXbV{5ilzt!Tu`w^iqFJPm)Ogmy6RMHt$H|(u1jxu^rhYt zIrZkZ`{y`i4+WF+6+=&~XOcqE-l@~J80389o*`dwD5I&%hv#fM%<^4x{n6}Kl6yB*UY{!U6%S#nWC?M-q$uO3C~!E;OKPX3 zSHAsQMz#or^^zKtPwk`*=0K(gJGsu7rAb~R(&WRjSYx+X6ZYOvHb zIiZ7LNv9QKy>YV*)4o3cd~<=#3}cEd#{4I_?_8d3oj`ix%ulLbB z%R&@2V|oG^9h?t(lvW2eC1|NHPF}(7jB{!-ahJ0j{FxLrd*hh9++g#9s`5uInHlfa zcMGaFg0T}VTShN66*jqf4`WQ<&(}{JiRYVaw>jwj{r2IHHrAiLtQE#Fn?2%hzg?)8 zC~B&&Td21k$5<9NsSkNsqsK8f&d1*_Uy$hgX!CGFRxNqfxFElnPjh`N4Kn9=`LSwq zkh(|^b7uWQ6WC%%n2~w-A}?U~;^#~8OS;Fu>#X;o9jwn>4;OFBU4ws5yp`1rbrdv# zc5zOM!O^+>Av6>~{nttkT+bwYAK zNJy@k5RNXHjv5{A5BSiHblubC3UVg0e&tNud%aY+#~8n?`H6dKsnd9ev*acHPJ^>w z&nAzaYY1lJZ0wK_3psQA&QM8F^zNBpCjLFU%*vGqodiYDZcoAxWuiNd>+&6vFje4| zVi)_|gSZ?RYI%h$=&W~~nXlw)OHmS%wVVrgFsR9*$O*|T=Q0emDLE7VMmk%0os^#V zx$k#ocUIZybZL9YlcqkaH2OFll@Zl#_cwTFY5w%2AFj{TH5yp{v{T*r4qdD~n?jlC zhUU`b5aFAF^xo@mPC353xEd~0>VE4|{br19zSSn(V~T}ICY1^JIN_j=2u8_uxtBLi zv$X0X;;_k=YMHhR?+|p);F^9{YIex8iq)b=;$F(pjf61E@=~u|GHQzH_j9<~b{FiS z+glNe`;?(j9_Y*DTEO^;hbL)^=fT*CQpv_$96zEb_@*ykmMebJU%7eAm}PvYWKsOn zDeqSBlc1;EV9kPR^+zp}^Ky1mR~cmI?+Z@ep1s}Z==C5J2se=P?Zxx;HJP#)Aj=X! zkiU9aZv!$81UY&3wy{S%->8>$*z9f9q9*lzFKd@^jIMip^7{n|ZXn~+vT9p82o;xo zH`7@2)OQSHC7Qg(8ARF51$>e7LsiEH+&a!`Uz8J=c-_sEb}ZzR^xg6d!f)hzZNkxC zGvAt;dfErcS7PX?{${V02#bzlK|tdlPQ%*NWYkJzV$DH&@H_}KC5jT!_@#kX?Kd6- zMEyx51JKyfHI7MNEMoBl_9div>ociF*StK;Ll zf}KU3{YN^&IN}P=v=8cZUH-mLwJV}(6a9SF!nuX>26w9uPjr56jjgI`AYKKj$-S!G zaTp;hvjEl`K)P*BW+_{(jLe32W>_s*TNZa;Y}n~sUDf_mpJR`2fr^R&q22vw`MEPQ zv$VA@n#`XLr0>aV@oeaKTyo-F&}#d!u>qV4oVl`aeAX;^F7ZS1uqF?<5biWSEl=63 zrD?fP?g)PQY}FqFk52H^6&De1FMNm71t#LznKV^VM_=nmj+;9bftU z2nk;B05aCntiFkRFwp8wRzwDi7hY|&_L#wdbC=;)=_3_+Q<(DN*r z8iCcnk;t`p^{+{!f-%TYG$2c)-tRUnh_L7(wMbH(sb4L-X2)VRq_`GRuT>iVwIbkp39Hw3lMd}W#MjGwi6)!)tLo>=H}_NMA0&wl;(H)p@jM2*glRUEW$B%Ct6 zd8ejez9dJ)N+5hQ?i)A(WSDkcE}|x50*d*Yn1O^jgS!)I&)BV2#^eW6AgM3-}ENpdlMULl})ck z6o?41?G(C#5V|5Fq@i9M{jx!Nv0@^^Urr#e<@7ndTg9{X^oBecEJj>cz?0fTY`NHGeW;>dyZwt*dIU9I!_hq`jk57?pd{;ssCogo( zt|TuA^f(orUo=>Xo%w0GH)?iNaTe*IWp@2r#oLm*!S3JZ--}gtj7FPkrxf~xEH|F5 zZqN+r{N}N6_FXuJb|7VRP?F^3S)yJwmG~qn!KcUV{aCeQ^5X75m7sRw(*?nIk1(svIT(OXr^DMG>B=qI|*yTfnh?K#*L~pTv zxd*}^86mfDSw-@L=UyRp$4%Hnhb3wMuH*h;i`_|*iR=`C0J z#r$=(9j3U-Lbx*fXj;dsZQ&KmV`62(P11(lQgb2t^SX6}R~Ev4ef$i32hh9dk6tTd zYJ)k->V@Cde06quyJT?eWY2*!|-<3%mlKu%eL-tV#t2(3jK9_ zCcM!P*P%k4&OcNL;%Bf(F$pvZ?2=bKvN31Fv$ojmUBmMAo1PrXLn4Ch-_i`R)43eY z+pi+8a@E5^(&@3oW;NZCaKn(U!iDZTgDzMx%?HFX62IQ2z048#^|@AWl`%VB(C0lI z4HUFwVXdo67ylH5nroi03e7ukJnZ46o5MW<>zm3uh#qA&VJ6q}ReN?k&t+GZ^x%-` zy%poClV%=9tNJQ2!KnJ|RAy&*LALoGqFVnT6GlsGNpc}Uxf8{}_;T+H_Gk~!@|XpM zl8_%s`)Q6;)np1d^13{Vxy7=`-LB7oG2APp=phrXBpq_A)bEao>(+N?GloBzIh)Gd z3K{ZbbcnJP%GNbKd{{y{pZ3{MIqjTyf9aF@GMP`@1MA~Mni|V82E)`5^$V}>Z)teH z?xbBm4^puKbFcGczjc{eM{KZDMf8Qe1C<*%h1@H zHjir?bK0kq#QRmFtyArueGrxF?*30D!1IwSiG>&;b=J9NUA2RkA9kUJG<8#Z;8H+CtJ>V8Ok#sbB zX_uAvT_urJiEa1lwsE@gTsxk9Y5g4~k$gaC+{PIrv8~Kz6O(YLifzuNK&em_qZ6B$ zh9$P8*KBJw@c5cuEO^j?cU-e@&@r=bX|KlM6^(eh>1|cw?t7}bwp5t=$aDSts{3XB zbiiYw;U10;>;zW0#`_Phw1hqk54kRc2n*}|(*yk5{mf@IU;%nnmd}7c8z^Y>3L`$ z!6E$P;p1+tD?*8~94<@gqYpNYY#%dQjPD%F`XEN?ihDO}+0`K8Z}#rX`3>`Krt7ue z`}<$_UijQR^C3~&EIE>P*NYwF=XQPB*wCa?d4X&8-Ps1GH{0{Hw}?r` z$X#7rbSBP!(4Bp!{5UFlnK?B0%fx0@c@S}w)p_x1HIPQ!!D2t1ASm^5y*PLtcv47GZIXZkM zP4BbTF!l(eJl!QGB&Ynk<7JyfeYt#v5s8;rOQ%A%GiuXh-DdJFmkK#2w&`B!y-O7Z z^fXSXqI7CBJieCf>kiRy`<|d@XVYm&x=l}$925EOJ#Edd`Q7W1-l1s1d1Wjzk`EjR zi;UK3CxG(xkZd-gPLk|@TIWFtIs3D$Sx-QTh7aR;?BDEh2U+IY561GY6rU~~tly!%Zn@qp!6Z)!=h30oi*>l&O-WcdewWqt3 z3r2{^4xpS{i$mtr&N4i$9^t%Pp<)yfm=~EYkQ9ir(;dON1h&>_uz6(p^XcFZDombw z8l9#hYswXvgCDy5nV;K&wSza2rvkTw3;aPAneXIpJMrTzZ<|G_nU(cnJ-4#3#Om_H z?53W#IUB#L)k$YoalbTdzE(SU%*69z(vHL}&x*7A(lcWVzDK=&R_xOM#!%|T_o&A^ z%=%oW^tWnxPW9fu;Xp&$nkn{i>6M~se2{SA=V`x$6ut_5WtJE>AoS25Cm zsm{3FIn!1w)a9^a(?aXkZpC_=SKE&FFl>&T>f#8_8{c|yes?mfd?(JMM3F7n*87cc ze`0n=o_$ab?~{v9RqR@xexKZ%xa_$l#;O7buBZ%`cVChU>!kLPx0@|b&j{+?Zik^Tq5QdW1H z_ggndSrgUgJdYolC>Pr=9SOyyoHEO_OlI~mN$HfK;g?tUy+*@H!xFxWHi?FnmQTrw z=BA+l$#76+H$k*OBD@L7L>KbQNoX?)j zR_v3Cj~USp5>MGNpdB-;b|WC*;A4q;+q?7Q)*FKBD<52SRu68pIZ@}__%x4yfO}lL z$@S%-*KV=#lGatE!L~Nnm!q2658hlT4RwtT_mG{kZG3H8*k5=&%qhF=(Z)-t7ghIP zqvAs)k=EV8Z-OSD-w4dfyYBMPA!_rOyZR(4;_{6d{d%)(Ou|0vTPgwv%RNP&CZFm< zh=!@&vBd&59A8oX z_b5q6uf8^*Hj2MTVSw7`OwT-uo7;WsM&^`z>y4dT?z+*{OuB1KPMLiioX4_$W=d(I z+t=V8+0|%Pj9BoFkeF{tu~}?3pGgc^qP=*y`2bvJP)<-exm2E zjcp}%g;+t42qNXf;HhiMpePRz=paCqgEbUS-XlT@RHzP9qF%=O)DIV zqS$LNQtZk?qE>F+M4)ghONqj*@DU0JTTIm7;2lV#tIUI1D18R=&EbEfJWNNu&M>S-7dcqG;}Be#+5?+()2%L9LZ8 zu2G#-vZw9hXm!T&gbQMqhMk(;2_uA)l{NTB5+#L2N}4X(R`k?tK*At+} zdP+u82hW^3Wnu2%K<<*Bt(_|Z{9fsr|3bE@~55?A)1$UPd*33vSXe=}G z&tG8eaTpxJ8nH?Pf&&y1`4__BPa2*qZPYX*l6(#QS{e?6MU$nCnubA>g@KBO#*zro zx@ZiEEJRf0FyMVc*!PfFvOG|gL*wz}`}nD7IFQ~0>oXdIgtUP~qEY0BqSn?0BO}4< z;*iijgU41$WbH#;7mXn+iM2EwhD1?~YiUR%frNpS12iJpq*Ir}Q8e6I8V-v@lhMgq z8WM%XlP?>G&~VVXLL!Msu-a7Ra99k1Y>d{{#Q_o#vTjHe7A!DzIY5K05$Fp63#p64 zVhLpZMb!otk0%>LDjEilCL2m>8WBZ4cS}XX;_xI`UqG|aH3#+pwr(gao@^hfzJ~+% zK||LA4fH#tUBE5`_`DF{bW}7fSR^RF0I7tJjRYSX8iyl6+CXA}+Jt@&g8^Fv)a@d{HJ)TxzP2w& z3<1mnjD~{BFKB~uP0`xAI2@8hh8k2fERg`!8$d%4pgay}co^?u2v{nSsq5k>cAA<7j=4hS4=^bb1MM@8NP_Vn4hMvgx?LO& z@F|1_Rt*dL9v%&tgSswg7frtPnW}$4y};%Lk4Hjv6KDeu(~|@w=rrVe1fZay;{}$H zjIpWOC7>w}>q2NKGP0ni0iOU?7e|8fBrrTgGPI_y3+4d2<^&Q6HeLdWNPYr}x-NJt z95Pp6?s4R2-KfeDv1r(O5P`aa)CDHxH#8yvHVz;PQ27NC0}KeHT@so|fR2}hCXjI> zb^m_DSES$AEfQEb=v)DgB)<%@_IrTqF=YQ}Ee&{a07<}T0IX2ckR)JdV0Cc>s0;#c z5D(QapbZ$l0_%Z?>K7D}M1tZlKqKN{{lk%goS<&FaeJ2Nm0!K3P2hN z51~*1AVBy9AT9uRp>+vh_F*(4If?*j0~jO-jcjY-G(2pcQACP=OZ7bf^X$ z1FKIW$2X|!;sKO}(Xg;}15ys{3s^S-l-Gc;!DI{2U^W?r#sh-{X%|Cw9iTM8e$aWr z04)Kl3vd&ZCxMxPm%{>qgS0{RTA*tL>?#y90M-D85Ly=t76e8kKy@q%3-ljko^fcP z>|pJJC4$qirT^GnI{Ci-wpydbv=)h=Ln0^5$5vCKt z(S4ZyBa#SEor5C7Nk|(w9B^l#>qbJOq1XpRu24`M0lZ%%)K>%LFtGIiG}!!+&_Jpo z;{~=B>c^uF^g1B(g!9?ZW4PCRf9pyjaeH3D!KJ}+RhV08h!hxHGR9Z?_x z0JCo-AaJm`C&1ziDBy0vY&VGrJS6BiNJuF5K>@ah>QexKG0<@U8VpYYsl-EVBQV?; zDBlAb3F>zPCjd`=Cv>eWpn-D*{~pk>ka3{FFDPaJBmiz9-@}jqkbu!JAX^Uu*h#lpr*!UBa4sY}A*$Tx?s z9R~(rIOyC1Cl7!hNI4V{2r!I>h5DBmEN~m4ZGiX-IcQDQE{*`>dkl^Miy4uLK7_6QDcgWk|3KgY1=aTejKg#j=m-kR8-T?@ zpb#<+BA8NWpGhb@tX&eY77+V}L*gk%zSr^wpaJDc-3AE1!1O(!0i_5j2V55@ACRM% zP;83>N(^fE$&dlcr{pLXR8Qi_*c+lFaKQ9H?KFtF!R#BL5urL3I7eUxA>#nTPu|L+ zninAGP^olfzJlmF z5X;3tF$ky$fF1OEz)(Zmz#@TAL&||^hT;+cCJ9iz24FT3#zR;v%r*k34D$y8Xd*yy z9RSpLc)LUrY|U{%jYG!)mcAF;5*D`~ uiBSX|3xG0;iUhO*QWo*=i + +\item[8/16/2024:] New revisions by Sky and Holmes responses. Extended type indices now always have minimum $-1$. + +\item[8/13/2024:] Working copy for the meeting with Sky on this date. + +\item[8/11/2024:] This version incorporates a substantial bookkeeping change. The second components of support conditions now have $-1$ as minimal element, which improves uniformity in some boundary cases, but which necessitates a lot of changes to indexing and notation here and there. + +\item[8/9/2024:] A version from Sky with Holmes comments. + +I want to turn this into an Arxiv version this weekend. + +I think it actually turns out to be useful to make extended type indices able to include $-1$ (or always to include $-1$). +This solves weird difficulties with small indices. Also think about $\pi_{\{0\}}$ vs $\pi_1$. + +\item[8/6/2024:] Holmes attempts to uniformize -1-supports in an outbreak of \hsuggest{purple prose} to be checked! + +\item[8/1/2024:] The Freedom of Action rewrite has now been propagated through the text. + +\item[7/27/2024:] A cleaner version for Sky's consideration: moved my comments on redefinition position function and rephrasing the definition of approximation to the margins, and removed a lot of older commetns. + +\item[7/26/2024:] This contains Sky's complete rewrite of the proof of Freedom of Action, without changes to subsequent text which it entails. It also includes +redefinition of the position of function to act on singletons of atoms instead of atoms, to avoid irritating type conflicts between the definition of the position function +and the definition of support conditions. + +\item[7/15/2024:] Version resolving issues annotated by Sky. Also removing version comments before July 2024. There will still be some comments in blue in this version for contemplation or discussion (which can be suppressed for publication on arxiv). Notably, Sky has added automated theorem and definition numbering and references. + +\item[7/5/2024:] Some editing of the list of hypotheses of the recursion of the main construction. + +Finished reading the construction section; other very minor fixes. + +The definition of approximation was stated incorrectly; the correction should be adequate. I was trying to be clever and indirect and said the wrong thing. This was an artifact of a recent ``clever" edit of the definition; I know what it is supposed to say. Posting to Arxiv at this point because this ``slip" is a serious error and obstruction to comprehension. + +There is a move afoot to try to resolve the proof of Freedom of Action into lemmas. I'm not quite sure how to do this; it is currently actually rather short (mod its nasty structure), and seems to be an integrated whole. This can be a subject for discussion. + +A further July 5 post: added some language suggested by Thomas to the acknowledgements. + +\item[7/2/2024:] Starting a revision effort for the month of July, to support reconciliation of the paper with the formal proof with an eye to submission for publlcation. + + + +Other minor edits. + +Some revisions of the discussion of variable typing in TST(U). + +Rewrote my discussion of natural models of TST$_n$ and TST. + + + + + + + + + + + + + + + +\end{description} + +% \end{comment} + +\newpage + +\section{Development of relevant theories} + + + +\subsection{The simple theory of types TST and TSTU} + +We introduce a theory which we call the simple typed theory of sets or TST, a name favored by the school of Belgian logicians who studied NF ({\em th\'eorie simple des types}). This is not the same as the simple type theory of Ramsey and it is most certainly not Russell's type theory (see historical remarks below). + +\begin{comment} +\begin{annot} + Canonicalise uses of `first order' vs.\ `first order'; `typed theory' vs.\ `type theory'; `well-formed' vs.\ `well-formed'; `Freedom of Action' vs.\ `Freedom of Action'; `NF' vs.\ `NF'; {\tt \textbackslash em} vs. double quotes for introducing definitions. + +Holmes: simple typed theory of sets is simply a consistent rhetorical usage of mine. + +The others I am standardizing. + +\end{annot} +\end{comment} + +TST is a first order multi-sorted theory with sorts (types) indexed by the nonnegative integers. The primitive predicates of TST are equality and membership. + +The type of a variable $x$ is written ${\tt type}(x)$: this will be a nonnegative integer. A countably infinite supply of variables of each type is supposed. We provide a bijection $(x \mapsto x^+)$ from variables to variables of positive type satisfying ${\tt type}(x^+)$ = ${\tt type}(x)+1$.\footnote{We do {\em not\/} furnish our variables with type superscripts. One could follow the convention that if a variable has a natural number superscript, this determines its type, and that the effect of $^+$ on a superscripted variable is to increment the superscript, but we do not expect variables to have superscripts.} + +An atomic equality sentence $x=y$ is well-formed iff ${\tt type}(x)={\tt type}(y)$. An atomic membership sentence $x \in y$ is well-formed iff ${\tt type}(x)+1 = {\tt type}(y)$. + +The axioms of TST are extensionality axioms and comprehension axioms. + +The extensionality axioms are all the well-formed assertions of the shape $(\forall xy:x=y \leftrightarrow (\forall z:z \in x \leftrightarrow z\in y))$. For this to be well typed, the variables +$x$ and $y$ must be of the same type, one type higher than the type of $z$. + +The comprehension axioms are all the well-formed assertions of the shape $(\exists A:(\forall x:x \in A \leftrightarrow \phi))$, where $\phi$ is any formula in which $A$ does not occur free. + +The witness to $(\exists A:(\forall x:x \in A \leftrightarrow \phi))$ is unique by extensionality, and we introduce the notation $\{x:\phi\}$ for this object. Of course, $\{x:\phi\}$ is to be assigned type one higher than that of $x$; in general, complex terms will have types as variables do. + +The modification which gives TSTU (the simple type theory of sets with urelements) replaces the extensionality axioms with the formulas of the shape $$(\forall xyw:w \in x \rightarrow (x=y \leftrightarrow (\forall z:z \in x \leftrightarrow z\in y))),$$ allowing many objects with no elements (called atoms or urelements) in each positive type. A technically useful refinement adds a constant $\emptyset^i$ of each positive type $i$ with no elements: we can then address the problem that $\{x^i:\phi\}$ is not necessarily uniquely defined when $\phi$ is uniformly false by defining $\{x^i:\phi\}$ as $\emptyset^{i+1}$ in this case. + +\subsubsection{Typical ambiguity} + +TST(U) exhibits a symmetry which is important in the sequel. + + + +If $\phi$ is a formula, define $\phi^+$ as the result of replacing every variable $x$ (free and bound) in $\phi$ with $x^+$ (and occurrences of $\emptyset^i$ with $\emptyset^{i+1}$ if this is in use). It should be evident that if $\phi$ is well-formed, so is $\phi^+$, +and that if $\phi$ is a theorem, so is $\phi^+$ (the converse is not the case). Further, if we define a mathematical object as a set abstract $\{x:\phi\}$ we have an analogous +object $\{x^+:\phi^+\}$ of the next higher type (this process can be iterated). + +The axiom scheme asserting $\phi \leftrightarrow \phi^+$ for each closed formula $\phi$ is called the Ambiguity Scheme. Notice that this is a stronger assertion than is warranted by the symmetry of proofs described above. + +\subsubsection{Historical remarks} + +TST is not the type theory of the {\em Principia Mathematica\/} of Russell and Whitehead (\cite{pm}), though a description of TST is a common careless description of Russell's theory of types. + +Russell described something like TST informally in his 1904 {\em Principles of Mathematics\/} (\cite{pm1}). The obstruction to giving such an account in {\em Principia Mathematica\/} was that +Russell and Whitehead did not know how to describe ordered pairs as sets. As a result, the system of {\em Principia Mathematica\/} has an elaborate system of complex +types inhabited by $n$-ary relations with arguments of specified previously defined types, further complicated by predicativity restrictions (which are in effect cancelled by an axiom of reducibility). +The simple theory of types of Ramsey eliminates the predicativity restrictions and the axiom of reducibility, but is still a theory with complex types inhabited by $n$-ary relations. + +Russell noticed a phenomenon like the typical ambiguity of TST in the more complex system of {\em Principia Mathematica\/}, which he refers to as ``systematic ambiguity". + +In 1914 (\cite{wiener}), Norbert Wiener gave a definition of the ordered pair as a set (not the one now in use) and seems to have recognized that the type theory of {\em Principia Mathematica\/} could be simplified to something like TST, but he did not give a formal description. The theory we call TST was apparently first described by Tarski in the 1930s. + +It is worth observing that the axioms of TST look exactly like those of ``naive set theory", the restriction preventing paradox being embodied in the restriction of the language by the type system. +For example, the Russell paradox is averted because one cannot have $\{x:x \not\in x\}$ because $x \in x$ (and so its negation $\neg x \in x$) cannot be a well-formed formula. + +It was shown around 1950 (in \cite{kemeny}) that Zermelo set theory proves the consistency of TST with the axiom of infinity; TST + Infinity has the same consistency strength as +Zermelo set theory with separation restricted to bounded formulas. + + + + +\newpage + +\subsection{Some mathematics in TST and some subtheories of interest} + +We briefly discuss some mathematics in TST. + +We indicate how to define the natural numbers. We use the definition of Frege ($n$ is the set of all sets with $n$ elements). 0 is $\{\emptyset\}$ (notice that we get a natural number 0 in each type $i+2$; we will be deliberately ambiguous in this discussion, but we are aware that anything we define is actually not unique, but reduplicated in each type above the lowest one in which it can be defined). For any set $A$ at all we define $\sigma(A)$ as $\{a \cup \{x\}:a \in A \wedge x \not\in a\}$. This is definable for any $A$ of type $i+2$ ($a$ being of type $i+1$ and $x$ of type $i$). Define 1 as $\sigma(0)$, 2 as $\sigma(1)$, 3 as $\sigma(2)$, and so forth. Clearly we have successfully defined 3 as the set of all sets with three elements, without circularity. +But further, we can define $\mathbb N$ as $\{n:(\forall I:0 \in I \wedge (\forall x \in I:\sigma(x) \in I) \rightarrow n \in I)\}$, that is, as the intersection of all inductive sets. +$\mathbb N$ is again a typically ambiguous notation: there is an object defined in this way in each type $i+3$. + +The collection of all finite sets can be defined as $\bigcup \mathbb N$. The axiom of infinity can be stated as $V \not\in \bigcup \mathbb N$ (where $V= \{x:x=x\}$ is the typically ambiguous symbol for the type $i+1$ set of all type $i$ objects). It is straightforward to show that the natural numbers in each type of a model of TST with Infinity are isomorphic in a way representable in the theory. + +Ordered pairs can be defined following Kuratowski and a quite standard theory of functions and relations can be developed. Cardinal and ordinal numbers can be defined as Frege or Russell would have defined them, as isomorphism classes of sets under equinumerosity and isomorphism classes of well-orderings under similarity. + +The Kuratowski pair $(x,y) = \{\{x\},\{x,y\}\}$ is of course two types higher than its projections, which must be of the same type. There is an alternative definition (due to Quine in \cite{quinepair}) of an ordered pair +$\left< x,y\right>$ in TST + Infinity which is of the same type as its projections $x,y$. This is a considerable technical convenience but we will not need to define it here. Note for example that if we use the Kuratowski pair, the cartesian product $A \times B$ is two types higher than $A,B$, so we cannot define $|A| \cdot |B|$ as $|A \times B|$ if we want multiplication of cardinals to be a sensible operation. Let $\iota$ be the singleton operation and define $T(|A|)$ as $|\iota``A|$ (this is a very useful operation sending cardinals of a given type to cardinals in the next higher type which seem intuitively to be the same; also, it is clearly injective, so has a (partial) inverse operation $T^{-1}$). The definition of cardinal multiplication if we use the Kuratowski pair is then $|A| \cdot |B| =T^{-2}(|A\times B|)$. If we use the Quine pair this becomes the usual definition $|A| \cdot |B| =|A\times B|$. Use of the Quine pair simplifies matters in this case, but it should be noted that the $T$ operation remains quite important (for example it provides the internally representable isomorphism between the systems of natural numbers in each sufficiently high type). + +Note that the form of Cantor's Theorem in TST is not $|A| < |{\cal P}(A)|$, which would be ill-typed, but $|\iota``A|<|{\cal P}(A)|$: a set has fewer unit subsets than subsets. The exponential map $\exp(|A|) = 2^{|A|}$ is not defined as $|{\cal P}(A)|$, which would be one type too high, but as $T^{-1}(|{\cal P}(A)|)$, the cardinality of a set $X$ such that $|\iota``X| = |{\cal P}(A)|$; notice that this is partial. For example +$2^{|V|}$ is not defined (where $V=\{x:x=x\}$, an entire type), because there is no $X$ with $|\iota``X|=|{\cal P}(V)|$, because $|\iota``V|<|{\cal P}(V)| \leq |V|$, and of course there is no set larger than $V$ in its type. + +\subsubsection{The theories TST$_n$ and their natural models} + +For each natural number $n$, the theory TST$_n$ is defined as the subtheory of TST with vocabulary restricted to use variables only of types less than $n$ (TST with $n$ types). + +We note the existence of models of TST and of each TST$_n$ in ordinary set theory in which the set $X_{i+1}$ implementing +type $i+1$ is the power set of the set $X_i$ implementing type $i$ and the membership of type $i$ objects in type $i+1$ objects is implemented by the restriction of the membership relation of the metatheory to $X_i \times X_{i+1}$. We call +a model of TST or TST$_n$ {\em natural\/} iff it is isomorphic to such a model. The exact models we describe have the inconvenient feature that the sets implementing the types have some overlap. Bounded Zermelo set theory implies the existence of natural models of TST$_n$ for each concrete $n$; a not terribly strong extension of Zermelo set theory implies the existence of natural models of TST. + +Further, each TST$_n$ has what we may call natural models in TST itself, though some care must be exercised in defining them. Let $X$ be a set. Implement type $i$ for each $i\omega$. Represent type $\alpha$ as $V_{\omega+\alpha} \times \{\alpha\}$ for each $\alpha<\lambda$ ($V_{\omega+\alpha}$ being a rank of the usual cumulative hierarchy). Define $\in_{\alpha,\beta}$ for +$\alpha<\beta<\lambda$ as $$\{((x,\alpha),(y,\beta)):x \in V_{\omega+\alpha} \wedge y \in V_{\omega+\alpha+1} \wedge x \in y\}.$$ This gives a model of TTTU in which the membership of +type $\alpha$ in type $\beta$ interprets each $(y,\beta)$ with $y \in V_{\omega+\beta} \setminus V_{\omega+\alpha+1}$ as an urelement. + +Our use of $V_{\omega+\alpha}$ enforces Infinity in the resulting models of NFU (note that we did not have to do this: if we set $\lambda=\omega$ and interpret type $\alpha$ using $V_\alpha$ we prove the consistency of NFU with the negation of Infinity). It should be clear that Choice holds in the models of NFU eventually obtained if it holds in the ambient set theory. + +This shows in fact that mathematics in NFU is quite ordinary (with respect to stratified sentences), because mathematics in the models of TSTU embedded in the indicated model of TTTU is quite ordinary. The notorious ways in which NF evades the paradoxes of Russell, Cantor and Burali-Forti can be examined in actual models and we can see that they work and how they work (since they work in NFU in the same way they work in NF). +\end{proof} + +Of course Jensen did not phrase his argument in terms of tangled type theory. Our contribution here was to reverse engineer from Jensen's original argument for the consistency of NFU an argument for the consistency of NF itself, which requires additional input which we did not know how to supply (a proof of the consistency of TTT itself). An intuitive way to say what is happening here is that Jensen noticed that it is possible to skip types in a certain sense in TSTU in a way which is not obviously possible in TST itself; to suppose that TTT might be consistent is to suppose that such type skipping is also possible in TST. + +\newpage + + + +\subsubsection{How internal type representations unfold in TTT} + +We have seen above that TST can internally represent TST$_n$ (on page \pageref{tstnmodel}). An attempt to represent types of TTT internally to TTT has stranger results. The development of the model does not depend on reading this section. + +In TST the strategy for representing type $i$ in type $n\geq i$ is to use the $n-i$-iterated singleton of any type $i$ object $x$ to represent $x$; then membership of representations of type $i-1$ objects in type +$i$ objects is represented by the relation on $n-i$-iterated singletons induced by the subset relation and with domain restricted to $n-(i+1)$-fold singletons. This is described more formally above. + +In TTT the complication is that there are numerous ways to embed type $\alpha$ into type $\beta$ for $\alpha<\beta$ along the lines just suggested. We define a generalized +iterated singleton operation: where $A$ is a finite subset of $\lambda$, $\iota_A$ is an operation defined on objects of type ${\tt min}(A)$. $\iota_{\{\alpha\}}(x)=x$. +If $A$ has $\alpha<\beta$ as its two smallest elements, $\iota_A(x)$ is $\iota_{A_1}(\iota_{\alpha,\beta}(x))$, where $A_1$ is defined as $A \setminus \{{\tt min}(A)\}$ (a notation we will continue to use) and $\iota_{\alpha,\beta}(x)$ is the unique type $\beta$ object whose only type $\alpha$ element is $x$. + +Now for any nonempty finite $A \subseteq \lambda$ with minimum $\alpha$ and maximum $\beta$, the range of $\iota_A$ is a set, and a representation of type $\alpha$ in +type $\beta$. For simplicity we carry out further analysis in types $\beta, \beta+1,\beta+2\ldots$ though it could be done in more general increasing sequences. Use the notation +$\tau_A$ for the range of $\iota_A$, for each set $A$ with $\beta$ as its maximum. Each such set has a cardinal $|\tau_A|$ in type $\beta+2$. It is a straightforward +argument in the version of TST with types taken from $A$ and a small finite number of types $\beta+i$ that $2^{|\tau_A|} = |\tau_{A_1}|$ for each $A$ with at least two elements. +The relevant theorem in TST is that $2^{|\iota^{n+1}``X|} = \iota^n``X$, relabelled with suitable types from $\lambda$. We use the notation $\exp(\kappa)$ for $2^\kappa$ to support iteration. Notice that for any $\tau_A$ we have $\exp^{|A|-1}(|\tau_A|) = |\tau_{\{\beta\}}|$, the cardinality of type $\beta$. Now if $A$ and $A'$ have the same minimum $\alpha$ and maximum $\beta$ +but are of different sizes, we see that $|\tau_A| \neq |\tau_{A'}|$, since one has its $|A|-1$-iterated exponential equal to $|\tau_{\{\beta\}}|$ and the other has its $|A'|-1$-iterated exponential equal to $|\tau_{\{\beta\}}|$. This is odd because there is an obvious external bijection between the sets $\tau_A$ and $\tau_{A'}$: we see that this external bijection cannot be realized as a set. $\tau_A$ and $\tau_{A'}$ are representations of the same type, but this is not obvious from inside TTT. We recall that we denote $A \setminus \{{\tt min}(A)\}$ by $A_1$; we further denote $(A_i)_1$ as $A_{i+1}$. Now suppose that $A$ and $B$ both have maximum $\beta$ and $A \setminus A_i = B \setminus B_i$, where $i<|A| \leq |B|$. +We observe that for any concrete sentence $\phi$ in the language of TST$_i$, the truth value of $\phi$ in natural models with base type of sizes $|\tau_A|$ and $|\tau_B|$ will be the same, because the truth values we read off are the truth values in the model of TTT of versions of $\phi$ in exactly the same types of the model (truth values of $\phi^s$ for +any $s$ having $A \setminus A_i = B\setminus B_i$ as the range of an initial segment). This much information telling us that $\tau_{A_j}$ and $\tau_{B_j}$ for $j1$, $\tau(A_1) = 2^{\tau(A)}$. + +\item If $|A|\geq n$, the first order theory of a natural model of TST$_n$ with base type $\tau(A)$ is completely determined by $A \setminus A_n$, the +$n$ smallest elements of $A$. + +\end{enumerate} +\end{definition} + +The bookkeeping in different versions of this definition in different attempts at a tangled web version of the proof of the consistency of NF have been different (an obvious point about the version given here is that the top ordinal $\alpha$ could be omitted). Another remark is that it is clear that asserting the existence of a tangled web is stronger than simple TTT: it requires $\lambda>\omega$, and the $\lambda$-completeness of course is a strong assumption in the background. All variants that I have used support versions of the following + +\begin{theorem} +If there is a model of Mac Lane set theory in which there is a tangled web of cardinals $\tau$, then NF is consistent. +\end{theorem} + +\begin{proof} +Let $\Sigma$ be a finite set of sentences of the language of TST. Let $n$ be larger than any type mentioned in any formula in $\Sigma$. +Partition $[\alpha]^n$ into compartments in such a way that the compartment that a set $A$ is put into depends on the truth values of the sentences in $\Sigma$ in natural models of TST$_n$ with base type of size $\tau(B)$ where $B \setminus B_n=A$. This partition of $[\alpha]^n$ into no more than +$2^{|\Sigma|}$ compartments has a homogeneous set $H$ of size $n+1$. The natural models of TST$_n$ with base types of size $\tau(H)$ and base +types of size $\tau(H_1)$ have the same truth values for sentences in $\Sigma$, so the model of TST with base type $\tau(H)$ satisfies the restriction of the Ambiguity Scheme to $\Sigma$, so the full Ambiguity Scheme is consistent by compactness, so TST + Ambiguity is consistent so NF is consistent. +\end{proof} + +Our initial approach to proving our theorem was to attempt a Frankel-Mostowski construction of a model of Mac Lane set theory with a tangled web of cardinals. We do know how to do this, but we believe from recent experience that constructing a model of tangled type theory directly is easier, though tangled type theory is a nastier theory to describe. + +We think there is merit in giving a brief description of a situation in a more familiar set theory equivalent to (a strengthening of) the very strange situation in a model of tangled type theory. This section is also useful here because it supports the discussion in the conclusion of one of the unsolved problems which is settled by this paper. + +\newpage + +\subsection{An axiomatization of TST with finitely many templates}\label{ss:hailperin} + +\rk{This entire subsection needs to be checked carefully. The calculations here are nasty (Holmes) This note remains in the ``clean" version because the task remains. I note for readers that nothing in the rest of the paper hinges on details here: all that is used is the bare fact that Hailperin's axioms are sufficient, which has long been known.} + + +We discuss a finite axiomization of NF derived from that of Hailperin (it is taken from an implementation of Hailperin's axiom set of \cite{hailperin} in Metamath (\cite{metamath}), and there are minor changes from the original formulation), making the important observation that it actually provides us with an axiomatization of TST with finitely many +axiom templates (in the sense that each axiom is a type shifted version of one of a finite set of axioms). Notation introduced in this section is not used in the rest of the paper, and nothing in subsequent sections except a brief remark in the last paragraphs of section 4 depends on anything here. This finite axiomatization is however used in the Lean formalization. + +The finite axiomatization of NF takes this form (the definitions inserted are ours, and we have modified the order of the axioms to make the definitions work sensibly). We also present this as an axiomatization of TST with finitely many templates, with the proviso that each typed form of each axiom is asserted: + +\begin{description} + +\item[extensionality axiom:] $(\forall x:(\forall y:(\forall z:z \in x \leftrightarrow z \in y)\rightarrow x=y))$ + +\item[anti-intersection axiom:] $(\forall xy:(\exists z:(\forall w:w \in z \leftrightarrow \neg(w \in x \wedge w \in y))))$ + +\item[singleton axiom:] $(\forall x:(\exists y:(\forall z:z \in y \leftrightarrow z = x)))$ + +\item[definition:] $\{x\}$ denotes for each $x$ the set whose only element is $x$, whose existence is provided by the previous axiom. We define $\iota(x)$ as $\{x\}$ and define $\iota^1(x)$ as $\iota(x)$ and $\iota^{n+1}(x)$ as $\{\iota^n(x)\}$, for each concrete natural number $n$. + +\item[cardinal one axiom:] $(\exists x:(\forall y:y \in x \leftrightarrow (\exists z:(\forall w:w \in y \leftrightarrow w = z))))$ + +\item[definition:] We define 1 as the set of all singletons, provided by the previous axiom. + +\item[definition:] $x | y$ denotes the set $z$ whose existence is provided by the anti-intersection axiom: $z \in x | y \leftrightarrow \neg(z \in x \wedge z \in y)$. +We define $x^c$ as $x | x$. We define $x \cap y$ as $(x|y)^c$. We define $x \cup y$ as $x^c | y^c$. We define $V$ as $1|1^c$ (noting that it is straightforward to prove $x|x^c = V$ for any $x$, since this is the universal set). We define $\{x,y\}$ as $\{x\} \cup \{y\}$. We define $(x,y)$ as $\{\{x\},\{x,y\}\}$. We define +$(x,y,z)$ as $(\{\{x\}\},(y,z))$. More generally, we define $(x_1,\ldots,x_n)$ as $(\iota^{2n-4}(x_1),(x_2,\ldots,x_n))$ for $n>2$ a concrete natural number. [The treatment of $n$-tuples is what makes this axiomatization singularly awful]. + +\item[cross product axiom:] $(\forall x:(\exists y:(\forall z:z \in y \leftrightarrow (\exists wt:z = (w,t) \wedge t \in x))))$ + +\item[definition:] We define $V \times x$ as the set introduced by the previous axiom: $z \in V \times x \leftrightarrow (\exists wt:z = (w,t) \wedge t \in x)$. Note that $V \times V$ is the set of all ordered pairs. + + + +\item[converse axiom:] $(\forall x:(\exists y:(\forall zw:(z,w)\in y \leftrightarrow (w,z) \in x)))$ + +\item[definition:] For any set $R$, we define $R^{-1}$ as the intersection of $V \times V$ with a set introduced by the previous axiom: $$(\forall zw:(z,w)\in R^{-1} \leftrightarrow (w,z) \in R) \wedge (\forall u:u \in R^{-1} \leftrightarrow (\exists zw:(z,w)=u)).$$ + +\item[definition:] We define $x \times V$ as $(V \times x)^{-1}$ and $x \times y$ as $(x \times V) \cap (V \times y)$. + + +\item[singleton image axiom:] $(\forall x:(\exists y:(\forall zw:(\{z\},\{w\}) \in y \leftrightarrow (z,w) \in x)))$. +\item[definition:] We define $R^{\iota}$ for any set $R$ as the intersection of a set provided by the previous axiom with $1 \times 1$. $R^{\iota}$ is the set whose members are exactly the ordered pairs $(\{z\},\{w\})$ such that $(z,w)\in R$. Let $R^{\iota^1}$ be defined as $R^{\iota}$ and $R^{\iota^{n+1}}$ be defined as $(R^{\iota^n})^\iota$. + +We define $\iota^2``x$ as $(x \times x) \cap V^\iota$. This is the image of $x$ under the double singleton operation. + +Note that $\iota^2``V$ is the equality relation. Define $\iota^{2(n+1)}``x$ as $\iota^2``(\iota^{2n}``x)$. + +We define $x_1 \times x_2 \ldots \times x_n$ as $\iota^{2(n-2)}``x \times (x_2 \times \ldots \times x_n)$. + +\item[insertion two axiom:] $(\forall x:(\exists y:(\forall zwt:(z,w,t) \in y \leftrightarrow (z,t) \in x)))$ + +We define $I_2(R)$ as the intersection of a set provided by the previous axiom with $V \times V \times V$. + +\item[insertion three axiom:] $(\forall x:(\exists y:(\forall zwt:(z,w,t) \in y \leftrightarrow (z,w) \in x)))$ + +We define $I_3(R)$ as the intersection of a set provided by the previous axiom with $V \times V \times V$. + +\item[definition:] It seems natural to define $I_1(R)$ as $\iota^2``V \times R$, but this requires no new axiom. + +\item[definition:] Define $I_{1,n}(R)$ as $\iota^{2(n-1)}``V \times R$: this is correct for prepending all possible initial projections +to an $n$-tuple. Then define $I^1_{1,n}(R)$ as $I_{1,n}(R)$ and define $I^{m+1}_{1,n}(R)$ as $I_{1,n+m}(I^m_{1,n}(R))$: this takes +into account the fact that the tuples get longer. + +Define $I_{2,n}(R)$ and $I^1_{2,n}(R)$ as $I_2(R) \cap (V\times \iota^{2(n-3)}(V)\times V)$, and define $I^{m+1}_{2,n}(R)$ as $I_{1,n+m}(I^m_{2,n}(R))$: this takes +into account the fact that the tuples get longer. + +\item[type lowering axiom:] $(\forall x:(\exists y:(\forall z:z \in y \leftrightarrow (\forall w:(w,\{z\}) \in x))))$ + +\item[definition:] +We define ${\tt TL}(x)$ by $(\forall z:z \in {\tt TL}(x) \leftrightarrow (\forall w:(w,\{z\}) \in x))$. This is a very strange operation! + +We define $\iota^{-1}``x$ as ${\tt TL}(V \times x)$. This is the set of all elements of singletons +belonging to $x$. We can then define $\iota``x$, the elementwise image of $x$ under the singleton operation, as $\iota^{-1}``(\iota^2``(x))$. + +Further, we define $\iota^{-(n+1)}``(x)$ as $\iota^{-1}``(\iota^{-n}``(x))$ for each concrete natural number $n$, and $\iota^{n+1}``(x)$ as $\iota``(\iota^{n}``(x))$ + +We develop an important operation step by step. + +${\tt TL}(R) = \{z:(\forall w:(w,\{z\})\in R)\}$ + +Dually, $({\tt TL}(R^c))^c = \{z:(\exists w:(w,\{z\})\in R)\}$ + +Now $({\tt TL}((R^\iota)^c))^c = \{z:(\exists w:(w,\{z\})\in R^\iota)\}$, + +which is the same as $({\tt TL}((R^\iota)^c))^c = \{z:(\exists w:(\{w\},\{z\})\in R^\iota)\}$ because all elements +of the domain of $R^{\iota}$ are singletons, + +which is the same as $({\tt TL}((R^\iota)^c))^c = \{z:(\exists w:(w,z)\in R)\}$ + +so we define ${\tt rng}(R)$ as $({\tt TL}((R^\iota)^c))^c$, +and define ${\tt dom}(R)$ as ${\tt rng}(R^{-1})$. + +\item[subset axiom:] $(\exists x:(\forall yz:(y,z) \in x \leftrightarrow (\forall w:w \in y \rightarrow w \in z)))$ + +We define $[\subseteq]$ as the intersection of a set provided by the previous axiom with $V \times V$: $[\subseteq]$ is the set of all ordered pairs $(x,y)$ such that $x \subseteq y$. + +We define $[\in]$ as $[\subseteq]\cap (1 \times V)$. + + + +\end{description} + +This is not our favorite finite axiomatization of NF (or our favorite finite template axiomatization of TST) but it is the one verified in the Lean formalization and also basically the oldest one, so we present a verification of it in outline at least. + +What we need to do is verify that $\{x:\phi\}$ exists for each formula $\phi$ of the language of TST, to ensure that comprehension holds. We do this by induction on the structure of formulas. + +$\{x:\neg \phi\}$ is $\{x :\phi\}^c$. + +$\{x :\phi \wedge \psi\}$ is $\{x:\phi \} \cap \{x:\psi\}$. + +Now we have the much more complex task of analyzing $$\{t_{n}:(\forall t_i:\phi(t_1,\ldots,t_n))\}.$$ + +Choose a type $\tau'$ higher than the type $\tau_i$ of each $t_i$. Do this for bound variables +as well, and further, in each formula $(\forall t_i:\psi)$ or $(\exists t_i:\psi)$ we require that all occurrences of $t_i$ be free in $\psi$ and the index of $t_i$ be less than the index +of any other variable appearing free in $\psi$. It should be clear that we can do this without loss of generality. + +Where the type of $t_i$ is $\tau_i$, we define $x_i$ as $\iota^{\tau'-\tau_i}(t_i)$: we construct $$\{t_{n}:(\forall x_i:\phi(t_1,\ldots,t_n))\}$$ by defining manipulations which allow us to build sets $\{(x_1,\ldots,x_n):\phi^*(x_1,\ldots,x_n)\}$ in which +all the variables are of the same type. We write $\phi^*$ to suggest that the formula $\phi$ must be transformed to effect our change of variables: $t_i = t_j$ is equivalent to $x_i = x_j$, and $t_i \in t_j$ is equivalent to $(x_i,x_j) \in [\in]^{\iota^{\tau'-\tau_j}}$ (the reader will see that we use this representation below, though embedded in larger tuples). A quantifier over $t_i$ is equivalent to a quantifier over $x_i$ restricted to $\iota^{\tau'-\tau_i}``V$. + +For any such representation, we have a type signature $$\iota^{\tau'-\tau_1}``V \times \ldots \times \iota^{\tau'-\tau_n}``V.$$ We abbreviate this as $\tau^*$. + +The set $\{(x_1,\ldots,x_n):x_1 = x_n\}$ is obtained as $I_{2,2}^{n-2}(\iota^2``V)\cap \tau^*$. + +The set $\{(x_1,\dots,x_n):x_1 = x_i\}$ ($i_\tau m$ is a subset of the union of all lower types, with $t^+ = \{\tau^*_u:u <_\tau t\}$ added as an element. + +Foundation in the metatheory ensures a clean construction here. An element $x$ of supertype $t>_\tau m$ is always nonempty with $t^+$ as an element. The set $t^+$ has supertype $u$ as an element for each $u <_\tau t$, so $t^+$ and so $x$ cannot belong to any supertype $u$ with $u <_\tau t$, by foundation: each other element of $x$ belongs to such a supertype. We have shown that all the types are disjoint. The labelling element $t^+$ cannot belong to supertype $t$ by foundation, because an element of supertype $t$ must be nonempty and have $t^+$ as an element. Further, $t^+$ cannot belong to any supertype $v$ with $t <_\tau v$, because any element of $v$ contains $v^+$ as an element which contains supertype $t$ as an element and any element of supertype $t$ contains $t^+$ as an element, so $t^+ \in v$ would violate foundation in the metatheory. + +The membership relations of this structure are transparent: $x \in_{t,u} y$ ($t <_\tau u$) is defined as +$x \in \tau^*_t \wedge y \in \tau^*_u \wedge x \in y$. Considerations above show that there are no unintended memberships caused by the labelling elements $t^+$, because the labelling elements cannot themselves belong to any supertype. Note the presence of $\emptyset_t = \{t^+\}$ in supertype $t$, which has no elements of any type $u <_\tau t$ (and is distinct from $\emptyset_v$ for $v \neq t$). + +The system of supertypes is certainly not a model of TTT, because it does not satisfy extensionality. It is easy to construct +many sets in a higher type with the same extension over a given lower type, by modifying the other extensions of the object of higher type. + +The system of supertypes does satisfy the comprehension scheme of TTT. One can use Jensen's method to construct a model of stratified comprehension with no extensionality axiom from the system of supertypes, and stratified comprehension with no extensionality axiom interprets NFU in a manner described by Marcel Crabb\'e in \cite{marcelsf}. + +\begin{proposition}[the generality of the system of supertypes] +Any model of TTT (assuming there are any) is isomorphic to a substructure of a system of supertypes. +\end{proposition} +\begin{proof} +Let $M$ be a model of TTT (more generally, any structure for the language of TTT in which each object is determined given all of its extensions). Let $\leq_M$ be the well-ordering on the types of $M$ and let $m$ be the minimal type of $M$. We will assume as above that $\leq_\tau$ is a well-ordering of type labels $t$ with corresponding actual types $\tau_t$ of $M$: of course, we could use the actual types of $M$ as type indices, but we preserve generality this way. We also assume that the sets implementing the types of $M$ are disjoint (it is straightforward to transform a model in which the sets implementing the types are not disjoint to one in which they are, without disturbing its theory, by replacing each $x \in \tau_t$ with $(x,t)$). + +We consider the supertype structure generated by ${\leq_\tau}:={\leq_M}$ and $\tau^*_m := \tau_m$. We indicate how to define an embedding from $M$ into this supertype structure. + +Define $I(x) = x$ for $x \in \tau_m = \tau^*_m$. + +If we have defined $I$ on each type $u <_\tau t$, we define $I(x)$, for $x \in \tau_t$, as +$\bigcup_{u <_\tau t} \{I(y):y \in^M_{u,t} x\} \cup \{\{\tau^*_u:u <_\tau t\}\}$. + +It should be clear that as long as $M$ satisfies the condition that an element of any type other than the base type is uniquely determined given all of its extensions in lower types, $I$ is an isomorphism from $M$ to a substructure of the stated system of supertypes. A model of TTT, in which any one extension of an element of any higher type in a lower type exactly determines the object of higher type, certainly satisfies this condition. So the problem of constructing a model of TTT is equivalent to the problem of constructing a model of TTT which is a substructure of a supertype system. +\end{proof} + +Some advantages of this framework are that the membership relations in TTT are interpreted as subrelations of the membership relation of the metatheory, while the types are sensibly disjoint. + +\begin{remark} +% \item[Note on general systems of types and extensions therein:] +Notice that if $\alpha>_\tau \beta$ are supertypes %\rk{(fixed order of $\alpha$ and $\beta$)} +, and $x \in \tau_\alpha$, $x \cap \tau^*_\beta$ is the extension of $x$ over supertype $\beta$. This will be inherited by a scheme of types $\tau_\gamma$ with each $\tau_\gamma \subseteq \tau^*_\gamma$ if an additional condition holds: for $\alpha>_\tau\beta$, we will have +for $x \in \tau_\alpha$ that $x \cap \tau^*_\beta$ is the extension of $x$ over supertype $\beta$ as already noted: for it to be the extension over type $\beta$ we need the general condition $x \cap \tau^*_\gamma \subseteq \tau_\gamma$ for all $\delta>\gamma$ and $x \in \tau_\delta$. +\end{remark} + +\subsection{Preliminaries of the construction} +\label{ss:preliminaries} + +Now we introduce the notions of our particular construction in this framework. +\begin{definition}[model parameters]\label{def:model_params} +Let $\lambda$ be a limit ordinal. Let $\leq_\tau$ be the order on $\lambda \cup \{-1\}$ which has $-1$ as minimal and agrees otherwise with the usual order on $\lambda$. + +Let $\kappa$ be an uncountable regular cardinal (that is, a regular initial ordinal). Sets of cardinality $<\kappa$ we call {\em small\/}. Sets which are not small we may call {\em large\/}. + +We make no assumption about the relative sizes of $\kappa$ and $\lambda$. + +Let $\mu$ be a strong limit cardinal with $\kappa<\mu$, $\lambda \leq \mu$ and with the cofinality of $\mu$ at least ${\tt max}(\kappa,\lambda)$. +\end{definition} +\begin{remark}\label{rk:example_model_params} +{The minimal model parameters are $\lambda = \omega, \kappa = \omega_1, \mu = \beth_{\omega_1}$.} +\end{remark} + +\begin{definition}[supertypes]\label{def:supertypes} +Let $\tau^*_{-1}=\tau_{-1}$ be $$\{(\nu,\beta,\gamma,\alpha):\nu<\mu \wedge \beta \in \lambda\cup \{-1\} \wedge \gamma \in \lambda \setminus \{\beta\}\wedge \alpha<\kappa\}.$$ Note that this completes the definition of the supertype structure we are working in as defined in section \ref{ss:preliminaries}: we now have a definite reference +for $\tau^*_\alpha$ for $\alpha\in \lambda$. +The important part of this definition is that $\tau_{-1}^*$ has size $\mu$; the precise form of $\tau_{-1}^*$ is chosen to aid with definition \ref{def:f_map}. This type, while important for the model construction, will not be part of our final model of TTT; its types will be indexed by $\lambda$. +\end{definition} + +Notice that if $\alpha,\beta$ are type indices, $\alpha\in \beta$ is a convenient short way to say $-1 <_\tau \alpha <_\tau \beta$. + +\begin{definition}[extended type index]\label{def:extended_type_index} +A nonempty finite subset of $\lambda \cup \{-1\}$ {with minimum element $-1$} may be termed an {\em extended type index}. If $A$ is an extended type index with at least two elements, $A_1$ is defined as $A \setminus \{{\tt min}(A)\}$, and further $A_{n+1}$ is defined as $(A_n)_1$ where this makes sense: the notation $A_2$ for $(A_1)_1$ sees use. +\end{definition} + +\begin{definition}[atoms, litters and near-litters]\label{def:atom_litter_near_litter} +We may refer to elements of $\tau_{-1}$ as {\em atoms\/} from time to time, though they are certainly not atomic in terms of the metatheory. + +A {\em litter\/} is a subset of $\tau_{-1}$ of the form $L_{\nu,\beta,\gamma} = \{(\nu,\beta,\gamma,\alpha):\alpha<\kappa\}$. The litters make up a partition of type $-1$ +(which is of size $\mu$) into size $\kappa$ sets. + +On each litter $L = L_{\nu,\beta,\gamma}$ define a well-ordering $\leq_L$: $(\nu,\beta,\gamma,\alpha) \leq_L (\nu,\beta,\gamma,\alpha')$ iff $\alpha\leq \alpha'$. +The strict well-ordering $<_L$ is defined in the obvious way. This well-ordering is used in only one place in the paper (theorem \ref{thm:foa}), and its use could easily be avoided, but we find its concreteness appealing. + +A {\em near-litter\/} is a subset of $\tau_{-1}$ with small symmetric difference from a litter. We define $M \sim N$ as $|M \Delta N|<\kappa$, for $M,N$ near-litters: in English, we say that $M$ is {\em near\/} $N$ iff $M \sim N$. Note that nearness is an equivalence relation on near-litters. + +We define $N^\circ$, for $N$ a near-litter, as the (necessarily unique) litter $L$ such that $L \sim N$. +\end{definition} + +\begin{proposition}\label{def:count_near_litters} +There are exactly $\mu$ near-litters. +% We verify that there are $\mu$ near-litters. +\end{proposition} +\begin{comment} +\begin{proof} +A near-litter is determined as the symmetric difference of a litter $L$ (there are $\mu$ litters) and a small subset of +$\tau_{-1}$. + +So it is sufficient to show that a set of size $\mu$ has no more than $\mu$ small subsets. We note that $\mu$ is +a strong limit cardinal of cofinality $\geq\kappa$. We define a sequence of cardinals and a sequence of functions $f$ indexed by ordinals. +$\mu_0 = 0$. $f_0$ is the empty function. $\mu_{\alpha+1}=2^{\mu_\alpha}$. $f_{\alpha+1}$ is a bijection +to ${\cal P}({\mu_\alpha})$ from the smallest segment in $\mu$ of the correct cardinality whose lower limit is the first ordinal not in the range of $f_{\alpha}$. For a limit ordinal $\lambda$, $\mu_{\lambda}$ is the supremum of the set of +$\mu_\beta$ for $\beta<\lambda$ and $f_{\lambda}$ is a bijection to ${\cal P}({\mu_\lambda})$ from the smallest +segment in $\mu$ of the correct cardinality whose lower limit is the first ordinal not in the range of any +$f_\beta$ for $\beta<\lambda$. Because $\mu$ is a strong limit cardinal of cofinality $\geq \kappa$, the first $\alpha$ for which $f_\alpha$ is undefined must be at a limit and satisfy $\alpha \geq \kappa$ and $\mu_\alpha = \mu$. The union of the maps $f_\alpha$ is a function with domain $\mu$ whose range includes every small subset of $\mu$, because any small subset of $\mu$ must be included as a subset in some $\mu_\alpha<\mu$. +\end{proof} +\end{comment} +\begin{proof} +A near-litter is determined as the symmetric difference of a litter $L$ (there are $\mu$ litters) and a small subset of +$\tau_{-1}$. +So it is sufficient to show that a set of size $\mu$ has no more than $\mu$ small subsets. +As $\mu$ has cofinality at least $\kappa$, each small subset of $\mu$ is bounded, and so is an element of $\bigcup_{\nu < \mu} \mathcal P(\nu)$. +But as $\mu$ is a strong limit cardinal, each $\mathcal P(\nu)$ has size less than $\mu$, so there are only $\mu$ bounded subsets of $\mu$; in particular, there are only $\mu$ small subsets of $\mu$. +\end{proof} + +\subsection{Hypotheses for the recursion}\label{ss:hypotheses} + +The construction of the types $\tau_\alpha$ is by a recursion. The initial type $\tau_{-1}$ has already been defined. For an ordinal $\alpha<\lambda$ we are assuming that $\tau_\beta$ for $-1\leq \beta<\alpha$ have already been constructed and satisfy various hypotheses of the recursion. We state hypotheses of the recursion in the following subsections in which the construction of $\tau_\alpha$ is described. We list them here as well, but they are likely best understood where they are encountered in the construction. Each of these is enforced for $\alpha$ as well: most of these conditions are explicitly enforced in the course of the construction of $\tau_\alpha$ in this section, but that \ihref{ih:cardinality} holds for $\alpha$ requires an extensive proof in the next section (theorem \ref{thm:count_elements}). + +\begin{enumerate} + +\renewcommand{\labelenumi}{(\textbf{I\theenumi})} + +\item \label{ih:subset_tau} We assume that for $\gamma<\beta<\alpha$, if $x \in \tau_\beta$, $x \cap \tau^*_\gamma \subseteq \tau_\gamma$. + +\item \label{ih:cardinality} We suppose that each $\tau_\beta$ already constructed is of cardinality $\mu$. Note that we already know that +$\tau_{-1}$ is of cardinality $\mu$. + +\item \label{ih:supports} We further intimate that for each $x \in \tau_\gamma$, $-1\leq \gamma<\alpha$, we have defined objects $S$ for which we say that $S$ is a support of $x$. [This is introduced before the definition of support is actually given]. + +\item \label{ih:position} We define $\tau_\beta^+$ for any type index $\beta$ as the collection of $(x,S)$ where $x \in \tau_\beta$ and $S$ is a support of $x$. We assume that we are provided with a well-ordering $\leq^+_\gamma$ of order type $\mu$ of $\tau_\gamma^+$ ($-1 \leq \gamma <\alpha$), by postulating an injection $\iota^+_\gamma$ from $\tau_\gamma^+$ into $\mu$ (it does not need to be onto) and defining $x \leq^+_\gamma y$ as $\iota^+_\gamma(x) \leq \iota^+_\gamma(y)$. For any model element $x$ and support $S$ of $x$, we define $\iota^+_*(x,S)$ as $\iota^+_\gamma(x,S)$, where $x \in \tau_\gamma$. [Hypotheses of the recursion about maps $\iota^+_\gamma$ are stated {in \ihref{ih:position_constraints}}]. % originally "stated later" + +\item \label{ih:typed_near_litter} We provide that for every near litter $N$ and every $\beta<\alpha$, there is a unique element $N_\beta$ of $\tau_\beta$ such that $N_\beta \cap \tau_{-1}=N$. + +\item \label{ih:extensionality} We further stipulate that extensionality holds for each $\beta\in \alpha$ (for each $\gamma\in \beta$, any $x \in \tau_\beta$ is uniquely determined by $x \cap \tau_\gamma$; $x$ is uniquely determined by $x \cap \tau_{-1}$ only on the additional assumption that $x \cap \tau_{-1}$ is nonempty). + +\item \label{ih:pos_typed_near_litter} We assert that $\iota_*(N) \leq \iota_*^+(N_\delta,S)$ will hold for any near litter $N$ and support $S$ of $N_\delta$, $\delta<\alpha$. This depends on the definition +of the position function $\iota_*$ which appears below at a convenient point but involves no recursion. \ihref{ih:pos_typed_near_litter} appears on a list of hypotheses about $\iota_*^+$ which appears later, because it is used early. + +\item \label{ih:pre_extensional} We presume that all elements of $\tau_\beta$, $\beta\in \alpha$, are pre-extensional {(definition \ref{def:pre_extensional})}. % The definition of this term appears below. + +\item \label{ih:extensional} We assume that all elements of $\tau_\beta$'s already constructed are extensional {(definition \ref{def:extensional})}. % The definition of this term appears below. + +\item \label{ih:elements_have_supports} We stipulate that all elements of $\tau_\beta$ ($\beta\in\alpha$) have $\beta$-supports. {Supports are defined in definition \ref{def:support}.} + +\item \label{ih:position_constraints} The conditions constraining the choice of functions $\iota^+_\beta$ ($-1 \leq \beta < \alpha$) are + +\begin{enumerate} + +\item $\iota_*(t) < \iota^+_*(x,S)$ if $(t,A)$ is in the range of $S$ {(supports are functions; see definition \ref{def:support})} and $x$ is not a typed near-litter. %\hsuggest{HOLMES: removed singleton braces appearing as alternative in previous version; changing domain of position function instead.} + +\item $\iota_*(t) \leq \iota^+_*(t_\gamma,S)$ {(which appeared earlier as \ihref{ih:pos_typed_near_litter} for reasons stated there).} %\hsuggest{HOLMES: it doesnt seem necessary to restrict this to near-litters.} + +\end{enumerate} + +We then define $x \leq^+_\beta y$ as $\iota^+_\beta(x) \leq \iota^+_\beta(y)$. {We will use the position functions $\iota^+_*$ to perform induction along each $\tau_\beta^+$; these constraints on $\iota^+_*$ ensure that objects that a model element depends on (in some suitable sense) are processed before it in the induction.} + +\end{enumerate} + + +\subsection{Machinery for enforcing extensionality in the model}\label{ss:extensionality_machinery} + We describe the mechanism which enforces extensionality in the substructure of this supertype structure that we will build. + +The levels of the structure we will define are denoted by $\tau_\alpha$ for \newline $\alpha \in \lambda \cup \{-1\}$. As we have already noted, $\tau_{-1}=\tau^*_{-1}$ as defined above. + +In defining $\tau_\alpha \subseteq \tau^*_\alpha$ for each $\alpha$, we assume that we have already defined $\tau_\beta$ for each $\beta<\alpha$, and that the system of types $\{\tau_\beta:\beta <_\tau \alpha\}$ already defined satisfies various hypotheses which we will discuss as we go [listed at the end of the previous section]. +Elements $x$ of $\tau^*_\alpha$ which we consider for membership in $\tau_\alpha$ will have $x \cap \tau^*_\beta \subseteq \tau_\beta$ for $\beta<\alpha$. We assume that for $\gamma<\beta<\alpha$, if $x \in \tau_\beta$, $x \cap \tau^*_\gamma \subseteq \tau_\gamma$ \ihref{ih:subset_tau}. + +We suppose that each $\tau_\beta$ already constructed is of cardinality $\mu$. Note that we already know that +$\tau_{-1}$ is of cardinality $\mu$ \ihref{ih:cardinality}. + + +We further intimate that for each $x \in \tau_\gamma$, $-1\leq \gamma<\alpha$, we have defined objects $S$ for which we say that $S$ is a support of $x$ \ihref{ih:supports}. The definition of supports will be given in definition \ref{def:support}. For the moment, we define $\tau_\gamma^+$ as the set of all $(x,S)$ for which $x \in \tau_\gamma$ and $S$ is a support of $x$. It is a hypothesis of the recursion +that $\tau_\gamma$ is of cardinality $\mu$, from which it follows that $\tau^+_\gamma$ is of cardinality $\mu$, since there are $\mu$ supports (as we will see when supports are defined). + +We also provide a well-ordering $\leq^+_\gamma$ of order type $\mu$ of $\tau_\gamma^+$ ($-1 \leq \gamma <\alpha$), by postulating an injection $\iota^+_\gamma$ from $\tau_\gamma^+$ into $\mu$ (it does not need to be onto) and defining $x \leq^+_\gamma y$ as $\iota^+_\gamma(x) \leq \iota^+_\gamma(y)$ \ihref{ih:position}. There are some hypotheses of the recursion about maps $\iota^+_\gamma$ which are stated below. For any model element $x$ and support $S$ of $x$, we define $\iota^+_*(x,S)$ as $\iota^+_\gamma(x,S)$, where $x \in \tau_\gamma$. + + +We provide that for every near litter $N$ and every $\beta<\alpha$, there is a unique element $N_\beta$ of $\tau_\beta$ such that $N_\beta \cap \tau_{-1}=N$ (\ihref{ih:typed_near_litter}: we will quite shortly give a precise description of all extensions of this object). + +\begin{definition}[typed objects]\label{def:typed_objects} +If $X$ is a subset of $\tau_\gamma$ and $\gamma<\beta$, we define $X_\beta$ as the unique element $Y$ of $\tau_\beta$ +such that $Y \cap \tau_\gamma = X$ (if this exists). Of course, this notation is only usable to the extent that we suppose that extensionality holds. Notice +that the notation $N_\beta$ is a case of this. + +If $N$ is a near-litter we refer to $N_\beta$ as a {\em typed near-litter\/} (of type $\beta$). +\end{definition} + +We further stipulate \ihref{ih:extensionality} that extensionality holds for each $\beta\in \alpha$ (for each $\gamma\in \beta$, any $x \in \tau_\beta$ is uniquely determined by $x \cap \tau_\gamma$; $x$ is uniquely determined by $x \cap \tau_{-1}$ only on the additional assumption that $x \cap \tau_{-1}$ is nonempty). + +\begin{comment} +\begin{annot} +It is interesting to note that the Lean formalisation does not use \ihref{ih:extensionality} until the counting argument; in particular, it is not needed to construct $\tau_\alpha$ at stage $\alpha$. +\end{annot} +\end{comment} + +\begin{definition}[position function for near-litters and {singletons of} atoms]\label{def:pos_atom_near_litter} +We posit a bijection %\rk{(or just an injection)} +$\iota_*$ from the set of all near-litters and {singletons of} atoms to $\mu$ with the following properties: + +\begin{enumerate} + +\item $\iota_*(L) < \iota_*(\{a\})$ if $a \in L$ and $L$ is a litter. + +\item $\iota_*(N^\circ)<\iota_*(N)$ if $N$ is a near-litter which is not a litter + +\item $\iota_*(\{a\}) < \iota_*(N)$ if $a \in N \Delta N^\circ$ + +\end{enumerate} + +\end{definition} + +The function may be constructed directly: first choose an ordering of type $\mu$ on litters, then put {singletons of} atoms directly after the litter they are inside (and before all later litters), then put near-litters after the corresponding litter and all {singletons of} atoms in the symmetric difference, then map each near-litter or {singleton of an} atom to its position in the resulting order. +We don't run out of room before finishing the construction because $\mu$ has cofinality at least $\kappa$. + +An additional property involving $\iota_*$ which is enforced by inductive hypotheses explained later about the maps $\iota_\beta^+$ is that $\iota_*(N) \leq \iota_*^+(N_\delta,S)$ will hold for any near litter $N$ and support $S$ of $N_\delta$ \ihref{ih:pos_typed_near_litter}. It must be noted here because it is shortly used. + +\begin{definition}[$f$ maps, crucially important]\footnote{The use of model elements with support rather than simply model elements as domain elements of the $f$ maps is a substantial contribution of the second author to the mathematics of the paper, above simply verifying the work of the first author. The proof could be carried out without this, but it is much easier to present with this refinement. There are other ways in which the second author has contributed to the mathematics, but this one is especially worthy of note.}\label{def:f_map} +We define for each type index $\beta$ less than $\alpha$ and each ordinal $\gamma$ distinct from $\beta$ a function $f_{\beta,\gamma}$ (whose definition does not actually depend on $\alpha$: it will be the same at every stage). $f_{\beta,\gamma}$ is an injection from $\tau_\beta^+$ into the set of litters, with range included in $\{L_{\nu,\beta,\gamma}:\nu < \mu\}$ to ensure that distinct $f$ maps have disjoint ranges. + +\begin{comment} was annot + Fixed from `for each type index $\beta$ and each ordinal $\gamma$ less than $\alpha$ and distinct from $\beta$'. + +Holmes: it is interesting that this definition works for all $\delta$: $\delta<\alpha$ is not needed. +\end{comment} + + +When we define $f_{\beta,\gamma}(x)$, we presume that we have already defined it for $y <^+_\beta x$. +We define $f_{\beta,\gamma}(x)$ as $L$, where $\iota_*(L)$ is minimal such that + +\begin{enumerate} +\item $L \in \{L_{\nu,\beta,\gamma}:\nu < \mu\}$, + +\item $\iota^+_*(x) <\iota_*(L)$ [and so for any $N \sim L$, $\iota^+_*(x) <\iota_*(N)$, and for any $z \in L$, $\iota^+_*(x) < \iota_*(\{z\})$], + +\item and for any $y<_\beta^+ x$, $f_{\beta,\gamma}(y) \neq L$. + +\end{enumerate} + +\end{definition} + +Note that the ranges of distinct $f$ maps are disjoint sets. + +\begin{definition}[pre-extensional]\label{def:pre_extensional} +We define the notion of {\em pre-extensional\/} element of $\tau^*_\beta$ ($-1 <\beta \leq \alpha$). An element $x$ of $\tau^*_\beta$ is pre-extensional iff there is a $\gamma<\beta$ such that (1) $x \cap \tau^*_\gamma \subseteq \tau_\gamma$, and (2) $\gamma=-1$ if +$x \cap \tau_{-1}$ is nonempty or if any $x \cap \tau_\delta$ ($\delta \in \beta$) is empty, and (3) for each $\delta \in \beta \setminus \{\gamma\}$, $$x \cap \tau_\delta= \{N_\delta:(\exists a \in x\cap \tau_\gamma:\exists S:N \sim f_{\gamma,\delta}(a,S))\}.$$ We say for any $x \in \tau^*_\beta$ and $\gamma$ with this property that $x \cap \tau_\gamma$ is a {\em distinguished extension\/} of $x$. +\end{definition} + +We presume that all elements of $\tau_\beta$, $\beta\in \alpha$, are pre-extensional \ihref{ih:pre_extensional}. + +\begin{comment} +\begin{annot} + This hypothesis \ihref{ih:pre_extensional} is not used in Lean. + The objects we construct at stage $\alpha$ satisfy this property, but we don't use this outside of (Lean's equivalent of) section 3, and we never need to know that lower-type objects satisfy it. + I believe that this hypothesis is only tacitly used in the form that allowable permutations preserve (pre-)extensionality. +\end{annot} +\end{comment} + + + +Note that we now know how to compute all other extensions of typed near-litters $N_\beta$, because the $-1$-extension of $N_\beta$ is distinguished and this indicates how to compute all the other extensions. + +We now verify that the order conditions in the definition of $f_{\beta,\gamma}$ ensure that distinguished extensions are unique. +\begin{proposition}\label{prop:distinguished_extension_unique} +{For any $x \in \tau_\beta$ there is only one set $x \cap \tau_\gamma$ which is a distinguished extension of $x$.} +\end{proposition} +\begin{proof} +If any $x \cap \tau_\gamma$ ($\gamma \in \beta$) is empty or if $x \cap \tau_{-1}$ is not empty, $x \cap \tau_{-1}$ is the unique distinguished extension +(if it is empty of course it coincides with all the other extensions). + +So, what remains is the case of $x$ with $x \cap \tau_{-1}$ empty and each $x \cap \tau_\gamma$ nonempty for $\gamma<\beta$. + +If $x \cap \tau_\gamma$ is an extension of $x$ and $a \in x \cap \tau_\gamma$ is not of the form $N_\gamma$ for a near-litter $N$, then +$x \cap \tau_\gamma$ must be the unique distinguished extension: the reason for this is that for any distinguished extension, all elements $b \in x \cap \tau_\delta$ of other extensions must be $N_\delta$'s. + +So we are down to the case where $x \cap \tau_\delta$ is nonempty for $\delta \neq -1$, $x \cap \tau_{-1}$ is empty, and each element of +any $x \cap \tau_\delta$ is of the form $N_\delta$ where $N$ is a near-litter. Let $x \cap \tau_\gamma$ be a distinguished extension. +For any $M_\delta \in x$ with $\delta \neq \gamma$, we have $M \sim f_{\gamma,\delta}(P_\gamma,Q)$ for some near-litter $P$ and support $Q$ +of $P_\gamma$. Then we have $\iota_*(M) > \iota^+_*(P_\gamma,Q) \geq \iota_*(P)$ {by \ihref{ih:pos_typed_near_litter}}. Let $N_\gamma\in x$ be chosen so that $\iota_*(N)$ is minimal. +It follows that for any $\delta \neq \gamma$ and $M_\delta \in x$ we have $\iota_*(M) > \iota_*(N)$, from which it is evident that we cannot have two distinct distinguished extensions: +if $\delta$ were the index of another distinguished extension, and $\iota_*(M)$ were chosen minimal so that $M_\delta \in x$, it would follow that $\iota_*(M)<\iota_*(N)$ as above +but also that $\iota_*(N) < \iota_*(M)$, which is absurd. +\end{proof} + +\begin{definition}[$A$ map]\label{def:a_map} +For any $\delta \in \alpha$ and nonempty subset $a$ of type $\gamma \neq \delta$, we define $A_\delta(a)$ as $$\{N_\delta:(\exists x \in a:\exists S:N \sim f_{\gamma,\delta}(x,S))\}.$$ For any nonempty subset $x$ of type $\delta$ there is at most one subset $y$ of any type such that $A_\delta(y)=x$. There cannot be more than one such $y$ in any given type because the $f$ maps are injective. There cannot be more than one such $y$ in different types because the ranges of $f$ maps with distinct index pairs are disjoint. We use the notation $A^{-1}(x)$ for this set if it exists, defining a very partial function $A^{-1}$ on nonempty subsets of types. +\end{definition} + +Note that the distinguished extension of any type element $x$ is the image under $A^{-1}$ of its other extensions. + +\begin{proposition}\label{prop:a_map_well_founded} +No subset of a type has infinitely many iterated images under $A^{-1}$. +\end{proposition} +\begin{proof} +Let $a$ be a subset of type $\gamma$ for which $A^{-1}(a)$ exists. + +Since $A^{-1}(a)$ exists, every element of $a$ is of the form $N_\gamma$ where $N$ is a near-litter. Choose $N_\gamma \in A^{-1}(a)$ such that $\iota_*(N)$ is minimal. Note that $N$ is in fact a litter {by the constraints in definition \ref{def:pos_atom_near_litter}}. + +Let $b = A^{-1}(a)$: we have $a = A_\gamma(b)$, where $b$ is a subset of some $\tau_\delta$ with $\delta \neq \gamma$. In particular, $N = f_{\delta,\gamma}(u,U)$ for +some $u \in \tau_\delta$ and $U$ a support of $u$. If $u=M_\delta$ we can further state that $\iota_*(N) > \iota^+_*(M_\delta,U) \geq \iota_*(M)$: if $b$ itself has an image under $A^{-1}$, the minimum value of ordinals $\iota_*(M)$ for $M_\delta \in b$ will be less than the minimum value of ordinals $\iota_*(N)$ for $N_\gamma\in a$, which establishes that there is an ordinal parameter determined by a nonempty subset of a type which decreases strictly when $A^{-1}$ is applied (if it is applicable), and so no nonempty subset of a type +can have infinitely many iterated preimages under $A^{-1}$. This is a rephrasing of an argument which occurred above in the discussion of the uniqueness of distinguished extensions. +\end{proof} + +\begin{definition}[extensional]\label{def:extensional} +We say that an element of a type is {\em extensional\/} iff +it is pre-extensional and its distinguished extension has an even number of iterated images under $A^{-1}$. +This implies that each of its other extensions has an odd number of iterated images under $A^{-1}$.\footnote{We do know that we are carefully, explicitly, spelling out a construction which looks very much +like the construction of the bijection in the Cantor-Schr\"oder-Bernstein theorem. But the details of the maps involved are used, so everything must be spelled out.} +\end{definition} + +\begin{proposition}[extensionality]\label{prop:extensionality} +Two extensional model elements with any common extension (over a type other than $\tau_{-1}$) are equal. +\end{proposition} +\begin{proof} +If two extensional model elements have an empty extension (over a type other than $\tau_{-1}$) in common, they both have all extensions empty and are equal. If two extensional model elements have a nonempty extension in common, it will be the distinguished extension of both, or a non-distinguished extension of both, since distinguished and non-distinguished extensions are taken from disjoint classes of subsets of types (when nonempty). +In either case we deduce that the two elements have the same distinguished extension and thus have all extensions the same and are equal. Note that this gives weak extensionality over $\tau_{-1}$ (many objects have empty extension over type $-1$) but it gives full extensionality over any other type. +\end{proof} +\begin{comment} +\begin{description} +\item[A legacy notation from earlier versions which may be used:] We introduce the notation $(\beta,\delta,D)$ where $\delta<\beta$ and $D \subseteq \tau_\delta$. This stands for the unique extensional element $x$ of $\tau_\beta^*$ such that $x \cap \tau_\delta = D$. It should be clear that there is only one such object. If $D$ is empty, it is the unique +element of $\tau_\beta^*$ with empty intersection with each $\tau_\gamma^*$ for $\gamma<\beta$. If $\delta=-1$ and $D$ is nonempty, or if $\delta >-1$ +and $D$ has an even number of iterated images under $A^{-1}$, then it is the unique element $x$ of of $\tau_\beta^*$ which is extensional and has distinguished extension $x \cap \tau_\delta$. If $D$ is nonempty and has an odd number of iterated images under $A^{-1}$, let $A^{-1}(D) \subseteq \tau_\gamma$, and it is the same as $(\beta,\gamma,A^{-1}(D))$. This notation is mainly for compatibility with previous versions of the paper, but may have its uses. +\end{description} +\begin{annot} + I believe this notation is now unused in the paper. + We still use it in the formalisation, although I think it may be cleaner to try to remove it. + Update: the notation is used once in section 4.3. +\end{annot} + +\end{comment} + +We assume that all elements of $\tau_\beta$'s already constructed are extensional \ihref{ih:extensional}. This completes the mechanism for enforcement of extensionality in the structure we are defining. + +\begin{comment} +\begin{annot} + Again, the Lean formalisation only uses this for the construction of $\tau_\alpha$, and nowhere else. + Of course, we need to remember the conclusion of proposition \ref{prop:extensionality} (namely, \ihref{ih:extensionality}), but that is all that is needed. + In my opinion, the better way to phrase this part is that extensional elements at type $\alpha$ are candidates for inclusion in $\tau_\alpha$ since they satisfy \ihref{ih:extensionality}, and remove any mention of (pre-)extensional element from the inductive hypotheses; this also means we can specialise the definitions of (pre-)extensional elements to $\tau_\alpha$. +\end{annot} +\end{comment} + +\subsection{Allowable permutations and supports} + +A crucial aspect of this is that we will need to define $\tau_\alpha$ so that it has cardinality $\mu$ for the process to continue {\ihref{ih:cardinality}}. It is certainly not a sufficient restriction to require elements of $\tau_\alpha$ to be extensional: we will require a further symmetry condition. + +We define classes of permutations of our structures. +\begin{definition}[structural permutation]\label{def:structural_permutation} +A {\em $-1$-structural permutation\/} is a permutation of $\tau_{-1}^* = \tau_{-1}$. +%\rk{This is not the Lean definition of structural permutation; we enforce that $-1$-structural permutations are $-1$-allowable. Holmes: I think there are formal reasons to do it the way I do it.} + +An {\em $\beta$-structural permutation\/} ($-1 < \beta \leq \alpha$) is a permutation $\pi$ of $\tau_\beta^*$ such that for each type $\gamma<\beta$ there is a $\gamma$-structural permutation +$\pi_\gamma$ such that $\pi(x) \cap \tau^*_\gamma = \pi_\gamma``(x \cap \tau^*_\gamma)$ for any $x \in \tau^*_\beta$. + +The maps $\pi_\gamma$ are referred to as {\em derivatives\/} of $\pi$. {If $\pi$ is a $-1$-structural permutation, $\pi_{-1}$ may be taken to denote $\pi$ itself.} + +More generally, for any finite subset $A$ of $\lambda \cup \{-1\}$ with maximum $\alpha$, +define $\pi_A$ as $(\pi_{A \setminus \{{\tt min}(A)\}})_{{\tt min}(A)}$ {and $\pi_{\{\alpha\}} = \pi$}. The maps $\pi_A$ may be referred to as iterated derivatives of $\pi$.\footnote{There is a silly notational point here: we might want to suppose $\pi_A$ and $\pi_\alpha$ to be essentially distinguished in some way we do not actually implement (for examply by type face) in order to prevent confusion of $\pi_{\{0\}}$ with $\pi_1$. A similar problem exists due to the identification of finite ordinals with finite sets of ordinals. However, it can also be noted that $\pi_{\{0,\ldots,n\}}$ and $\pi_{n+1}$ cannot make sense for the same allowable permutation $\pi$, so we think this is harmless.} It should be clear that a structural permutation is exactly determined by its iterated derivatives which are $-1$-structural. +\end{definition} + +\begin{comment} + \marginpar{\hsuggest{At first I thought this notation would be omitted, but in fact it remains useful. It may now be OMITTABLE, revisit this. It is still used with ordinal subscripts and I added the definition.}} We introduce the brief notation $\pi^+_A(x) = \pi_{A \cup \{-1\}}(x)$ where $x \in \tau_{-1}$ and $-1 \not\in A$ [in fact, $\pi^+_A = (\pi_A)_{-1}$, but we find the short notation useful, though it is less often used than in earlier versions] and also $\pi_\delta^+ = (\pi_\delta)_{-1}$ for $\delta\in \lambda$. +\end{comment} + +%\marginpar{\hsuggest{Note quite different definition here.}} +Where $\pi$ is a $\beta$-allowable permutation with $\beta>-1$, we define $\pi^+$ as $\pi_{-1}$. This is occasionally useful to reduce notational clutter. + +Structural permutations are defined on the supertype structure generally. We need a subclass of structural permutations which respects our extensionality requirements. + +\begin{definition}[allowable permutation]\label{def:allowable_permutation} +A {\em $-1$-allowable permutation\/} is a permutation $\pi$ of $\tau_{-1}$ such that for any near-litter $N$, $\pi``N$ is a near-litter. + +A {\em $\beta$-allowable permutation\/} ($\beta \leq \alpha$) is a $\beta$-structural permutation, each of whose derivatives $\pi_\gamma$ is a $\gamma$-allowable permutation (and satisfies the condition that $\pi_\gamma``\tau_\gamma = \tau_\gamma$) and which satisfies a coherence condition relating the $f$ maps and derivatives of the permutation: for suitable $\gamma,\delta<\beta$, $$f_{\gamma,\delta}(\pi_\gamma(x),\pi_{\gamma}[S]) \sim \pi_\delta^+``f_{\gamma,\delta}(x,S).$$ (where the action of allowable + permutations on supports will be defined shortly). + {This coherence condition is motivated in remark \ref{rk:motivate_coherence_condition}.} +\end{definition} + +Note that a $\beta$-allowable permutation is actually defined on the entire supertype structure, though what interests us about it is its actions on objects in our purported TTT model. + +\begin{definition}[support condition]\label{def:support_condition} +%\marginpar{\hsuggest{Biting the bullet and making this revision...of course check that I get it right everywhere.}} +A {\em $\beta$-support condition\/} ($-1 \leq \beta \leq \alpha$) is defined as a pair $(x,A)$, where +\begin{enumerate} + +\item {$A$ is an extended type index with maximum $\beta$. (Recall that an extended type index has minimum $-1$).} + +\item +%\marginpar{\hsuggest{I think this captures the needed restriction. Some discussion of where it is needed should appear.}} +and $x\subseteq \tau_{-1}$ is either a singleton or a near-litter, and must be a singleton in the case $\beta=-1$. + +\end{enumerate} +\end{definition} + +\begin{definition}[support]\label{def:support} +Where $-1\leq\beta \leq \alpha$, a {\em $\beta$-support\/} is defined as a function $S$ from a small ordinal to $\beta$-support conditions. + +We may write $S_\delta$ intead of $S(\delta)$. +\end{definition} + +{ +\begin{remark} + $-1$-supports behave somewhat differently from $\beta$-supports for $-1 < \beta$, and we consider the notion of $-1$-support to be merely a technical convenience, often making the statements of definitions and lemmas more uniform. + The condition that $-1$-support conditions cannot contain near-litters is used exactly once, in the proof of proposition \ref{prop:unions_of_singletons}. +\end{remark} +} + +\begin{comment} + +We make the formal requirement on supports +that if the range of a support contains $(x,A)$ and $(y,A)$ where $x,y$ are typed near-litters and either $(x \Delta y)\cap \tau_{-1}$ or $(x \cap y) \cap \tau_{-1}$ is small, that all $(z,A)$ with $z\cap \tau_{-1}$ a singleton subset of this small set are included in the range of the support. + +For any supports $S$ and $T$ we denote by $S+T$ a support which consists +of $S$, followed by $T$, followed by the atoms which need to be added to make this a support (to make it satisfy the additional condition): what this means is that $(S+T)_\epsilon = S(\epsilon)$ [which we write $S_\epsilon$] for $\epsilon$ in the domain of $S$, $(S+T)_{{\tt dom}(S)+\epsilon} = T_\epsilon$ for $\epsilon$ in the domain of $T$, and the rest of the range of $S+T$ consists of the support conditions with atomic first component which must be added to satisfy the additional condition [this is not uniquely determined: supports usually have many possible sums because the needed additional conditions can be added in any order.] +\end{comment} + +\begin{definition}[operations on supports]\label{def:support_operations} +{We define various operations to manipulate supports.} +\begin{enumerate} +\item For any support condition $(x,B)$ we define $(x,B)^{\uparrow A}$ as $(x,B\cup A)$ if all elements of the set $A$ dominate all elements of the set $B$. +Further, if $S$ is a support, we define $S^{\uparrow A}$ so that $(S^{\uparrow A})_\epsilon = (S_\epsilon)^{\uparrow A}$. By an abuse of notation we may write $(x,B)^{\uparrow \beta}$ or $S^{\uparrow \beta}$ where $\beta$ is an ordinal for $(x,B)^{\uparrow \{\beta\}}$ or $S^{\uparrow \{\beta\}}$. + +\item For any supports $S$ and $T$ we denote by $S+T$ a support which consists +of $S$, followed by $T$: what this means is that $(S+T)_\epsilon = S(\epsilon)$ [which we write $S_\epsilon$] for $\epsilon$ in the domain of $S$, $(S+T)_{{\tt dom}(S)+\epsilon} = T_\epsilon$ for $\epsilon$ in the domain of $T$. + +\item We define the action of a $\beta$-allowable permutation $\pi$ on a $\beta$-support $S$: if $S(\delta) = (x,A)$, $\pi[S](\delta) = (\pi_A``x,A)$. +\item +An element $x$ of $\tau^*_\beta$ {\em has $\beta$-support $S$\/} iff for every $\beta$-allowable permutation $\pi$, if $\pi[S] = S$ then $\pi(x)=x$. We say that an element $x$ of $\tau^*_\beta$ which has a $\beta$-support is {\em $\beta$-symmetric.} +\end{enumerate} +\end{definition} + +\begin{remark}[counting supports]\label{rk:counting_supports} + +It is straightforward to observe that there are $\mu$ $\beta$-supports for $\beta\leq \alpha$: there are $\mu$ atoms, $\mu$ near-litters, and +$<\mu$ finite subsets of $\beta +1<\lambda \leq \mu$ (all type indices involved in a $\beta$-support are $\leq \beta$); thus the set of $\beta$-support conditions (which we will call {\tt SC} for the moment) is of size $\mu$; +note that the set $\kappa \times {\tt SC}$ is of cardinality $\mu$ and each $\beta$-support is a small subset of $\kappa \times {\tt SC}$, and so, as we have already seen than sets of size $\mu$ have $\mu$ small subsets, it follows that there are no more than $\mu$ $\beta$-supports. +Thus $\tau_\beta^+$ is already known to be of size $\mu$ for $\beta<\alpha$. + +\end{remark} +\begin{comment} +\begin{annot} + I think that what is proved in the previous paragraph is that there are $\mu$ unordered $\beta$-supports. + For the actual theorem, we need something like the following. +\end{annot} + +\suggest{ +We show that there are exactly $\mu$ $\beta$-supports. First, we need a basic lemma about cardinal arithmetic. +\begin{lemma}\label{lem:strong_limit_pow_lt_cf} +If $\mu$ is any strong limit cardinal and $\nu < {\tt cf}(\mu)$ is a positive cardinal, then $\mu^\nu = \mu$. +\rk{[Holmes suggests an easier proof, using the fact that such a function is a small subset of $\mu \times \nu$, of which there are only $\mu$.]} +\end{lemma} +\begin{proof} +The inequality $\mu^\nu \geq \mu$ is clear as $\nu$ is positive, so we show the converse. + +For any function $f : \nu \to \mu$, we define a relation $\prec_f$ on $\nu$ by setting $x \prec_f y$ iff $f(x) < f(y)$. +First, we show that the pair $({\tt rng}(f), {\prec_f})$ uniquely determines $f$. +If $({\tt rng}(f), {\prec_f}) = ({\tt rng}(g), {\prec_g})$, then +$$ \{ y \in \nu : f(y) < f(x) \} = S = \{ y \in \nu : g(y) < g(x) \} $$ +Hence, $f(x)$ is the least element of ${\tt rng}(f)$ not in $f``S$, and likewise, $g(x)$ is the least element of ${\tt rng}(g)$ not in $g``S$. +By induction along ${\prec_f} = {\prec_g}$, which is clearly well-founded, at stage $x$ we see that $f(x)$ and $g(x)$ are both the least element of ${\tt rng}(f) = {\tt rng}(g)$ not in $f``S = g``S$ (which are equal by inductive hypothesis), so must be equal. + +Now, as $\nu < {\tt cf}(\mu)$, any $f : \nu \to \mu$ must be bounded, so there are only $\bigcup_{\xi < \mu} 2^\xi$ possible values for ${\tt rng}(f)$, and this is equal to $\mu$ as $\mu$ is a strong limit. +The set of possible relations $\prec_f$ has size at most $2^{\nu \cdot \nu} < \mu$, again as $\mu$ is a strong limit. +So there are at most $\mu$ possible pairs $({\tt rng}(f), {\prec_f})$, so there are at most $\mu$ functions $\nu \to \mu$. +\end{proof} +\begin{proposition}\label{prop:count_supports} +There are exactly $\mu$ $\beta$-supports. +\end{proposition} +\begin{proof} +By lemma \ref{lem:strong_limit_pow_lt_cf}, it suffices to show that there are exactly $\mu$ $\beta$-support conditions. +But this follows directly from the fact that there are $\mu$ atoms, $\mu$ near-litters, and +$<\mu$ finite subsets of $\beta +1<\lambda \leq \mu$ (all type indices involved in a $\beta$-support are $\leq \beta$). +\end{proof} +Thus $\tau_\beta^+$ is already known to be of size $\mu$ for $\beta<\alpha$. +} +\end{comment} + +It is important to note that if $S$ is a support of $x\in \tau_\beta$, $\pi[S]$ is a support of $\pi(x)$ for any $\beta$-allowable permutation $\pi$. + +\begin{remark}[motivation of the coherence condition in definition \ref{def:allowable_permutation}]\label{rk:motivate_coherence_condition} +The motivation for this is that we need $\beta$-allowable permutations ($\beta \leq\alpha$) to send extensional elements of supertypes to extensional elements. Suppose $x \in \tau_\beta$ and +$x \cap \tau_\gamma = \{b\}$. If $x$ is extensional, this has to be the distinguished extension of $x$. For any $\delta \in \beta \setminus \{\gamma\}$, +it follows that $x \cap \tau_\delta$ is the set of all $N_\delta$ such that $N \sim f_{\gamma,\delta}(b,S)$ for some support $S$ of $b$. This tells us that a $\beta$-allowable permutation $\pi$, such that $\pi(x)$ has $\gamma$-extension $\{\pi_\gamma(b)\}$, must have the $\delta$-extension of $\pi(x)$ equal to $$\pi_\delta``\{N_\delta:\exists S:N \sim f_{\gamma,\delta}(b,S)\}$$ +but must also have its $\delta$-extension equal to $$\{N_\delta:\exists S:N \sim f_{\gamma,\delta}(\pi_\gamma(b),S)\}.$$ This tells us that $$\pi_\delta(f_{\gamma,\delta}(b,S)_\delta) \in \{N_\delta:(\exists T:N \sim f_{\gamma,\delta}(\pi_\gamma(b),T))\}$$ for each support $S$ of $b$. The coherence condition enforces this neatly, showing that it is motivated by considerations required to get extensionality to work: the action of $\pi_\beta$ conveniently correlates supports of $b$ with supports of $\pi_\beta(b)$. + +\end{remark} + +\begin{proposition}[allowable permutations preserve extensionality]\label{prop:allowable_preserves_extensionality} +Allowable permutations map extensional elements of supertypes to extensional elements. +\end{proposition} +\begin{proof} +{Recall that} we defined $A_\delta(a)$ {in definition \ref{def:a_map}} as $$\{N_\delta:(\exists x \in a:(\exists S:N \sim f_{\gamma,\delta}(a)))\}.$$ + +If $\pi$ is allowable of suitable index, $\pi_\delta``A_\delta(a)= A_\delta(\pi_\gamma``a)$ follows from the coherence condition. Verify this: + +Suppose we have $N_\delta$ with $x \in a$ such that $N \sim f_{\gamma,\delta}(x,S)$. Then $$\pi_\delta(N_\delta) \cap \tau_{-1} = (\pi_\delta)_{-1}``N \sim (\pi_\delta)_{-1}``f_{\gamma,\delta}(x,S) \sim f_{\gamma,\delta}(\pi_\gamma(x),\pi_\gamma[S]).$$ So any element of $\pi_\delta``A_\delta(a)$ is in $A_\delta(\pi_\gamma``a)$. + +Suppose we have $N_\delta$ with $x \in a$ such that $N \sim f_{\gamma,\delta}(\pi_\gamma(x),S)$. We then have $N \sim (\pi_\delta)_{-1}``f_{\gamma,\delta}(x,\pi_\gamma^{-1}[S])$. We want to show that $\pi_\delta^{-1}(N_\delta) \in A_\delta(a)$. We have $$\pi_\delta^{-1}(N_\delta) \cap \tau_{-1} = (\pi_\delta)_{-1}^{-1}``N \sim +(\pi_\delta)_{-1}^{-1}``((\pi_\delta)_{-1}``f_{\gamma,\delta}(x,\pi_\gamma^{-1}[S])) = f_{\gamma,\delta}(x,\pi_\gamma^{-1}[S]),$$ establishing what we need. + +Notice that this shows that the coherence condition implies that the image under an allowable permutation of a pre-extensional element of our structure is pre-extensional. + +Now this implies that if $a \subseteq \tau_\gamma$, then $A^{-1}(a)$ exists and is in $\tau_\delta$ exactly if $A^{-1}(\pi_\gamma``a)$ exists and is in $\tau_\delta$, and moreover $A^{-1}(\pi_\gamma``a)$ is equal to $\pi_\delta``A^{-1}(a)$ if it exists under these conditions. This verifies that the coherence condition implies that allowable permutations preserve full extensionality, not just pre-extensionality: the number of iterated images under $A^{-1}$ of an extension that exist is not affected by application of an allowable permutation in a suitable sense. +\end{proof} + +\subsection{Model elements defined}\label{ss:model_elements} +%\rk{I added this subsection header.} + +\begin{definition}[model elements] +We stipulate that all elements of $\tau_\beta$ ($\beta\in \alpha$) have $\beta$-supports [enforcing \ihref{ih:elements_have_supports}], and define $\tau_\alpha$ as the set of elements $x$ of $\tau^*_\alpha$ such that +$x \cap \tau^*_{\beta} \subseteq \tau_\beta$ for each $\beta<\alpha$, $x$ is extensional, and $x$ has an $\alpha$-support. +%\rk{(enforcing \ihref{ih:elements_have_supports}, not using it)} +\end{definition} + +Note that an image of an element of $\tau_\beta$ ($\beta\leq \alpha$) under a $\beta$-allowable permutation will belong to $\tau_\beta$, because supportedness and extensionality are preserved by allowable permutations. + +The definition explicitly enforces \ihref{ih:subset_tau}, \ihref{ih:supports}, \ihref{ih:typed_near_litter} (a near-litter obviously has a support), \ihref{ih:extensionality}, \ihref{ih:pre_extensional}, \ihref{ih:extensional}, \ihref{ih:elements_have_supports} for subsequent stages of the construction. + +We still have to prove that the cardinality of $\tau_\alpha$, and so of $\tau^+_\alpha$, is $\mu$, to show that the construction works (verification of \ihref{ih:cardinality} for subsequent stages is in the next section). +{However, we can show now that given \ihref{ih:cardinality}, we can satisfy the remaining hypotheses \ihref{ih:position}, \ihref{ih:pos_typed_near_litter}, \ihref{ih:position_constraints}.} + +\begin{remark}[$\kappa$-completeness of the structure] +For any subset $X$ with cardinality $<\kappa$ of a type $\gamma$ and $\beta>\gamma$, it should be clear that $X_\beta$ has a support, whose range is obtained from the union of the ranges of the supports of the elements of $X$ by replacing each element $(u,B)$ of the union of the ranges with $(u,B \cup \{\beta\})$, and therefore belongs to the model. $X_\beta$ is obviously extensional (the extension $X$ is clearly the distinguished extension and has no image under $A^{-1}$). +\end{remark} + +\begin{definition}[position functions] +\begin{comment} + +\suggest{OMIT (with care): +$\iota_*^+(x,\emptyset)$ is defined as $\iota_*(\{x\})$. %\marginpar{\hsuggest{HOLMES: singleton brace added}} +The well-ordering $\leq_{-1}^+$ is defined by $$(x,\emptyset) \leq_{-1}^+ (y,\emptyset) \leftrightarrow \iota_*(x) \leq \iota_*(y).$$}\hsuggest{GOOD CATCH! I'm leaving this remark because it does need to be done carefully} + +\hsuggest{This is genuinely tricky. I suggest $\iota^+_*(x,\emptyset) = \iota_*(x)$. I do not think that the constraints below act on choice of $\iota^+_*(x,\emptyset)$ at all.} + +\end{comment} + +\begin{comment} + +The well-ordering $\leq_\alpha^+$ of $\tau_\alpha^+$ ($\alpha \in \lambda$) must satisfy the condition that for each $(x,S) \in \tau_\alpha^+$, for each $(z,A) \in {\tt rng}(S)$ and litter $L = f_{\beta,\gamma}(y,T)$ with $\beta<\alpha$, where $L$ meets $z$, $\iota_*^+(y,T) < \iota_*^+(x,S)$ must hold. + +\end{comment} + +The conditions constraining the choice of functions $\iota^+_\beta$ %\suggest{OMIT: ($-1 < \beta \leq \alpha$)} + ({enforcing }\ihref{ih:position}, \ihref{ih:pos_typed_near_litter}, \ihref{ih:position_constraints}) are + +\begin{enumerate} + +\item $\iota_*(t) < \iota^+_\beta(x,S)$ if $(t,A)$ is in the range of $S$ and $x$ is not a near-litter or singleton of an atom {\ihref{ih:position_constraints}}. + +\item $\iota_*(t) \leq \iota^+_\beta(t_\beta,S)$%\marginpar{\hsuggest{suggest that we OMIT: , if $t$ is a near-litter , and $\iota_*(t) \leq \iota^+_*(\{t\}_\gamma,S)$, if $t$ is an atom}} + \ihref{ih:pos_typed_near_litter} [though one may note that this is not restricted to near-litters; it does not appear that this additional latitude is used.]%\rk{[this extra stuff is not used in Lean]}]. %\rk{(Sky thinks we don't need the second half of this; Holmes: I'm not sure, leaving it for now. The proposed modification of the definition of the position function actually causes the suppressed assertion to be true, harmlessly whether we use it or not.)} + +\end{enumerate} + +We then define $x \leq^+_\beta y$ as $\iota^+_\beta(x) \leq \iota^+_\beta(y)$. +\end{definition} + +There is no difficulty in satisfying these constraints {given that $\tau_\beta^+$ has size $\mu$ \ihref{ih:cardinality}} as there are only a small set of constraints on any particular value of $\iota_*^+$ and $\mu$ is of cofinality at least $\kappa$. + +%\hsuggest {OMIT: Of course, if $\beta<\alpha$ this records a hypothesis of the recursion: one of these is noted above already.} + + + It should be noted that type 0 has a very simple description: the $-1$-extensions of type 0 objects are exactly the sets with small symmetric difference from small or co-small unions of litters, and that these are the same extensions over type $-1$ which appear in any positive type. + + +At this point we have a complete description of the structure which we claim is a model of TTT. + +\begin{comment} was annot + I think there's probably a slightly nicer way to talk about what \ihref{ih:position}, \ihref{ih:pos_typed_near_litter}, \ihref{ih:position_constraints} are doing here. +\end{comment} + +\newpage + +\section{Verification that the structure defined is a model}\label{s:verification} + +\subsection{The Freedom of Action theorem}\label{ss:foa} + +\begin{definition}[$-1$-approximation]\label{def:base_approx} + A {\em $-1$-approximation\/} is a function $\psi$ such that: + \begin{enumerate} + \item The domain and image of $\psi$ are the same and $\psi$ is injective. + \item Each domain element of $\psi$ is either an atom or a litter, and moreover, $\psi$ maps atoms to atoms and litters to litters. + \item For each litter $L$, $\psi$ and $\psi^{-1}$ are defined on only a small collection of atoms $a \in L$. + \end{enumerate} +\end{definition} +We will associate a partial function $\psi^*$ on atoms to each $-1$-approximation $\psi$. +The action of $\psi$ on atoms will agree with the action of $\psi^*$, and the action of $\psi$ on litters will agree with the pointwise action of $\psi^*$ only up to nearness. + +\begin{definition} + If $\psi$ is a $-1$-approximation, we define the partial function $\psi^*$ by: + \begin{enumerate} + \item If $a$ is an atom and $a \in {\tt dom}(\psi)$, then $\psi^*(a) = \psi(a)$. + \item If $a$ is an atom with $a \notin {\tt dom}(\psi)$ but $a \in L$ and $L \in {\tt dom}(\psi)$, then + $$ \psi^*(a) = \pi_{M, N}(a),\ \mathrm{where}\ M = L \setminus {\tt dom}(\psi) \ \mathrm{and}\ N = \psi(L) \setminus {\tt dom}(\psi) $$ + where for any co-small subsets of litters $M, N$, the map $\pi_{M,N}$ is the unique map $\rho$ from $M$ to $N$ such that for any $x, y \in M$, + $$x <_{M^{\circ}} y \leftrightarrow \rho(x) <_{N^\circ} \rho(y):$$ + $\pi_{M,N}$ is the unique map from $M$ onto $N$ which is strictly increasing in the order determined by fourth projections of atoms. Notice that $ \pi_{M,N} \circ \pi_{L,M} = \pi_{L,N}$ will hold if $L,M,N$ are co-small subsets of litters, %\rk{[In the original text, it was required that $L,M,N$ be subsets of the same litter.]} +and $\pi_{L,M} \circ \pi_{M,L} = \pi_{L,L}$ which is the identity map on $L$, under the same conditions.% + %The relationship to composition is neatly handled by our concrete definition. + \footnote{The choice of these maps does not need to be so concrete, but the fact that it can be indicates for example that there is no use of choice here. We like the concreteness of this approach.} + \end{enumerate} +\end{definition} +\begin{remark} + If $N$ is a near-litter and $N \subseteq {\tt dom}(\psi^*)$, then $N^\circ \in {\tt dom}(\psi)$, and additionally $\psi^* `` N \sim \psi(N^\circ)$. + The converse is not true: $N^\circ \in {\tt dom}(\psi)$ does not imply that $N \subseteq {\tt dom}(\psi^*)$, but it does imply that $N^\circ \subseteq {\tt dom}(\psi^*)$. + + Note that if $n$ is any integer, $\psi^n$ is also a $-1$-approximation with the same domain, where we take the convention that $\psi^0$ is the identity map on ${\tt dom}(\psi)$. + Using the condition $\pi_{M,N} \circ \pi_{L,M} = \pi_{L,N}$, we obtain the equation $(\psi^n)^* = (\psi^*)^n$. +\end{remark} +From now on, we avoid using the action of $\psi$ directly where possible, and instead use $\psi^*$. +\begin{remark}\label{rk:minus_one_approx_allowable} + $\psi^*$ is a permutation of atoms. + If it is defined on all of $\tau_{-1}$, it is a $-1$-allowable permutation. +\end{remark} +\begin{definition}[extension] + We define a partial order on $-1$-approximations by setting $\psi \preceq_{-1} \chi$ if $\psi \subseteq \chi$ and ${\tt dom}(\psi) \cap \tau_{-1} = {\tt dom}(\chi) \cap \tau_{-1}$. + That is, $\chi$ may define images for more litters than $\psi$, but may not define images for any new atoms. + If $\psi \preceq_{-1} \chi$, we may call $\chi$ an {\em extension\/} of $\psi$. + Note that if $\psi \preceq_{-1} \chi$, then $\psi^* \subseteq \chi^*$. +\end{definition} +\begin{lemma}[adding orbits]\label{lem:add_orbits} + Let $\psi$ be a $-1$-approximation, and let $(L_n)_{n \in \mathbb Z}$ be litters such that $$\{ \langle L_n, L_{n+1} \rangle : n \in \mathbb Z \}$$ is a bijection, and $\psi^*$ is not defined at any of the $L_n$. + Then $\psi$ has an extension $\chi$ where $\chi^* `` L_n \sim L_{n+1}$ for each $n$, and all near-litters in the domain of $\chi^*$ but not in the domain of $\psi^*$ are near some $L_n$. +\end{lemma} +\begin{proof} + Define + $$ \chi = \psi \cup \{ \langle L_n, L_{n+1} \rangle : n \in \mathbb Z \}; $$ + it is easy to verify all of the required conditions. +\end{proof} +It is not necessary that all of the $L_n$ be distinct. +This lemma therefore allows us to add single orbits of litters of any order to $-1$-approximations. +\begin{definition}[approximation, in general]\label{def:approx} + If $-1 < \beta$, a $\beta$-approximation is defined as a function with $\{-1\} \cup \beta$ as domain such that $\psi(\gamma)$ is a $\gamma$-approximation for each $\gamma$ in the domain. We write $\psi_\gamma$ instead of $\psi(\gamma)$. + + We define some operations on approximations. + \begin{enumerate} + \item If $A$ is a finite subset of $\lambda\cup \{-1\}$ with maximum element $\beta$, we define the derivative of $\psi$ along $A$ in the following way: $\psi_A = (\psi_{A \setminus \{{\tt min}(A)\}})_{{\tt min}(A)}$ and %$\suggest{\psi_\emptyset} = $ +$\psi_{\{\beta\}} = \psi$. + % We also define $\psi_A^+ = (\psi_A)_{-1}^*$.%, \suggest{and for convenience, if $\psi$ is a $-1$-approximation, we define $\psi_{-1} = \psi$}.\marginpar{\hsuggest {Thinking about these subscripting conventions.}} + If $\beta=-1$, construe $\psi_{-1}$ as $\psi$. + + \item A $\beta$-approximation $\psi$ acts on a support $S$ by + $$ (\psi^*[S])_\delta = (\psi_A ^*`` x, A) \ \mathrm{where}\ S_\delta = (x, A) $$ + whenever this is defined for each $\delta \in {\tt dom}(S)$. + \item We define the partial order $\preceq_\beta$ on $\beta$-approximations by defining $\psi \preceq_\beta \chi$ whenever $\psi_\gamma \preceq_\gamma \chi_\gamma$ for all $\gamma < \beta$, and define an {\em extension\/} of a $\beta$-approximation $\psi$ as an approximation $\chi \succeq_\beta \psi$. + + \end{enumerate} +\end{definition} +\begin{definition}[flexibility]\label{def:flexible} + A near-litter $N$ is {\em $A$-flexible\/}, where $A$ is an extended type index, if $|A| \leq 2$ or $N^\circ$ is not in the range of any $f_{\gamma,{\tt min}(A_1)}$ +for $-1 \leq \gamma<{\tt min}(A_2)$. +\end{definition} +\begin{definition}[coherent]\label{def:coherent} + Let $-1 \leq \beta \leq \alpha$. + We say that a $\beta$-approximation $\psi$ is {\em coherent\/} (c.f.\ the coherence condition on allowable permutations from definition \ref{def:allowable_permutation}) if: + \begin{enumerate} + \item If $L$ is $A$-flexible for some $A$, then $\psi_A^*`` L$ is also $A$-flexible. + \item If $A$ is an extended type index with maximum $\beta$ and ${\tt min}(A_1) = \gamma < \beta$, and $\delta < {\tt min}(A_2)$ and $(x, S) \in \tau_\delta^+$ are such that $f_{\delta,\gamma}(x, S) \subseteq {\tt dom}(\psi_A^*)$, then there is some $\delta$-allowable permutation $\pi$ such that + $$ (\psi_{A_2})_\delta^*[S] = \pi[S] $$ + and additionally that + $$ \psi_A^* `` f_{\delta,\gamma}(x, S) \sim f_{\delta,\gamma}(\pi(x), \pi[S]) $$ + (and hence all $\delta$-allowable permutations $\pi$ satisfying the given hypotheses also satisfy the stated coherence condition). + \end{enumerate} +\end{definition} +\begin{remark}\label{rk:power_deriv_coherent} + If $\psi$ is coherent, then $\psi^n$ is coherent for any integer $n$, and $\psi_\gamma$ is coherent for any $\gamma < \beta$. + Every $-1$-approximation is coherent. +\end{remark} +\begin{definition}[approximate] + A $-1$-approximation $\psi$ is said to {\em approximate\/} a $-1$-allowable permutation $\pi$ if $\psi^* \subseteq \pi$. + If $-1 < \beta$, a $\beta$-approximation $\psi$ is said to {\em approximate\/} a $\beta$-allowable permutation $\pi$ if for each $\gamma < \beta$, $\psi_\gamma$ approximates $\pi_\gamma$. +\end{definition} +\begin{remark}\label{rk:preceq_approximates} + If $\psi \preceq_\beta \chi$ and $\chi$ approximates $\pi$, then $\psi$ approximates $\pi$. +\end{remark} +\begin{definition}[freedom of action]\label{def:foa} + We say that {\em freedom of action\/} holds at some type index $\beta$ if every coherent $\beta$-approximation $\psi$ approximates some $\beta$-allowable permutation $\pi$. +\end{definition} +\begin{remark}\label{rk:foa_suffices} + If $\psi$ is a coherent approximation such that $\psi_A$ is defined on all litters (or equivalently, all atoms) for all $A$ containing $-1$, then it is easy to see that $\psi$ approximates a unique allowable permutation $\pi$, and $\pi$ is given by $\pi_A= \psi_A^*$. + So to prove that freedom of action holds at level $\beta$, it suffices by remark \ref{rk:preceq_approximates} to show that every coherent $\beta$-approximation has a coherent extension $\chi$ such that $\chi_A$ is defined on all litters for all $A$ containing $-1$. +\end{remark} +\begin{lemma}\label{lem:foa_flexible} + Let $\psi$ be a coherent $\beta$-approximation. + Then $\psi$ admits a coherent extension $\chi$ such that for each extended type index $A$ with maximum $\beta$, $\chi_A$ is defined on all $A$-flexible litters.%\marginpar{\raggedright{\rk{I think this is nicer.}}} +\end{lemma} +\begin{proof} + The construction + $$ \chi_A = \psi_A \cup \{ \langle L, L \rangle : L \notin {\tt dom}(\psi_A^*), L\ \mathrm{is}\ A\mathrm{\mbox{-flexible}} \} $$ + suffices. +\end{proof} +\begin{remark} + This lemma shows in particular that freedom of action holds at type $-1$. + Indeed, suppose that $\psi$ is a (coherent) $-1$-approximation and $\chi$ is an extension as above. + By remark \ref{rk:minus_one_approx_allowable}, $\chi^*$ is a $-1$-allowable permutation as all near-litters are $\{-1\}$-flexible, and $\chi$ clearly approximates it. + But $\psi \preceq_{-1} \chi$, so $\psi$ also approximates $\chi^*$ (remark \ref{rk:preceq_approximates}). +\end{remark} +\begin{lemma}\label{lem:foa_inflexible} + Let $\psi$ be a coherent $\beta$-approximation. + Let $A$ be an extended type index with maximum $\beta$, and let $\gamma = {\tt min}(A_1)$ and $\delta < {\tt min}(A_2)$. + Let $(x, S) \in \tau_\delta^+$ be such that $(\psi_{A_2})_\delta^*[S]$ is defined. +%\marginpar{\hsuggest{I do not think that $\delta=-1$ is a special case here.}} + Then if freedom of action holds at type level $\delta$, there is a coherent extension $\chi \succeq_\beta \psi$ such that $ + \chi_A^* `` f_{\delta,\gamma}(x, S)$ is defined. +\end{lemma} +\begin{proof} + The $\delta$-approximation $(\psi_{A_2})_\delta$ is coherent (remark \ref{rk:power_deriv_coherent}), so it approximates some $\delta$-allowable permutation $\pi$ by freedom of action. + In particular, $((\psi_{A_2}^n)_\delta)^*[S] = \pi^n[S]$ for every integer $n$. + We intend to add the orbit + $$ f_{\delta,\gamma}(\pi^n(x), \pi^n[S]) \mapsto f_{\delta,\gamma}(\pi^{n+1}(x), \pi^{n+1}[S]) $$ + to $\psi_A^*$, at least up to nearness. + + Suppose that there is some $n$ such that $\psi_A^*$ is defined on $f_{\delta,\gamma}(\pi^n(x), \pi^n[S])$. + We have $((\psi_{A_2}^n)_\delta)^*[S] = \pi^n[S]$, so $((\psi_{A_2}^{-n})_\delta)^*[\pi^n[S]] = S$. + Therefore, as $\psi^{-n}$ is coherent (also by remark \ref{rk:power_deriv_coherent}), we obtain + $$ (\psi^{-n})_A^* `` f_{\delta,\gamma}(\pi^n(x), \pi^n[S]) \sim f_{\delta,\gamma}(x, S). $$ + Therefore, + $$ f_{\delta,\gamma}(x, S) \subseteq {\tt dom}(\psi_A^*).$$ + So we do not need to extend $\psi$; we are already done. + + Otherwise, we can use lemma \ref{lem:add_orbits} to extend $\psi$ to an approximation $\chi$ in which + $$ \chi_A^* `` f_{\delta,\gamma}(\pi^n(x), \pi^n[S]) \sim f_{\delta,\gamma}(\pi^{n+1}(x), \pi^{n+1}[S]) $$ + for each integer $n$. + It is easy to check that this $\chi$ is coherent. +\end{proof} +\begin{theorem}[Freedom of Action]\label{thm:foa} + Freedom of action holds at all type indices $\beta \leq \alpha$. +\end{theorem} +\begin{proof} + By induction, we may assume freedom of action holds at all levels $\delta < \beta$. + Let $\psi$ be a coherent $\beta$-approximation, and use Zorn's lemma to extend $\psi$ to a maximal coherent extension $\chi$; this step uses the fact that coherence is preserved under suprema of chains of approximations. + + Suppose that $\chi_A^*$ is not defined on all litters for some $A$. + Let $L$ be the litter with minimal position $\iota_*(L)$ such that there is %a finite subset $A$ of $\lambda$ + {an extended type index $A$} + with maximum element $\beta$ such that $L \nsubseteq {\tt dom}(\psi_A^*)$. + + Suppose that $L$ is $A$-flexible. + By lemma \ref{lem:foa_flexible}, $\chi$ admits a coherent extension $\varphi$ such that $L \subseteq {\tt dom}(\varphi_A^*)$. + This contradicts maximality of $\chi$. + + Now suppose that $L$ is not $A$-flexible. + Writing $\gamma$ for the minimum element of $A$, there are $\delta < {\tt min}(A_1)$ and $(x, S) \in \tau_\delta^*$ such that $L = f_{\delta,\gamma}(x, S)$. + + %\suggest{OMIT: Suppose that $\delta > -1$.}\hsuggest{Give this a read-through before cutting as suggested} + + We claim that $(\psi_{A_2})_\delta^*[S]$ is defined; this will then give a contradiction by lemma \ref{lem:foa_inflexible}. + To show this, we must prove that if $(t, B) \in {\tt rng}(S)$, then $\psi_A^*``t$ is defined. + By definition \ref{def:f_map}, we have $\iota_*^+(x, S) < \iota_*(L)$, and by \ihref{ih:position_constraints}, $\iota_*(t) \leq \iota_*^+(x, S)$. + If $t$ is a near litter or singleton of an atom and $t \subset M$ for a litter $M$, then by definition \ref{def:pos_atom_near_litter}, we obtain $\iota_*(M) < \iota_*(t)$, and therefore that $\psi_B^*``t$ is defined by minimality of the position of $L$.%\marginpar{\hsuggest{Read through this to be certain $\delta=-1$ case works.}} + Alternatively, if $t$ is a near-litter, then if $M$ is any litter such that $M \cap t \neq \emptyset$, definition \ref{def:pos_atom_near_litter} again implies that $\iota_*(M) < \iota_*(t)$, so $\psi_B^*``M$ is defined. + Combining all such litters, we conclude that $\psi_B^*``t$ is defined. + + Therefore $\chi_A^*$ must be defined on all litters for all $A$. + By remark \ref{rk:foa_suffices}, this concludes the proof: $\psi$ approximates the allowable permutation $\pi$ given by $\pi_A^* = \chi_A^*$. +\end{proof} +\begin{remark} + The use of Zorn's lemma in the previous proof is merely a technical convenience. + Its use can be excised by instead computing the value of \( \chi_A^* \) at each atom directly, under the inductive hypothesis that its value at each atom at an earlier position was already computed for all \( A \). + + In fact, all of the proofs of this subsection can be phrased in such a way that the axiom of choice is not invoked. + In particular, the coherent extension defined in \ref{lem:foa_inflexible} is uniquely determined: all choices of \( \pi \) yield the same extension \( \chi \). + This means that every coherent approximation defined on all flexible litters has a unique coherent extension defined on all litters (but we will not use this fact). +\end{remark} + +\begin{comment} + +\begin{definition}[approximation]\label{def:approximation} +A {\em $\beta$-approximation\/} is a map $\pi^0$ from finite subsets of $\lambda$ with maximum element $\beta$ such +that each $\pi^0(A)$ (which we write $\pi^0_A$) is a function with the following properties: + +\begin{enumerate} + +\item The domain and image of $\pi^0_A$ are the same and $\pi^0_A$ is injective. + +\item Each domain element $x$ of $\pi^0_A$ is such that $(x,A)$ is a support condition. + +\item $x$ and $\pi^0_A(x)$ have the same cardinality, which is either 1 or $\kappa$, since the previous condition tells us that $x$ is a singleton of an atom or a near-litter. + +\item if the cardinality of $x$ is $\kappa$, $x$ and $\pi^0_A(x)$ are litters. + +\item for any litter $L$, the collection of $y$ in the domain of $\pi^0_A$ such that $y \subseteq L$ is small. + + + +\end{enumerate} + +We say that $\pi^0$ approximates a $\beta$-allowable permutation $\pi$ just in case $\pi^+_A``x = \pi^0_A(x)$ if +$x$ has cardinality 1, and $\pi^+_A``x \sim \pi^0_A(x)$ otherwise, for each $(x,A)$ in the domain of $\pi^0$. + +Notice that each such $\pi^0$ has an inverse $(\pi_0)^{-1}$ determined by $(\pi^0)^{-1}_A = (\pi^0_A)^{-1}$, which is also a $\beta$-approximation. +\end{definition} + +Recall that any near-litter $N$, we define $N^\circ$ as the unique litter $L$ such that $L \sim N$. + +\begin{definition}[flexibility]\label{def:flexible} + A near-litter $x$ is {\em $A$-flexible\/} if $x^\circ$ is not in the range of any $f_{\gamma,{\tt min}(A)}$ +for $-1 \leq \gamma<{\tt min}(A_1)$. +\end{definition} + +\begin{definition}[exception, exact approximation]\label{def:exactly_approximates} +A $-1$-allowable permutation $\pi$ has {\em exception\/} $x$ if, $L$ being the litter containing $x$, +we have either $\pi(x) \not\in (\pi``L)^\circ$ or $\pi^{-1}(x) \not\in (\pi^{-1}``L)^\circ$. + +A $\beta$-approximation $\pi^0$ {\em exactly approximates\/} a $\beta$-allowable permutation $\pi$ iff $\pi^0$ approximates $\pi$ and +for every exception $x$ of a $\pi_{A \cup \{-1\}}$ ($A$ not containing $-1$) we have $\{x\}$ in the domain of $\pi^0_A$. +\end{definition} + +\begin{theorem}[Freedom of Action]\label{thm:foa} +A $\beta$-approximation $\pi^0$ will exactly approximate some $\beta$-allowable permutation $\pi$ if it satisfies the additional condition that any domain element $x$ of $\pi^0_A$ which is a litter is $A$-flexible. +\end{theorem} +\begin{annot} + I'm not going to comment on this proof for now, it's a can of worms I'd like to deal with when I have more time. +\end{annot} +\begin{proof} +For each pair of sets $L,M$ which are co-small subsets of litters, we define $\pi_{L,M}$ as the unique map $\rho$ from $L$ onto $M$ such +that for any $x,y \in L$, $$x <_{L^{\circ}} y \leftrightarrow \rho(x) <_{M^\circ} \rho(y):$$ $\pi_{L,M}$ is the unique map from $L$ onto $M$ which is strictly increasing in the order determined by fourth projections of atoms. Notice that \newline $ \pi_{M,N} \circ \pi_{L,M} = \pi_{L,N}$ will hold if $L,M,N$ are subsets of the same litter, and $\pi_{L,M} \circ \pi_{M,L} = \pi_{L,L}$ which is the identity map on $L$, under the same conditions. The relationship to composition is neatly handled by our concrete definition.\footnote{the choice of these maps does not need to be so concrete, but the fact that it can be indicates for example that there is no use of choice here. We like the concreteness of this approach.} + +We also choose an extension of each $\pi^0_A$ to all $A$-flexible litters; we do this without notational comment, simply assuming that $\pi^0_A$ is defined for each $A$ at each $A$-flexible litter $M$, which can be arranged harmlessly +(for example, one could have $\pi^0_A$ act as the identity on the new $A$-flexible litters, but we do not require this). + +We choose an approximation $\pi^0$ satisfying the conditions of the theorem and extend it as indicated in the previous paragraph. We compute the allowable permutation $\pi$, and in parallel its inverse $\pi^{-1}$, on +all support conditions (and therefore compute all its derivatives $\pi_A$ (and $\pi^{-1}_A$) at all atoms ($-1 \in A$), so completely defining it, using the assumption that we already know how to carry out this construction to +define $\gamma$-allowable permutations exactly approximated by any given $\gamma$-approximation for $\gamma<\beta$. + +The basic order of the construction of $\pi$ is that the value of $(\pi^+_A)^i``x$ for $i=\pm 1$ is computed at each atom or near-litter $x$ assuming that the values have already been computed for $(\pi^+_B)^j``y$ for each $i = \pm1$, $y$ with $\iota_*(y)<\iota_*(x)$, and extended type index $B$ [of course, this is equivalent to computing +$\pi_A^i(x_{{\tt min}(A)})$ and we may discuss it in that form]. All specific discussions of inductive hypotheses below conform to this. + +We use the notation $\pi^*_A$ for the partially computed $\pi_A$ at any point in the calculation before we are done. +We use the notation $\pi^{+*}_A(x)$ for $\pi^*_{A \cup \{-1\}}(x)$. + We use similar notation $(\pi^{-1}_A)^*$ for the part of $\pi^{-1}$ which we have already computed. + +We first indicate how to compute $\pi^*_A(L_{{\tt min}(A)})$, where $L$ is a litter. We compute $(\pi^{-1}_A)^*(L_{\tt min(A)})$ in the same way. + +We further extend this, once $\pi^*(L_{{\tt min}(A)})^\circ$ is computed as $M_{{\tt min}(A)}$, to describe the action of $\pi^{+*}_A$ on elements of $L$: +for each $x \in L$, if $\{x\}$ is in the domain of $\pi^0_A$, which maps it to $\{y\}$, $\pi^{+*}_{A}$ maps $x$ to $y$. Define $L^-$ as the set of all $x \in L$ such that +$\{x\}$ is not in the domain of $\pi^0_A$ and define $M^-$ as the set of all $x \in M$ such that +$\{x\}$ is not in the domain of $\pi^0_A$. For $x \in L^-$ we define $\pi^{+*}_{A}(x)$ as $\pi_{L^-,M^-}(x)$. Note that this approach ensures that, where $\pi$ is the permutation we eventually construct, there can be no exceptions of $\pi^+_A$ other than sole elements of elements of the domain of $\pi^0_A$. + +We can then exactly compute $\pi^*_A(L_{{\tt min}(A)})$ as $(\pi^{+*}_A``L)_{{\tt min}(A)}$ + +Note that the general inductive hypothesis ensures that when we are computing $\pi_A^+(x)$ and $L$ is the litter containing $x$, we have already computed +$\pi^+_A``L$, because $\iota_*(L) < \iota_*(\{x\}$. The paragraph above indicates how this computation is carried out for every atom and extended type index. + +If $L$ is $A$-flexible, we can compute $\pi^*_A(L_{\tt {\tt min}(A)})^\circ$ as $(\pi^0_A(L))_{{\tt min}(A)}$ + +If $L$ is $A$-inflexible, we have $f_{\gamma,{\tt min}(A)}(x,S) = L$ for some $\gamma<{\tt min}(A_1)$, $x \in \tau_\gamma$, and $S$ a support of $x$. + +We expect $\pi^*_A(f_{\gamma,{\tt min}(A)}(x,S)_{{\tt min}(A)})$ to have $-1$-extension near that of $$f_{ \gamma,{\tt min}(A)}(\pi^*_{A_1\cup \{\gamma\}}(x),\pi^*_{A_1\cup \{\gamma\}}[S]))_{{\tt min}(A)}.$$ + +As a comment on the circumlocution above, we allow ourselves subsequently to say that $M_\delta$ is near $N_\delta$ when $M \sim N$: nearness of typed near-litters +is defined in the obvious way in terms of nearness of near-litters. + +If $\gamma>-1$, we will show that the inductive hypotheses allow us to compute values of $\pi^*_{A_1\cup \{\gamma\}}$ and so images under this permutation of $\gamma$-supports. + + The conditions on the construction of the indexings +$\iota^+_\beta$ ensure that we can compute $\pi_{A_1 \cup \{\gamma\}}^*[S]$ and $(\pi_{A_1 \cup \{\gamma\}}^{-1})^*[S]$, because $\iota_*(u) < \iota^+_*((x,S))<\iota_*(L)$ for each $(u,U) \in S$ so we have already computed each $\pi_*^+``u$. + + +We intend to construct a $\gamma$-approximation $\rho$ which must send $S$ to $\pi_{A_1 \cup \{\gamma\}}^*[S]$. Each atomic and flexible item in $S$ is to be mapped by the $\gamma$-approximation to the corresponding +item in $\pi_{A_1 \cup \{\gamma\}}^*[S]$ (with the proviso that where near-litter items correspond, they will be modified to litter items). We have to fill in orbits, since each $\rho^0_B$ must have domain the same as its range. We fill in the orbits, adding at most a countable number of flexible litters (which present no difficulties) and a countable number of atoms to domains of $\rho^0_B$ per atom or flexible near-litter already there, subject to the condition that where we are choosing the image or preimage of the singleton of an atom under $\rho^0_B$ and we know its elementwise image or preimage under $\pi_{A_1 \cup B}^{+*}$ we use that (and we will know this if +we know the elementwise image or preimage under $\pi_{A_1 \cup B}^{+*}$ of a litter which includes it, as in the case of litters near the near-litters in the support). Where we do not have this information, we can choose +images and preimages freely as long as they are not already known elementwise preimages or images under $\pi_{A_1 \cup B}^{+*}$. + +There is a further point to do with anomalous elements of near-litters $N$ with $(N,B) \in S$ which are not litters: for any $z \in N\setminus N^\circ$, with $z$ belonging to a litter $M$, $\iota_*(M) < \iota_*(\{z\})<\iota_*^+(x,S) < \iota_*(L)$ so $\pi^+_B``\{z\}$ and $\pi^+_B``M$ have both been computed, and appropriate values can be assigned to $\rho^0$ at $(\{z\},B)$ and $(M,B)$, to ensure that $\rho$ will act correctly on $N$. + +We construct $\rho$ exactly approximated by $\rho^0$. We need to verify that $\rho[S]$ really can be relied upon to agree with $\pi^*_{A_1 \cup \{\gamma\}}[S]$. The difficulty +is that $\rho^0$ agrees with $\pi^*_{A_1 \cup \{\gamma\}}$ for each support condition in $S$ which has first component the singleton of an atom or flexible, because this information was packed into $\rho^0$: how do we know that it agrees with $\pi^*_{A_1 \cup \{\gamma\}}$ at inflexible items? Suppose it failed to agree: there would be an $\iota^+_*$ minimal item at which +disagreement occurred. If the support condition were $(N,A_1 \cup D)$, we know that $\rho_D$ and $\pi^*_{A_1 \cup D}$ agree up to nearness at $N_\epsilon$ ($\epsilon = {\tt min}(D)$) +because the actions of $\rho$ and $\pi^*_{A_1 \cup \{\gamma\}}$ agree on the support appearing in the inverse image under the appropriate $f$ map +of $N^\circ$. Further, we have ensured by construction that any exceptional action of $\rho_B$ in $N$ will agree with the expected action of $\pi_{A_1 \cup B}$: any exceptional action of $\rho_B$ must either agree with computed action of $\pi^*_{A_1 \cup B}$ or be in a litter for which we have computed no value for $\pi_{A_1 \cup B}$. Thus we +get not just nearness but identity. + +Now we compute $\pi^*_{A_1\cup \{\gamma\}}(x)$ as $\rho(x)$, and so we know $\pi^*_A(f_{\gamma,{\tt min}(A)}(x,S)_{{\tt min}(A)})$ up to nearness, because we know how to compute $$f_{ \gamma,{\tt min}(A)}(\pi^*_{A_1\cup \{\gamma\}}(x),\pi^*_{A_1\cup \{\gamma\}}[S]))_{{\tt min}(A)}.$$ + +If $\gamma=-1$, we need to compute $\pi^*_{A_1\cup \{-1\}}(x)$, for which it is sufficient to compute $\pi^*_{A_1}(M_{{\tt min}(A_1)})$, where $M$ is the litter containing $x$. We have $\iota_*(M)<\iota^+(x,\emptyset)<\iota_*(L)$ so by inductive hypothesis stated above we have already computed $\pi^*_{A_1}(M_{{\tt min}(A_1)})$, so we can compute $\pi^*_{A_1}(x)$, and so we can compute $\pi^*_A(L)$ up to nearness. + +% The condition we need is that an if an atom $x$ belongs to a litter $M$ then the position of $(x,\emptyset)$ in +% $\leq^+_{-1}$ is subsequent to the position of $(y,T)$ such that $f_{\delta,\epsilon}(y,T)=M$, and this is enforced in the construction of the $f$ maps. The case of our additional recursive hypothesis with $C = \emptyset$ stated above works here: we then have the action of $\pi^*_{A_1}$ computable at $(y,T)$ and so $\pi^*_A$ computable at $L$ up to nearness (of course if the values of $\delta, \epsilon$ do not exist or are such that $L$ is $A_1$-flexible this is unproblematic). + +In this way we have computed $\pi^*_A(L_{{\tt min}(A)})^\circ$ in every case and above we indicate how to compute $\pi^*_A(L_{{\tt min}(A)})$ exactly given this. + + The process given will compute $\pi_A(x)$ and $\pi_A^{-1}(x)$ for every atom $x$ and every $A$ containing $-1$. Since every action on every atom is fixed, $\pi$ is fixed as a structural permutation. + +The method by which the derivatives of $\pi$ are evaluated at atoms ensures that $\pi_A$ agrees with $\pi^0_A$ on typed singletons. It also ensures that (if $\pi$ and its derivatives defined as indicated satisfy +the coherence conditions) $\pi_{A \cup \{-1\}}$ has an exception $x$ only if $\{x\}$ is in the domain of $\pi^0_A$. + +The method of computation verifies that the coherence conditions will hold. The method of computation also verifies that $\pi$ is a permutation, as $\pi^{-1}$ is computed in precisely the same way from $(\pi^0)^{-1}$. +\end{proof} + +\end{comment} + +\newpage +\subsection{Types are of size $\mu$ (so the construction actually succeeds)} + +Now we argue that (given that everything worked out correctly already at lower types) each type $\alpha$ is of size $\mu$, which ensures +that the construction actually succeeds at every type (verification of \ihref{ih:cardinality} for subsequent stages of the construction is thus completed). + +\begin{comment} + +\begin{definition}[strong support] +A {\em strong $\beta$-support\/} is a $\beta$-support $S$ with the additional properties that + +\begin{enumerate} + +\item if $(x,A)$ and $(y,A)$ are in the range of $S$ and $x \Delta y$ is small, then $(\{z\},A) \in S$ for all $z \in x \Delta y$, \rk{We need to account for the case where $x \cap y$ is small here. I make a suggested change below.} + +\item and for each $\epsilon$ in the domain of $S$, if $S_\epsilon = (x,A)$, and $x^\circ = f_{\gamma,\delta}(y,T)$, then the range of $T^{\uparrow A_1}$ is a subset of the range of $S \lceil \epsilon$: supports appearing in inverse images under $f$ of litters which are near the first projections of an element of the support have a type-raised copy (mod reindexing) appearing in the support before that item. +\end{enumerate} +\end{definition} + +\begin{annot} + In my opinion it sounds slightly nicer to say that `a $\beta$-support is {\em strong\/} if\dots', so one would say a `strong $\beta$-support' not a `$\beta$-strong support'. +\end{annot} + +\end{comment} + +{ + +\begin{definition}[interference] +Let $x, y \subseteq \tau_{-1}$. +Their {\em interference\/} is defined to be the union of the small elements of $\{ x \Delta y, x \cap y \}$, which is a small subset of $\tau_{-1}$. +\end{definition} +Thus the interference between two near-litters $M$ and $N$ is either $M \Delta N$ or $M \cap N$, whichever is small. +\begin{definition}[strong support]\label{def:strong_support} +A $\beta$-support $S$ is called {\em strong\/} %\rk{[removed references to `$\beta$-strong support' in place of `strong $\beta$-support']} +if it satisfies the additional properties that + +\begin{enumerate} + +\item if $(x,A)$ and $(y,A)$ are in the range of $S$, then $(\{z\},A) \in S$ for all atoms $z$ in the interference of $x$ and $y$, + +%\marginpar{\hsuggest{Notice the change of subscripting}} +\item and for each $\epsilon$ in the domain of $S$, if $S_\epsilon = (x,A)$, and $x^\circ = f_{\gamma,\delta}(y,T)$, then the range of $T^{\uparrow A_2}$ is a subset of the range of $S \lceil \epsilon$: supports appearing in inverse images under $f$ of litters which are near the first projections of an element of the support have a type-raised copy (mod reindexing) appearing in the support before that item. +\end{enumerate} +\end{definition} +} + +\begin{remark} +It should be evident that if $\pi$ is a $\beta$-allowable permutation and $S$ is a strong $\beta$-support, +$\pi[S]$ is also a strong $\beta$-support. +\end{remark} + +\begin{remark}\label{rk:canonical_strong_support} +\rk{TODO: Re-read this, maybe convert to a proposition? Note that in Lean we only need that $S$ has range a subset of the range of a strong support. (This comment is left visible deliberately to encourage the revision suggested).} +Each support $S$ is the terminal segment of a strong support. Such a strong support can be constructed by prefixing to $S$, for each $T^{\uparrow A_2}$ such that for some $\epsilon$ in the domain of $S$, $S_\epsilon = (x,A)$, and $x^\circ = f_{\gamma,\delta}(y,T)$, a strong support with $T^{\uparrow A_2}$ as a terminal segment, which will be obtainable as $U^{\uparrow A_2}$ where $U$ is a strong support with $T$ as a terminal segment, which exists by the inductive hypothesis that this is true for supports with lower type index than $S$, followed by all atomic items which must be added to satisfy the first condition in the definition of strong support. In fact, we can define a canonical strong support of which $S$ is a terminal segment by stipulating that the $U^{\uparrow A_2}$'s are added (each one in turn between the preceding ones and $S$) in the order in which the correlated +$S_\epsilon$'s appear in $S$ and that $U$ is the canonical downward extension of $T$ in each case, and that the atomic items are added in the order of their images under $\iota^+_*$, with some fixed well-ordering of extended type indices used to resolve order of items with the same value under $\iota^+_*$. +\end{remark} + +\begin{definition}[coding function]\label{def:coding_function} +For any support $S$ and object $x$, we can define a function $\chi_{x,S}$ which sends $T=\pi[S]$ to $\pi(x)$ for every $T$ in the orbit of $S$ under +the action of allowable permutations. We call such functions {\em coding functions\/}. Note that if $\pi[S]=\pi'[S]$ then $(\pi^{-1}\circ \pi')[S]= S$, so +$(\pi^{-1}\circ \pi')(x)= x$, so $\pi(x)=\pi'(x)$, ensuring that the map $\chi_{x,S}$ for which we gave an implicit definition is well defined. +\end{definition} + +\begin{definition}[designated support] +For each ordinal $\gamma$, and for each orbit in $\tau_\gamma$ under allowable permutations, choose $x$ in the orbit (the designated element of the orbit), choose a strong support $S$ of $x$, +% and for each $\gamma$-allowable permutation $\pi$ define the designated support of $\pi(x)$ as $\pi[S]$. +{and for every other $y$ in the orbit, choose a designated allowable permutation $\pi_y$ such that $\pi_y(x) = y$, and define the {\em designated support\/} of $y$ to be $\pi_y[S]$.} +\end{definition} + +\begin{definition}[specification] +A {\em $\eta$-specification $S^*$\/} of a $\eta$-support $S$ is a function with the same domain as $S$. We use the notation $S^*_\epsilon$ for $S^*(\epsilon)$.%\marginpar{\hsuggest{Note indexing changes here. Also note (you have already pointed this out) that the components here named $\beta$ are actually redundant (and I fixed a name collision by talking about an $\eta$-support). I left them in to minimize forward propagation effects.}} + +%\rk{In the following cases, we never need to store $\beta$, since it may always be inferred from $A$.} True, and Im leaving it that way :-) + +\begin{enumerate} + +\item If $S_{\epsilon}$ is $(\{x\},A)$, where $\beta={\tt min}(A_1)$, then $S^*_\epsilon$ is $(0,\beta,\Sigma,A)$ where $\Sigma$ is the set of all $\delta$ such that $A=\pi_2(S_\delta)$ and $x \in \pi_1(S_\delta)$ (this captures identical atoms and near litters containing the given atom) + +\item If $S_\epsilon$ is $(N,A)$ and $N$ is a near-litter, where $\beta={\tt min}(A_1)$, and either $|A|\leq 2$ or $N^\circ$ is not in the range of any $f_{\gamma,\beta}$ for $\gamma<{\tt min}(A_2)$ (that is, $N$ is $A$-flexible), then $S^*_\epsilon$ is $(1,\beta,\Sigma,A)$, where $\Sigma$ is the set of all $\delta$ such that $\pi_2(S_\delta) = A$ +and $\pi_1(S_\delta) \sim \pi_1(S_\epsilon)$. %\rk{I note here that the Lean formalisation inefficiently also stores some atom data along with (near-)litters.} + +\item If $S_\epsilon$ is $(N,A)$ and $N$ is a near-litter, where $\beta={\tt min}(A_1)$, and $N^\circ=f_{\gamma,\beta}(x,T)$ with {$-1\leq\gamma<{\tt min}(A_2)$} and $x\in \tau_\gamma$ then +$S^*_\epsilon$ is $(2,\beta,\chi_{x,T},F,A)$, where $F$ is a function from the domain of $T$ into $\epsilon$ +such that $S_{F(\delta)} = (T^{\uparrow A_2})_\delta$ for each $\delta$ in the domain of $T$, or 1 if there is no such $F$ (the usefulness of 1 as a dummy being that it is not a function). There is a method to choose a canonical such $F$ if there is one: add the provision that for each $\delta$, $F(\delta)$ is chosen as small as possible. %\rk{I think it's cleaner here to replace $F$ with the relation $R \subseteq {\tt dom}(S) \times {\tt dom}(T)$ (or alternatively $R \subseteq \epsilon \times {\tt dom}(T)$) such that $(\xi, \eta) \in R$ precisely when $S_\xi = (T^{\uparrow A_1})_\eta$. This is what is formalised in Lean. Holmes: I'm leaving this as a possible work order; it has advantages and disadvantages. I think I'm not doing this.} +%\rk{[Omitted fourth block.]} + + +% \item If $S_\epsilon$ is $(N,A)$ and $N$ is a near-litter, where $\beta={\tt min}(A)$, and $N^\circ=f_{-1,\beta}(x,\emptyset)$ then $S^*_\epsilon$ is $(3,\beta,\Sigma,A)$, where $\Sigma$ is the set of all $\delta$ such that $S_\delta$ is $(\{x\},A_1)$. \rk{If we can define $-1$-supports (and hence $-1$-coding functions), we don't need this here.} \hsuggest{I believe this point can now be omitted because it falls under the previous one with the new handling of $-1$-supports.} + +\end{enumerate} +\end{definition} + +\begin{remark} +It should be evident that every support has a specification, and that a strong support will have a specification with no instances of $F = 1$%\rk{(if $R$ is used, this clause is not needed)} +, and that for any $\beta$-allowable permutation $\pi$ and strong $\beta$-support $S$, +$(\pi[S])^* = S^*$. What is less evident and our first target result here is that if $S$ is a strong support then any $T$ with $T^* = S^*$ is the image of $S$ under the action of an allowable permutation: the specifications precisely code the orbits in the strong supports under the allowable permutations. +\end{remark} + +{ +\begin{proposition}\label{prop:count_spec} +Suppose that we already know that there are $<\mu$ $\gamma$-coding functions for each $\gamma<\beta$ (which we will be able to assume by inductive hypothesis). +Then there are $<\mu$ specifications of $\beta$-supports for $\beta\leq \alpha$. +\end{proposition} +\begin{proof} +The elements of the range of a $\beta$-specification are taken from a set of size less than $\mu$, since they are built from ingredients in $\kappa$ (support domain elements), $\beta+1$ (type indices currently in use), and $\gamma$-coding functions for $\gamma<\beta$; each of the collections from which the ingredients are taken are of size $<\mu$ and $\mu$ has cofinality at least $\kappa$. +Therefore, the cardinality of the set of specifications is bounded by $\nu^\xi$ where $\nu < \mu$ and $\xi < \kappa$. +Now, $\nu^\xi$ is the cardinality of the set of functions from $\xi$ to $\nu$, which is less than or equal to the cardinality of the power set of $\nu \times \xi$, which in turn is less than $\mu$ because $\mu$ is strong limit. +\end{proof} +\begin{comment} +But since strong limit cardinals are closed under exponentials (the content of the subsequent lemma \ref{lem:strong_limit_pow_lt}), this bound is strictly less than $\mu$. +\begin{annot} + Alternative to the final sentence, putting the subsequent lemma inline: + Now, $\nu^\xi$ is the cardinality of the set of functions from $\xi$ to $\nu$, which is less than or equal to the cardinality of the power set of $\nu \times \xi$, which in turn is less than $\mu$ because $\mu$ is strong limit. + So this bound is strictly less than $\mu$ as required. +\end{annot} + +% A $\beta$-specification is a small structure built from ingredients in $\kappa$ (support domain elements), $\beta+1$ (type indices currently in use), and +% $\gamma$-coding functions for $\gamma<\beta$; each of the collections from which the ingredients are taken are of size $<\mu$ and $\mu$ has cofinality at least $\kappa$. +\end{proof} +\begin{lemma}\label{lem:strong_limit_pow_lt} +If $\mu$ is any strong limit cardinal and $\nu, \xi < \mu$, then $\nu^\xi < \mu$. +\ +\end{lemma} +\begin{proof} +If $\nu,\xi <\mu$ then $\nu^\xi$ is the cardinality of the set of functions from $\xi$ to $\nu$, which is less than or equal to the cardinality of the power set of $\nu \times \xi$, which is less than $\mu$ because $\mu$ is strong limit. +\end{proof} +\end{comment} + + +A detail: We need to count {\em all\/} coding functions, allowing $\gamma<\beta$ to vary. We have $\beta < \lambda \leq {\tt cf}(\mu)$ and so the sum of cardinals each $<\mu$ indexed by ordinals $<\beta$ will be less than $\mu$. + +\begin{lemma}\label{lem:specification_determines_orbit} +The specification(s) of a strong $\beta$-support exactly determine the orbit in the action of $\beta$-allowable permutations on supports to which it belongs: if two $\beta$-supports have the same specification, they are in the same orbit. +\end{lemma} +\begin{proof} +It is straightforward to see that if $S$ is a $\beta$-support and if $\pi$ is a $\beta$-allowable permutation, and $S^*$ is the specification for $S$, that $S^*$ is also the specification for $\pi[S]$. The relationships between items in the support recorded in the specification are invariant under application of allowable permutations. + +It remains to show that if $S$ and $T$ are supports, and $S^*=T^*$ is a specification for both, there is an allowable permutation $\pi$ such that $\pi[S]=T$. + +We construct $\pi$ using the Freedom of Action Theorem {(\ref{thm:foa})}. +Define the $\beta$-approximation $\psi$ in the following way. + +%\marginpar{\hsuggest{I made systematic changes in your text here, basically omitting all minus one subscripts and incrementing some subscripts on extended type indices. Make sure you like it.}} +If $S_\epsilon = (M,A)$ for $M$ a near-litter, then $T_\epsilon = (N,A)$ for $N$ a near-litter, and we set $\psi_A(M^\circ) = N^\circ$. +Note that if $S_\delta = (M,A)$ for $\delta \neq \epsilon$, the fact that $S$ and +$T$ have the same specification ensures that $T_\delta = (N,A)$. + +If we have $S_\epsilon = (\{x\},A)$, we will have $T_\epsilon = (\{y\},A)$ for some $y$, and we will set $\psi_A(x) = y$. +Again, if $S_\delta = (\{x\},A)$, then $T_\delta = (\{y\},A)$. + +We then complete orbits of atoms, with the proviso that if $x \in M$ where $S_\delta = (M, A)$, then $\psi_A(x) \in N$ where $T_\delta = (N, A)$. +During this process, we ensure that for every near-litter $M$ with $(M,A) \in {\tt rng}(S)$, we have $M \Delta M^\circ \subseteq {\tt dom}(\psi_A)$, and similarly, whenever $(N,A) \in {\tt rng}(S)$, we have $N \Delta N^\circ \subseteq {\tt dom}(\psi_A)^{-1}$. +This process makes $\psi$ into an approximation, and ensures that $\psi_A^*(M) = N$. + +We now need to check that $\psi$ is coherent. +If $M$ is $A$-flexible and we assigned $\psi_A(M^\circ) = N^\circ$, then $(M,A) = S_\epsilon$ and $(N,A) = T_\epsilon$ for some $\epsilon$. +As $S$ and $T$ have the same specification, $M$ is $A$-flexible if and only if $N$ is $A$-flexible. + +Now suppose that $M^\circ = f_{\delta,\gamma}(x, S')$ where $\gamma = {\tt min}(A_1)$ and $\delta < {\tt min}(A_2)$. +Again, as $S$ and $T$ have the same specification, we have +\begin{enumerate} + \item $N^\circ = f_{\delta,\gamma}(y, T')$; + \item there is a function $F$ such that $S_{F(\delta)} = ({S'}^{\uparrow A_2})_\delta$ and $T_{F(\delta)} = ({T'}^{\uparrow A_2})_\delta$; and + \item $\chi_{x,S'} = \chi_{y,T'}$. +\end{enumerate} +As $\chi_{x,S'} = \chi_{y,T'}$, there is a $\delta$-allowable permutation $\pi$ such that $\pi[S'] = T'$ and $\pi(x) = y$. +By the second property and the definition of $\psi$, we have $(\psi_{A_2})_\delta^*[S'] = T' = \pi[S']$. +It remains to check that +$$ \psi_A^+``f_{\delta,\gamma}(x,S') \sim f_{\delta,\gamma}(\pi(x),\pi'[S]) $$ +but this follows directly from the fact that $M^\circ = f_{\delta,\gamma}(x,S')$ and $N^\circ = f_{\delta,\gamma}(\pi(x),\pi'[S])$. + +%\suggest{[Check that we've already covered the $\delta=-1$ case.]}\marginpar{\hsuggest{Check this at meeting}} +% \rk{I'm not commenting here on the $\delta=-1$ case, because I think we can remove it after refactoring the type $-1$ mechanism.}\hsuggest{check that I actually have done so} + +Finally, by the Freedom of Action Theorem (\ref{thm:foa}), $\psi$ approximates some $\beta$-allowable permutation $\pi$, and in particular, $\pi$ satisfies $\pi[S] = T$, as required. + +\begin{comment} +% Subsequent text uses the old version of FoA. + +If we have $S_\epsilon = (\{x\},A)$, we will have $T_\epsilon = (\{y\},A)$ for some $y$, and we will set $\pi^0_A(\{x\}) = \{y\}$ as part of the construction of the approximation to be used. Note that if $S_\delta = (\{x\},A)$ for $\delta \neq \epsilon$, the fact that $S$ and +$T$ have the same specification ensures that $T_\delta = (\{y\},A)$, because the specification contains the information that the specified supports have the same values at $\epsilon$ and $\delta$. + +We suppose all these approximation values are computed at the outset. Further, we fill in orbits, +with the proviso that if an atom $x$ to be sent by $\pi^0_A$ to an atom $y$ and $(M,A)$ is in $S$ with the same index as $(N,A)$ in $T$, then $x \in M$ if and only if $y \in N$, and if an atom $x$ to be sent by $(\pi^0_A)^{-1}$ to an atom $y$ and $(M,A)$ is in $T$ with the same index as $(N,A)$ in $S$, then $x \in M$ if and only if $y \in N$. There is no obstruction to choosing values to meet these conditions, sufficiently to fill orbits. + +If we have $S_\epsilon = (M,A)$ for $M$ a near litter and either $|A|=1$ or $M^\circ$ is not in the range of any $f_{\gamma,\beta}$ for $\gamma<{\tt min}(A_1)$, then $T_\epsilon = (N,A)$ for $N$ a near litter, with analogous properties, and we set $\pi^0_A(M^\circ) = N^\circ$ as part of the data for application of the Freedom of Action Theorem. Note again +that information in the specification ensures that if $S_\delta = (M',A)$ for $M'\sim M$ that +$T_\delta = (N',A)$ will have $N' \sim N$ because the specification tells us that $T$ has first components of values being {near-}litters near one another at the same pairs of ordinals that $S$ does {(by parts 2--4 of the definition)}, +and so no conflicting computation of values for the approximation will occur. + +We suppose orbits filled in in the flexible litters, which can be done quite freely. + +In the computation for the case of inflexible litters, we suppose that the computation of all orbits under the approximation has been completed for all atomic and flexible items in $S$, and for inflexible items appearing earlier in the support %\rk{(maybe clarify that we're talking about the support encoded in the inflexible litter rather than $S$?)}. + +If we have $S_\epsilon= (M,A)$ for $M$ a near litter with $M^\circ = f_{\gamma,\beta}(x,U)$, where $-1<\gamma<{\tt min}(A_1)$, +then $S^*_\epsilon=T^*_\epsilon$ is $(2,\beta,\chi_{x,U}, F,A)$ and where $T^+_\epsilon=(N,A)$, we have $N^\circ = f_{\gamma,\beta}(y,V)$ +where $\chi_{y,V} = \chi_{x,U}$, so any allowable permutation $\pi$ such that $\pi_{A_1 \cup \{\gamma\}}[S \circ F] = T \circ F$ will satisfy $\pi_{A_1 \cup \{\gamma\}}(x) = y$ and so $\pi^+_A``M \sim N$. +{(Note that $S \circ F = U$ and $T \circ F = V$, because the assertion $\pi_{A_1 \cup \{\gamma\}}[U] = V$ is needed to conclude $\pi^+_A``M \sim N$ by the coherence condition.)} +We add additional information to our approximation to make it so $M$ will be sent precisely to $N$. +Extend the approximation so that $\pi^0_{A}$ sends each singleton of an element of $M\setminus M^\circ$ to a singleton of an element of $N^\circ$ and ($\pi^0_A)^{-1}$ sends each singleton of an element of $N\setminus N^\circ$ to a singleton of an element of $M^\circ$. One needs to further extend the approximation to fill in orbits. The constraint must be observed in making extensions at atoms that if $P$ is a litter with a value for +$\pi^0_A(P)$ already determined, to which $x$ belongs [resp.\ does not belong] then $\pi^0_A(\{x\})$ must be chosen as $\{y\}$ such that +$y$ belongs to [does not belong to] $\pi^0_A(P)$ [and there is a precisely parallel condition for choosing new values of $(\pi^0_A)^{-1}$ to fill orbits]. %\rk{(Added a backslash in the code for {\tt resp.} for nicer spacing.)} + This strategy avoids introduction of problematic exceptions. We then add $\pi^0_A(M^\circ) = N^\circ$ to the approximation for bookkeeping purposes: we have arranged for the atomic and flexible items in the approximation to force this valuation anyway [so the applicability of Freedom of Action is not affected; inflexible items can be dropped from the approximation before the theorem is applied], and we need this information to guide orbit filling. +Note that there is enough computational information in the specification to fill in orbits in the approximation for inflexible litters too (which will require the same adjustment for exact fit at each step). \rk{(Isn't this what we just did? I think we need to say that this holds for `flexible litters too', or alternatively just move this discussion to some place where we can talk about all kinds of litters at once.) Holmes: review this comment.} + +If we have $S_\epsilon= (M,A)$ for $M$ a near litter with $M^\circ = f_{-1,\beta}(x,\emptyset)$, then we have $T_\epsilon=(N,A)$ +where $N^\circ = f_{-1,\beta}(y,\emptyset)$, and we add to our approximation the information that $\{x\}$ is mapped to +$\{y\}$ by $\pi^0_{A_1}$ (and fill in orbits), and the fix to extend the approximation to get $M$ to map precisely to $N$ elementwise under $\pi^+_A$ is exactly as in the previous case. The usual observation can be made that if $(M,A)$ appears at another location in $S$, there is enough information in the specification to force the computation to give the same result. + +If we have $S_\epsilon=(M,A)$ for $M$ a near-litter +$S_\delta = (M',A)$ with $M \sim M'$, then observe that for each $z$ in $M \Delta M'$, +$(\{z\},A) \in {{\tt rng}}(S)$; if $M \nsim M'$, observe that for each $z$ in $M \cap M'$, +$(\{z\},A) \in {{\tt rng}}(S)$ The computations already done to force $S_\epsilon$ to map to $T_\epsilon$, along with the easy calculations for atoms, show that there is no additional work needed in these cases, and so we do not do any, and no conflict arises. %\rk{I believe the same must be said for $M \cap M'$ for $M \nsim M'$.} + +In the indicated way, we construct an approximation such that the allowable permutation it exactly approximates must have action sending $S$ to $T$, completing the proof of the Lemma. +\end{comment} +\end{proof} + +\begin{proposition}\label{prop:count_support_orbits} +{Under the inductive hypothesis that for each $\beta<\alpha$ we have $<\mu$ $\beta$-coding functions, there are less than $\mu$ orbits in supports under $\beta$-allowable permutations.} +\end{proposition} +\begin{proof} +Since the $\beta$-specifications [$\beta \leq \alpha$] precisely determine the orbits in {strong} supports under $\beta$-allowable permutations, and there are $<\mu$ $\beta$-specifications +(on stated hypotheses) there are $<\mu$ such orbits. + +% \item[weak specifications:] +Notice that we can give a kind of specification for any support $S$: give the specification for a strong support $T$ of which $S$ is an end extension and the index at which $S$ starts: this will determine the orbit in which $S$ lies in the allowable permutations. +This establishes that the collection of orbits in the $\beta$-supports is no larger than the collection of orbits in the strong $\beta$-supports. These weak specifications are not unique. %\rk{Now that I changed the named {\tt \textbackslash item} into a proof environment, we don't define what the phrase `weak specification' means. It's only used once in the paper, in this sentence.} +\end{proof} + +The strategy of our argument for the size of the types is to show that that there are $<\mu$ coding functions\ for each type, which implies that there are no more than $\mu$ (and so exactly $\mu$) elements of each type, since every element of a type is obtainable by applying a coding function (of which there are $<\mu$) to a support (of which there are $\mu$). + +\begin{lemma}\label{lem:count_coding_function_zero} +{There are less than $\mu$ coding functions for type 0 and for type $-1$} +\end{lemma} +\begin{proof} +We describe all coding functions for type 0. The orbit of a 0-support in the allowable permutations is determined by the positions in the support occupied by near-litters, and for each position in the support occupied by a singleton, the positions, if any, of the near-litters in the support which include it. %\rk{(I think `near-litter' here should be pluralised; first projections of elements of ranges of supports are no longer disjoint.)} + There are no more than $2^\kappa$ ways to specify an orbit. Now for each such equivalence class, there is a natural partition of type $-1$ into near-litters, singletons, and a large complement set. The partition has $\nu<\kappa$ elements, and there will be $2^\nu\leq 2^\kappa$ coding functions for that orbit in the supports, determined by specifying for each compartment in the partition whether it is to be included or excluded from the set computed from a support in that orbit. So there are no more than $2^\kappa<\mu$ coding functions over type 0. + +Any type $-1$ coding function is associated with a uniquely determined type 0 coding functions of a singleton, so there are no more of the former than of the latter. + +\end{proof} + +\begin{lemma}\label{lem:count_coding_function} +{Under the inductive hypothesis that for each $\beta<\alpha$ we have $<\mu$ $\beta$-coding functions, there are less than $\mu$ coding functions for $\alpha$.} +\end{lemma} + +\begin{proof} + +% Our inductive hypothesis is that for each $\beta<\alpha$ we have $<\mu$ $\beta$-coding functions. Our aim is to show that +% there are $<\mu$ $\alpha$-coding functions. +{By lemma \ref{lem:count_coding_function_zero} we may assume $\alpha$ is positive.} +Note that we already know that there are $<\mu$ $\alpha$-specifications, on the stated inductive hypothesis {(proposition \ref{prop:count_spec})}. + +We specify an object $X\in \tau_\alpha$ and an $\alpha$-support $S$ for $X$, and develop a recipe for the coding function $\chi_{X,S}$ which can be used to see that there are $<\mu$ $\alpha$-coding functions (assuming of course that we know that things worked out correctly for $\beta<\alpha$). + + +$X = B_\alpha$, where $B$ is a subset of $\tau_\beta$. ($\beta<\alpha$ is chosen arbitrarily here{, and could for example be chosen to be 0}). + +We define $S_b$ as the designated strong support for $b$, and $T_b$ as the canonical extension to a strong support of $S_b^{\uparrow \alpha}+S$. %\rk{(In Lean we just use $S_b^{\uparrow \alpha}+S$ directly, or rather, $S+S_b^{\uparrow \alpha}$, because we don't need to worry about the terminal segment property of strong support extensions.)} + + + +For each $b \in B$ there is a support $S_b$ chosen as above, from which the support $T_b$ can be computed as described above. If $b' \in B$ is in the range of the same coding function $\chi_{b,S_b}$ as $b$, $S_{b'}$ is $\pi[S_{b}]$ for some $\beta$-allowable $\pi$ with $\pi(b) = b'$. +If we have the further condition that $T_b$ and $T_{b'}$ have the same specification, it follows that there is a permutation $\pi_2$ such that $\pi_2[T_b] = T_{b'}$. Note that $(\pi_2)_\beta[S_b]=S_{b'}$, from which it follows that $\pi^{-1} \circ (\pi_2)_\beta$ fixes $b$, since it fixes all elements of $S_b$, so $b'=\pi(b) = (\pi_2)_\beta(b)$, from which it follows +that $\pi_2(\{b\}_\alpha) = \{b'\}_\alpha$ so $\{b\}_\alpha$ and $\{b'\}_\alpha$ are in the range of the same coding function $\chi_{\{b\}_\alpha,T_b}$. Now there are $<\mu$ possible specifications of a coding function $\chi_{b,S_b}$ [we know that there are $<\mu$ $\beta$-coding functions] followed by a specification for $T_b$ [we know that there are $<\mu$ $\alpha$-specifications], so by this procedure we describe a family of $<\mu$ coding functions $\chi_{\{b\}_\alpha,T_b}$ whose range covers all type $\alpha$ singletons of elements of $B$. \rk{(Sky: In my opinion this result is a good lemma. I'll think about it and get back to you. Holmes: leaving this comment in to encourage consderation of the revision)} + + +We claim that $\chi_{X,S}$ can be defined in terms of the orbit of $S$ in the allowable permutations and the set of coding functions $\chi_{\{b\}_\alpha,T_b}$ for $b \in B$. There are $<\mu$ coding functions $\chi_{\{b\}_\alpha,T_b}$ for $b \in \tau_\beta$, and so there are $<\mu$ sets of coding functions of this kind, because $\mu$ is strong limit, and we have shown above in proposition \ref{prop:count_support_orbits} that there are $<\mu$ orbits in the strong $\alpha$-supports under allowable permutations, so this will imply that there are $<\mu$ $\alpha$-coding functions, which will further imply that there are $\leq \mu$ elements of type $\alpha$ (it is obvious that there are $\geq \mu$ elements of each type). + + +The definition that we claim works is that $\chi_{X,S}(U) = B'_\alpha$, where $B'$ is the set of all $\bigcup (\chi_{\{b\}_\alpha,T_b}(U')\cap \pi_\beta$) for $b \in B$ and $U$ a terminal segment of $U'$. Clearly this definition depends only on the orbit of $S$ and the set of coding functions $\chi_{\{b\}_\alpha,T_b}$ derived from $B$ as described above. Before we know that this is actually the coding function desired, we will write it as $\chi_{X,S}^*$. + +The function we have defined is certainly a coding function, in the sense that $\chi_{X,S}^*(\pi[U]) = \pi(\chi_{X,S}^*(U))$. What requires work is to show that +$\chi_{X,S}^*(S)=X$, from which it follows that it is in fact the intended function. + +Clearly each $b \in B$ belongs to $\chi^*_{X,S}(S)$ as defined, because \newline $b = \bigcup (\chi_{\{b\}_\alpha,T_b}(T_b)\cap \tau_{\beta})$, and $T_b$ has $S$ as a terminal segment. + +An arbitrary $c \in \chi_{X,S}^*(S)$ is of the form $\bigcup (\chi_{\{b\}_\alpha,T_b}(U)\cap \tau_{\beta})$, where $U$ has $S$ as a terminal segment and of course must be in the orbit of $T_b$ under allowable permutations, so some $\pi_0[T_b] = U$. Now observe that $\pi_0[S]=S$, so $\pi_0(X)=X$, so +$(\pi_0)_\beta``B=B$. Further $(\pi_0)_\beta(b) = c$, so in fact $c \in B$ which completes the argument. The assertion $(\pi_0)_\beta(b) = c$ might be thought to require verification: the thing to observe is that +$$c=\bigcup (\chi_{\{b\}_\alpha,T_b}(U) \cap \tau_\beta)=\bigcup(\pi_0(\chi_{\{b\}_\alpha,T_b}(T_b))\cap \tau_\beta)= +\bigcup (\pi_0(\{b\}_\alpha)\cap \tau_\beta) $$ +$$=\bigcup(\{(\pi_0)_\beta(b)\}_{\alpha} \cap \tau_\beta) = (\pi_0)_\beta(b).$$ +%\rk{Swapped to display math mode; replaced $S$ with $T_b$, replaced $\beta$ with $\alpha$.} + + +\end{proof} + +% This completes the proof: any element of a type is determined by a support (of which there are $\mu$) and a coding function (there are $<\mu$ of these, so a type has no more than $\mu$ elements (and obviously has at least $\mu$ elements). +{Thus, we conclude} +\begin{theorem}\label{thm:count_elements} +% This is written as a theorem so we can refer to its number elsewhere, e.g. in `Hypotheses for the recursion'. +{Each type $\tau_\alpha$ has exactly $\mu$ elements.} +\end{theorem} +\begin{proof} +Any element of a type is determined by a support (of which there are $\mu$ {by Remark \ref{rk:counting_supports}}) and a coding function (there are $<\mu$ of these {by lemma \ref{lem:count_coding_function}}), so a type has no more than $\mu$ elements (and obviously has at least $\mu$ elements). +\end{proof} + +\newpage +\subsection{The structure is a model of predicative TTT}\label{ss:predicative_ttt} + +{There is then a very direct proof of the following:} +\begin{proposition}\label{prop:predicative_ttt} + The structure presented is a model of predicative TTT (in which the definition of a set at a particular type may not mention any higher type). +\end{proposition} +\begin{proof} +% There is then a very direct proof that the structure presented is a model of predicative TTT (in which the definition of a set at a particular type may not mention any higher type). +Use $E$ for the membership relation $\in_{TTT}$ of the structure defined above (in which the membership of type $\beta$ objects in type $\alpha$ objects is actually a subrelation of the membership relation of the metatheory, a fact inherited from the scheme of supertypes). It should be evident that $x E y \leftrightarrow \pi_\beta(x) E \pi(y)$, +where $x$ is of type $\beta$, $y$ is of type $\alpha$, and $\pi$ is an $\alpha$-allowable permutation. + +Suppose that we are considering the existence of $\{x : \phi^s\}$, where $\phi$ is a formula of the language of TST with $\in$ translated as $E$, and $s$ is a strictly increasing sequence of types. The truth value of each subformula of $\phi$ will be preserved if we replace each $u$ of type $s(i)$ with $\pi_{A_{s,i}}(u)$, where $A_{s,i}$ is the set of all $s_k$ for $i \leq k \leq j+1$ [$x$ being of type $s(j)$, and there being no variables of type higher than $s(j+1)$]: $\pi_{A_{s,i}}(x) E \pi_{A_{s,i+1}}(y)$ is equivalent to $(\pi_{A_{s,i+1}})_{s(i)}(x) E \pi_{A_{s,i+1}}(y)$, which is equivalent to $xEy$ by the observation above. The formula $\phi$ will contain various parameters $a_i$ of types $s(n_i)$ and it is then evident that the set $\{x : \phi^s\}$ will be fixed by any $s(j+1)$-allowable permutation $\pi$ such that $\pi_{A_{s,n_i}}$ fixes $a_i$ for each $i$. But this means that +%$(s(j+1),s(j),\{x : \phi^s\})$ + $\{x : \phi^s\}_{s(j+1)}$ is symmetric and belongs to type $s(j+1)$: %\rk{[This is the only place that we use code notation.]} \suggest{[We can replace the code syntax with $\{x : \phi^s\}_{s(j+1)}$, thus removing the last use of code notation.]} \marginpar{\hsuggest{Let's make it so at the meeting}} + we can merge the supports of the $a_i$'s (with suitable raising of indices) into a single $s(j+1)$-support. Notice that we assumed the predicativity condition that no variable more than one type higher than $x$ appears (in the sense of TST). + +This procedure will certainly work if the set definition is predicative (all bound variables are of type no higher than that of $x$, parameters at the type +of the set being defined are allowed), but it also works for some impredicative set definitions. +\end{proof} + +There are easier proofs of the consistency of predicative tangled type theory; %\rk{[I'd be interested to know more!]} +there is a reason of course that we have pursued this one. + +It should be noted that the construction given here is in a sense a Frankel-Mostowski construction, though we have no real need to reference the usual +FM constructions in ZFA here. Constructions analogous to Frankel-Mostowski constructions can be carried out in TST using permutations of type 0; here we are doing something much more complicated involving many permutations of type $-1$ which intermesh in precisely the right way. Our explanation of our technique is self-contained, but we do acknowledge this intellectual debt. + + + +\newpage +\subsection{Impredicativity: verifying the axiom of union}\label{ss:impredicativity} + +What remains to complete the proof is that typed versions of the axiom of set union hold. That this is sufficient is a fact about predicative type theory. +If we have predicative comprehension and union, we note that for any formula $\phi$, $\{\iota^k(x):\phi(x)\}$ will be predicative if $k$ is taken to be large enough, then application of union $k$ times to this set will give $\{x:\phi(x)\}$. $\iota(x)$ here denotes $\{x\}$. It is evidently sufficient to prove that unions of sets of singletons exist. +{So what we need to show is the following result.} + +% So what we need to show is that if $\alpha>\beta>\gamma$ and $G \subseteq \tau_\gamma$, and $$\{\{g\}_\beta:g \in G\}_\alpha$$ is symmetric (has an $\alpha$-support, so belongs to $\tau_\alpha$), then $G_\beta$ is symmetric (has a $\beta$-support, so belongs to $\tau_\beta$). +\begin{proposition}\label{prop:unions_of_singletons} +If $\alpha>\beta>\gamma$ and $G \subseteq \tau_\gamma$, and $$\{\{g\}_\beta:g \in G\}_\alpha$$ is symmetric (has an $\alpha$-support, so belongs to $\tau_\alpha$), then $G_\beta$ is symmetric (has a $\beta$-support, so belongs to $\tau_\beta$). +\end{proposition} +\begin{proof} +Suppose that $\{\{g\}_\beta:g \in G\}_\alpha$ is symmetric. It then has a strong support $S$. We claim that $S_{(\beta)}$, defined as $\{(z,C): {\tt max}(C)=\beta \wedge (z,C\cup \{\alpha\}) \in S\}$, is a $\beta$-support for $G_\beta$. + +Any $g \in G$ has a strong $\gamma$-support $T$ which extends $(S_{(\beta)})_{(\gamma)}$. + +Suppose that the action of a $\beta$-allowable permutation $\pi$ fixes $S_{(\beta)}$. + +Our plan is to use Freedom of Action technology to construct an $\alpha$-allowable permutation $\pi^*$ whose action on $S$ is the identity +and whose action on $T^{\uparrow\{\alpha,\beta\}}$ precisely parallels the action of $\pi$ on $T^{\uparrow\beta}$. %\rk{Fixed from $T^{\{\alpha,\beta\}}$ and $T^{\{\beta\}}$.} + +If this is accomplished, then the action of $\pi^*$ fixes $S$ and so fixes $$\{\{g\}_\beta:g \in G\}_\alpha,$$ while at the same +time $(\pi^*_\beta)_\gamma$ agrees with $\pi_\gamma$ on $G$. This implies that $\pi_\gamma(g) \in G$ (and the same argument applies to $\pi^{-1}$) +so $\pi$ fixes $G_\beta$'. + +We construct the allowable permutation $\pi^*$ by the Freedom of Action Theorem (\ref{thm:foa}), by defining the following $\alpha$-approximation $\psi$. + +For every $(\{x\},A) \in {\tt rng}(S)$, we define $\psi_A(x) = x$, and for every $(N,A) \in {\tt rng}(S)$ for $N$ a near-litter, we define $\psi_A(N^\circ) = N^\circ$. +Extend $T^{\uparrow\beta}$ to \suggest{its canonical} strong $\beta$-support $T^*$ {(remark \ref{rk:canonical_strong_support})}, then if $(\{x\},A) \in {\tt rng}(T^*)$, we define $(\psi_\beta)_A(\pi^n_A(x)) = \pi^{n+1}_A(x)$ for every integer $n$, and if $(N,A) \in {\tt rng}(T^*)$ for $N$ a near-litter, we similarly define $(\psi_\beta)_A(\pi^n_A(N)^\circ) = \pi^{n+1}_A(N)^\circ$. + +We then complete orbits of atoms similarly to the proof of lemma \ref{lem:specification_determines_orbit} to ensure that $\psi_A(N) = N$ for $(N,A) \in {\tt rng}(S)$ and $(\psi_\beta)_A(\pi^n_A(N)) = \pi^{n+1}_A(N)$ for $(N,A) \in {\tt rng}(T^*)$, and then arrange extra orbits if needed such that the interference condition in definition \ref{def:base_approx} is satisfied. +\rk{[Sky: Are extra details needed?]} + +{ +It now suffices to check that this approximation is coherent. +If $\psi_A^*``L \sim L'$, we have two cases: either $(N,A)$ appears in $S$ with $N^\circ = L = L'$, or $B = A\setminus\{\alpha\}$ has maximum element $\beta$ and $(N,B)$ occurs in $T^*$ with $\pi_B^n(N)^\circ = L$ and $\pi_B^{n+1}(N)^\circ = L'$. +Note that if both of these cases are true at the same time, then as $\pi$ fixes $S_{(\beta)}$, the two defined images of $L$ coincide. + +In the first case, if $L$ is $A$-flexible then $L' = L$ is $A$-flexible as required, and if $L = f_{\delta,{\tt min}(A_1)}(x,T)$ with $\delta < {\tt min}(A_2)$, then as $S$ is a strong support, the range of $T^{\uparrow A_2 \cup \{\delta\}}$ is a subset of the range of $S$, as required. + +For the second case, we first show that $L$ is $A$-flexible if and only if $L$ is $B$-flexible. +The forward direction is trivial. +The converse can only fail if $B$ is too short to satisfy the definition of inflexibility, so we may suppose that $L = f_{\delta,{\tt min}(A_1)}(x,T)$ with $\delta < {\tt min}(A_2)$ where $A$ has length exactly 3. +Then we must have ${\tt min}(A_1) = \beta$, so $A = \{\alpha,\beta,-1\}$ and $B = \{\beta,-1\}$. +As $(N,B)$ occurs in $T^*$, it either came from a support condition in $T$, which is impossible as $B$ does not contain $\gamma$, or it came from a type-raised copy of an $\eta$-support we needed to include in $T^*$ to make it a strong support. +But $\eta \neq -1$ as $-1$-supports cannot contain near-litter support conditions, and if $\eta$ were a proper type index, we would have $-1 < \eta < \beta$ and $\eta \in B$, also giving a contradiction. +Hence $(T^*)^{\uparrow\alpha}$ is a strong $\alpha$-support, and we are done by the method used for $S$. +} + +\begin{comment} +Close up the $\gamma$-support $T$ to a support $T^*$ under action of $\pi$ (for each $(x,A)$ in the range of $T^*$ and each integer $i$, $((\pi^i)^+_A``x,A) \in {\tt rng}(T^*)$) and values at exceptions +(if $(x,A) \in {\tt rng}(T^*)$ and $y \in x \Delta x^\circ$, then $(\{y\},A) \in {\tt rng}(T^*)$; in combination with closure under actions of $\pi$, this handles all exceptional actions). That $T$ can be extended to a support with these properties should be clear. + +We construct the allowable permutation $\pi^*$ by Freedom of Action \marginpar{\hsuggest{HOLMES: here we need to consider whether we need to say this differently because of new FOA machinery}}so that the action of $(\pi^*_\beta)_\gamma$ on atomic and flexible items in $T^*$ agrees with the action of $\pi_\gamma$ on $T^*$ +and the action of $\pi_*$ fixes atomic and flexible items in $S$. On any non-flexible litter $L$ in $S$, $\pi^*_\beta$ acts correctly because it acts correctly on a support of the inverse image of $L$ under the appropriate $f$ map (fixing all of its elements), and there will be no unexpected exceptional actions because the permutation is constructed by Freedom of Action, so we get identity rather than nearness. \rk{Don't we need to include the exceptional atoms in $S$ in the data included in the approximation, like we did with $T^*$? Holmes: I believe that there arent any! Will review} +The tricky case seems to require a little extra attention to the action on $T^*$: if a non-flexible litter has inverse image $(u, \emptyset)$ under $f_{-1,\gamma}$, it is mapped by $\pi$ to something with inverse image $(v, \emptyset)$ under $f_{-1,\gamma}$, we arrange for the +approximation generating $\pi^*$ to induce +$\pi^*_\beta$ to map $\{u\}_\beta$ to $\{v\}_\beta$. %\rk{Added in some $\emptyset$s.} +Thus $(\pi^*_\beta)_\gamma$ maps $g$ to $\pi_\gamma(g)$ as required for the argument above. Since the action of $\pi$ fixes $S_{(\beta)}$ there can be no conflict with the other obligation to fix $S$. That said, any non-flexible item is sent to its image under the appropriate derivative of $\pi$ because +a support is acted on correctly and there will be no exceptional actions of derivatives of $\pi^*$ disagreeing with exceptional actions of $\pi$ because $T^*$ is closed under exceptional actions of $\pi$ in litters. This completes the argument. +\end{comment} +\end{proof} + +This completes the proof. In the formal proof in Lean, what is actually done is a proof that each of the assertions in the finite axiomatization of Hailperin in the version discussed in {subsection \ref{ss:hailperin}} holds in all typed versions in our structure for the language of TTT, so it is in fact a model of TTT. The axioms in Hailperin other than the axiom of type lowering are predicative comprehension axioms and +admit demonstration by the methods of {proposition \ref{prop:predicative_ttt} [or] section \ref{ss:predicative_ttt}}, done explicitly without metamathematics. In the formalization, the axiom of type lowering, which contains rather more content than the axiom of set union restricted to sets of singletons which is proved here, is proved by first proving the existence of an iterated image under elementwise application of the singleton operation of the desired set, whose definition is predicative, then repeatedly applying the result of this section that sets of singletons have unions. + + + + + + + + + + + + + + + + +\newpage + +\section{Conclusions, extended results, and questions} +\begin{comment} +[I have copied in the conclusions section of an older version, but what it says should be about right, +and may require some revisions to fit in this paper. I also added the bibliography, which again is probably approximately the right one.] +\end{comment} + +This is a rather boring resolution of the NF consistency problem. + +NF has no locally interesting combinatorial consequences. Any stratified fact about sets of a bounded standard size which holds in ZFC will continue to hold in models constructed using this strategy with the parameter $\kappa$ chosen large enough. +That the continuum can be well-ordered or that the axiom of dependent choices can hold, for example, can readily be arranged. Any theorem about familiar objects such as real numbers which holds in ZFC can be relied upon to hold in our models +(even if it requires Choice to prove), and any situation which is possible for familiar objects is possible in models of NF: for example, the Continuum Hypothesis can be true or false. It cannot be expected that NF proves any strictly local stratified result about familiar mathematical objects which is not also a theorem of ZFC. + +Questions of consistency with NF of global choice-like statements such as ``the universe is linearly ordered" cannot be resolved by the method used here (at least, not without major changes). One statement which seems to be about big sets can be seen to hold in our models: the power set of any well-orderable set is well-orderable, and more generally, beth numbers are alephs. We indicate the proofs: a relation which one of our models of TTT thinks is a well-ordering actually is a well-ordering, because the models are countably complete; so a well-ordering with a certain support has all elements of its domain sets with the same support (a permutation whose action fixes a well-ordering has action fixing all elements of its domain), and all subsets of and relations on the domain are sets with the same support (adjusted for type differential), and this applies further to the well-ordering of the subsets of the domain which we find in the metatheory. Applying the same result to sets with well-founded extensional relations on them proves the more general result about beth numbers. This form of choice seems to allow us to use choice freely on any structure one is likely to talk about in the usual set theory. It also proves, for example, that the power set of the set of ordinals (a big set!) is well-ordered. + +NF with strong axioms such as the Axiom of Counting (introduced by Rosser in \cite{rosser}, an admirable textbook based on NF), the Axiom of Cantorian Sets (introduced in \cite{henson})\footnote{Getting Cantorian Sets or Large Ordinals to hold is very sensitive to the relationship between $\kappa$ and $\lambda$, and the first author is not yet entirely certain of the details. It requires the hypothesis that $\kappa<\lambda=\mu$ to avoid outright refutability of this axiom in resulting models of NF, and then a large cardinal hypothesis. We note that for the moment we need to use Henson's original formulation of the Axiom of Cantorian Sets, that any {\em well-orderable\/} cantorian set is strongly cantorian; the situation for non-well-orderable sets is less clear.} or my axioms of Small Ordinals and Large Ordinals (introduced in my \cite{mybook}, which pretends to be a set theory textbook based on NFU) can be obtained by choosing $\lambda$ large enough to have strong partition properties, more or less exactly as I report in my paper \cite{strongaxioms} on strong axioms of infinity in NFU: the results in that paper are not all mine, and I owe a good deal to Robert Solovay in that connection (unpublished conversations and \cite{nfub}). + +That NF has $\alpha$-models for each standard ordinal $\alpha$ should follow by the same methods Jensen used for NFU in his original paper \cite{nfu}. \rk{Could you explain what an $\alpha$-model is (or tell me where I can find out)?} No model of NF can contain all countable subsets of its domain; all well-typed combinatorial consequences +of closure of a model of TST under taking subsets of size $<\kappa$ will hold in our models, but the application of compactness which gets us from TST + Ambiguity to NF forces the existence of externally countable proper classes, a result which has long been known and which also holds in NFU. + +We mention some esoteric problems which our approach solves. The Theory of Negative Types of Hao Wang (TST with all integers as types, proposed in \cite{tnt}) has $\omega$-models; an $\omega$-model of NF gives an $\omega$-model of the theory of negative types immediately. The question of existence of $\omega$ models of the theory of negative types was open. + +In ordinary set theory, the Specker tree of a cardinal is the tree in which the top is the given cardinal, the children of the top node are the preimages of the top under the map $(\kappa \mapsto 2^{\kappa})$, and the part of the tree +below each child is the Specker tree of the child. Forster proved using a result of Sierpinski that the Specker tree of a cardinal must be well-founded (a result which applies in ordinary set theory or in NF(U), with some finesse in the definition of the exponential map in NF(U)). Given Choice, there is a finite bound on the lengths of the branches in any given Specker tree. Of course by the Sierpinski result a Specker tree can be assigned an ordinal rank. The question which was open +was whether existence of a Specker tree of infinite rank is consistent. It is known that in NF with the Axiom of Counting the Specker tree of the cardinality of the universe is of infinite rank. Our results in this paper can be used to show that Specker trees of infinite rank are consistent in bounded Zermelo set theory with atoms or without foundation (this takes a little work, using the way that internal type representations unfold in TTT and a natural interpretation of bounded Zermelo set theory in TST; a tangled web as described above would have range part of a Specker tree of infinite rank). A bit more work definitely gets this result in ZFA, and we are reasonably confident that our permutation methods can be adapted to ZFC using forcing in standard ways (in which we are not expert) to show that Specker trees of infinite rank can exist in ZF. + +We believe that NF is no stronger than TST + Infinity, which is of the same strength as Zermelo set theory with separation restricted to bounded formulas (\cite{kemeny}). Our work here does not show this, as we need enough Replacement for +existence of $\beth_{\omega_1}$ at least. We leave it as an interesting further task, possibly for others, to tighten things up and show the minimal strength that we expect holds. + +Another question of a very general and amorphous nature which remains is: what do models of NF (or TTT) look like in general? Are all models of NF in some way like the ones we describe, or are there models of quite a different character? There are very special assumptions which we made by fiat in building our model of TTT which do not seem at all inevitable in general models of this theory. + +\subsection{Postscript} + +Inevitably, philosophical issues come up in connection with a system of set theory proposed by a philosopher. I get a lot of congratulations for vindicating Quine's foundational agenda, but in fact this is not part of my purpose here. It is not even clear to me that Quine {\em had\/} a foundational agenda in which his technical proposal of this set theory had a special place. + +The results of this paper show that if one really wanted to, one could use NF as a foundation for mathematics. It is odd that it disproves Choice, but the principle ``power sets of well-orderable sets are well-orderable", which holds in models constructed in this way, supports most applications of Choice. + +Our opinion is that Quine's proposal of NF was based on a mistake. He discusses whether to assume strong extensionality in the original paper, and his explanation of reasons for choosing strong extensionality contains an actual mathematical error. \rk{I would be very interested in details.} We believe that the correct system to propose was NFU, and if he had proposed NFU, the history of this kind of set theory might have been different. + +NFU is serviceable as a foundation for mathematics, and consistent with Choice and various strong axioms of infinity. It is odd that NFU + Choice proves that there are urelements (the same odd fact that NF disproves Choice), but no more than odd. +The type discipline of stratification is something that one must work to get used to, and it has been remarked that working with indexed families of sets is extremely awkward in NFU (and would be similarly awkward in NF). The view of the world which NFU supports is basically the same as that of ZFC: the natural models of NFU are obtained by considering an initial segment of the cumulative hierarchy with an external automorphism which moves a level, and NFU can interpret discussion of exactly such a structure internally. + +Unlike NF, NFU on introspection can tell one quite a lot about what its models should look like (as ZFC can with its own awareness of initial segments of the cumulative hierarchy; in NFU, analysis of the isomorphism classes of well-founded extensional relations gives both an interpretation of an initial segment of the Zermelo style universe and an interpretation of NFU itself if one has strong enough assumptions). NF tells one very little about what its intended world is like (it can, being an extension of NFU, internally construct a lot of information about an interpretation of NFU with lots of urelements, but there is not an obvious way to find out how an extensional world is constructed from internal evidence in NF itself). + +So, we do not believe this paper is a philosophical milestone. If there was one, it happened in 1969 when Jensen showed that NFU is consistent, and nobody noticed. + +We do believe that there are interesting questions to investigate about NF. Our paper does not settle all the questions about this system which have developed in the minds of people who have worked with it since 1937. In fact, the construction is based on special assumptions and does not seem to give much of an idea of what general models of this theory might look like. + +It might be viewed as philosophically interesting that this proof was formally verified. That is really an advertisement for a quite different foundational system, the logic of the Lean proof verification system. That it needed to be formally verified I believe reflects an interesting complexity in the mathematics here, not only the deficiencies of the first author as an expositor. + + + +\newpage + +\begin{thebibliography}{99} + + +\bibitem{marcelsf} Crabb\'{e}, M. [1992a] +On NFU. +{\em Notre Dame Journal of Formal Logic\/} 33, pp 112-119. + +\bibitem{metamath} Scott Fenton. New Foundations set theory developed in metamath. 2015. {\tt https://us.metamath.org/nfeuni/mmnf.html} + +\bibitem{forster} Forster, T.E. [1995] +Set Theory with a Universal Set, exploring an untyped Universe +Second edition. Oxford Logic Guides, Oxford University Press, Clarendon Press, Oxford. + +\bibitem{hailperin} Hailperin, T. [1944] +A set of axioms for logic. +{\em Journal of Symbolic Logic\/} 9, pp. 1-19. + + + +\bibitem{henson} Henson, C.W. [1973a] +Type-raising operations in NF. +Journal of Symbolic Logic 38 , pp. 59-68. + +\bibitem{tangled} Holmes, M.R. +``The equivalence of NF-style set theories with "tangled" type theories; the construction of omega-models of predicative NF (and more)". +{\em Journal of Symbolic Logic\/} 60 (1995), pp. 178-189. + +\bibitem{mybook} Holmes, M. R. [1998] +Elementary set theory with a universal set. +volume 10 of the Cahiers du Centre de logique, Academia, Louvain-la-Neuve (Belgium), 241 pages, ISBN 2-87209-488-1. See here for an on-line errata slip. By permission of the publishers, a corrected text is published online; an official second edition will appear online eventually. + +\bibitem{strongaxioms} Holmes, M. R. [2001] +Strong Axioms of infinity in NFU. +Journal of Symbolic Logic, 66, no. 1, pp. 87-116. \newline(``Errata in `Strong +Axioms of Infinity in NFU' ", JSL, vol. 66, no. 4 (December +2001), p. 1974, reports some errata and provides corrections). + +\bibitem{kemeny} Kemeny, J.G. [1950] +Type theory vs. set theory (abstract of Ph.D. thesis). +{\em Journal of Symbolic Logic\/} 15, p. 78. + +\bibitem{nfu} Jensen, R.B. +``On the consistency of a slight(?) modification of Quine's NF". +{\em Synthese\/} 19 (1969), pp. 250-263. + +\bibitem{quinepair} Quine, W.V. [1945] +On ordered pairs. +{\bf Journal of Symbolic Logic\/} 10, pp. 95-96. + +\bibitem{nf} Quine, W.V., +``New Foundations for Mathematical Logic". +{\em American Mathematical Monthly\/} 44 (1937), pp. 70-80. + +\bibitem{ml} Quine, W.V. {\em Mathematical Logic\/}. Norton, 1940. revised ed. Harvard, 1951. + +\bibitem{rosser} Rosser, J. B. [1978] +Logic for mathematicians, second edition. +Chelsea Publishing. + +\bibitem{pm1} Russell, Bertrand. {\em Principles of Mathematics\/}. Routledge Classics 2010 (originally published 1903). + +\bibitem{pm} Russell, B.A.W. and Whitehead, A. N.[1910] +{\em Principia Mathematica.\/} Cambridge University Press. + +\bibitem{scottstrick} Scott, Dana, ``Definitions by abstraction in axiomatic set theory", {\em Bull. Amer. Math. +Soc.}, vol. 61, p. 442, 1955. + +\bibitem{nfub} Solovay, R, ``The consistency strength of NFUB", preprint on {\tt arXiv.org}, {\tt arXiv:math/9707207 [math.LO]} + +\bibitem{notac} Specker, E.P. +``The axiom of choice in Quine's new foundations for mathematical logic". +{\em Proceedings of the National Academy of Sciences of the USA\/} 39 (1953), pp. 972-975. + +\bibitem{ambiguity} Specker, E.P. [1962] +``Typical ambiguity". +{\em Logic, methodology and philosophy of science\/}, ed. E. Nagel, Stanford University Press, pp. 116-123. + +\bibitem{tarskiontst} Tarski, Alfred. Einige Betrachtungen uber die Begriffe der co-Widerspruchsfreiheit und der co-Vollstandigkeit, +{\tt Monatsh. Math. Phys.\/} 40 (1933), 97-112. + +I believe this is the right paper. There is a treatment due to G\"odel at about the same time. The reason that I think Tarski is the originator of TST is that G\"odel's theory is $\omega$-order arithmetic (the lowest type is further equipped with the Peano axioms) which is not the same theory, and crucially does not have the ambiguity properties which motivate NF. + +\bibitem{tnt} Wang, H. [1952] +Negative types. + +\bibitem{wiener} Wiener, Norbert, paper on Wiener pair + +\bibitem{wilshaw} Sky Wilshaw, YaĆ«l Dillies, Peter LeFanu Lumsdaine, et al. New Foundations is consistent. GitHub repository. {\tt https://leanprover-community.github.io/con-nf/}. + +Initial work was done by a group, as indicated by the authorship; since the beginning of 2023, the work, which now amounts to the majority of what has been accomplished, has been done by Sky Wilshaw alone, and the previous work has been very largely reorganized by her. + + +\end{thebibliography} + + + + + + + + + + + + +\end{document}

iUx%nC%wU^HtpU^@EgTXX4Eo_SA zIT|NLt|fDHU}|%g57%KItMYRP-Xuf88e7a-UynE29Jp@QB;eql{0Rg(eor1Lvf01N znitw2C02j(0#&CrVonE(tQuRe;Q-S|i3XNKh+HF@L0G1hv9%bk#k`OVPE{q?3Hs1<90~D>b!2F{^3u18hf-XjkgrDS^#RBToe!WNinJOryn#D{{o4<7Dspmew;TJWODcwTX7ZtBe zdajB;LYpT17G?Mdpwg0odRaOHH(ea)sSv-~G!vEMU-(dzEF7MTDc5We@%#?`)*0)7 z?-+IYX2bKUO^@Mwx`#v?ef?P(tEIDKPq;N28MT@peqXY-5dCp}K>_mfxvSw9jr7S3 zY8nmAT|QqFU7fCOoHUY=$jCl*Mmr5nu5+EHPR%XSL7Y0-V4W)Rm+gt=$vGB5vMWSV8q*AAyOes+VF9?(8tzbWto1>(kv2)_88C9RoSAu^;>S{U~A0)z0J%;`? zPJk(qNacY|pjzKCQVi&(5T<;n6yJQ}iN@Sp; zUHoyk0WIDWvbw|{W96n^8qte*BIsiLN^bhId z3&ozv+UC;M+Dz(-gkznO5xg=n?uCk7lF^=2=PYUkV4|!&WW%^K+lFDZ`oIE<@Dd-~*R4Nn%VKO!m-W@IuG41N1Rl^JyYHiz zHp7YWz?K=E{~HGd|8q_y#nKQmL^=```*SasU#Sr|#aG+F=AL z?qF%$B0vJ~kQw$w1m;mrvEVdCGTW#5%UkAz)t3#)=Zk#?ucChS3BC%p98NGo zw;hm?+a!7yP+Oq1&NxjyL#OAKn4;U~NHEJKD`Bi*R;g-3nHQtx?=H>U>TxVMYt5zb z^u1A^UTFJLBA`MtE3Wc#s?*zq2g6Ku@A!we(${~5MgMo1@;`yu|7Sz>H)YCyfkprS z$dvztrGG+BW<~<$f3D5Gx_Fttnn?a5%i`-dGXW#xKfty8*B@UEDa`+b%zrcF;wz!{ z-zfQChFiwJ-z`$1{xfR55!LgtD!J1XA&N*MpH3REkF~YrZX4hR4D|eo|65-MqB3!W zFy+}r)m6)nq!2QSP+poqZf+9zkt>acnZxD~w(p&x`;S+TRh?fs#)S}JEHdnmQP>G2 zx`~Hr^9H)<$rJCocbpt+AM;kfZ1He#-Y{_A46u!{t>7oEeo=AQT-97O-|SqfSSj}Y zDmAHvT&?6%mR4hame(>drM}}WJCcj4yU3+JvD?GU_ho>9#5 z_yGJo1SL34U_zd_7IjULLJ^5fyNg_5z8)K`fK?dZGF5M<-WCq~9`UbQ7+JvmDZhHy zO3WhH@urHIS!L`Nx-Os+cUj;gB;Lc`EZdk7eTf#w+nqZ(Aomazr<7>zGSvGy8wZUk z0mc}NUG{wpq=)PQA;gu;AF&#hsGKoe507QJ121mvO3FM|RIVR{wvh=jCX?*8*cUm; zxU&$JUTOJG{85l`Og%cGfD?V5@xD1Tn~g}PZnq6!7tmb)bXnPxyBQ;f&}~Wd!psPj z3fJqX&R4v~A|KO#_<7(80{9DaS?tmhoUF)G*AvVvkT0OXY^T%V!XPZVx=QkhW>Y!V z$U7EQ!*LOobzLu(#2Nqpu=m~ZSbp#0NQqF{DcM4j$Fq@HR!E|fnau2wRYsA_NT?Kv z(zFuUdxgx9kxf!oWJLVVecw;@^m)HOpU?aI{r>x_m-C$ajO(0pUDvtRInVv9OJ-ga z<-$+0-G~;D^5iMbwwB6TefP?<>0{7}y3UlGxNc{9tl-cXS96*<(|di%Th@>0d>-A| z=ozOiu{9JhH9L*}WOQS&2hCuUSHm_n4V-(N_^^R3w!gq zqx9x@!H&JeN5uBmfSteO?#q;Q2_LZxhW5<-+=9Sf& z%n8`s9!nvvH-y$desISSyhoKF5skXy^j2XP>$vk=saO~d$|WTpL%*uxwW;<)$DwVW zwG$he`<{w3d2e}RmO1BN$FYNRKzIaSPnESG9UG8fXzX`EwpU5-N`Q|7D}{WjbCthF zD1ky{==9D^m6KGyZ#;dNO&Hu&zHD`UA!BJA__Wo}eX}Ut1*wvyFW6hVmyE^zXy(f; z(^>4MQiOFgn=3pQPsJ;`Qy*+F;C1Yc?;RgLbmmg5LZCavQs@=a?U#1r4@+t1c0Cy+ zHbn4qTiCy3Ic9)*fO(u2-X&vPaptMQDlF*eamkNZ@WWqKjSeN=kg$;)>G{dYApHE`0o71TxV zAr5|b%~7k+z4N)4ZT}tZM?1_9azrTJif0|38>cCXF={@r_#vA&h&p;NhduV%J?ZGDwoyOOzr@NmNn;XeEM6QSE}&+zcw zZ~=L$#puGDI%bg-S>@jv`Leco)a>|?b>#M5PpT_ACpky>%o7#2?n$PYSKn0?d|dlP zBZIcisGWb5%pDb{TCVoBnC%{Us~LL@%gRf*YYA-%oPyfxdiSy$uvLsH;>_p9d=3kB z-qt^9OyQ!z$i&HQaoqQ=(2Fc*Q7@=Ex$R!$Vw$E-Scc+J@3+sT6zEQTWE=&9+_Dmu@UzK~YnMU$Q%X zJ&XY*)OXplR0_v3aW?X_+2wO@59i(5NAGl&i6&2eRVw^;^s-ds$Kx^=iqSQ+X@@2F z0=Nx`4fAh?SJB@I#pOQnsLf}Fv&|{|V!ma#mCjy|#Z0uO_+8n#IOpGZoS16rqUpst zroo{hXfs=4BB}YN(SF-zq5Ik~D)-(hn7qQw2ki~&_kAvL_AuwgS}I%Vq7^o0PjlHh z`sxGk#!{MZr(vdt?LWlWN_K_nM@O*anO~M3VH0-qR$IL(#<(>tdo_@kG92YKi?%#= zn15@7VL>!~#A_3KW0p!;cJn0EmDq<5!UHXH*FI|vGi_9<-8L8uer3qs^(?8Ozg%o5 zm7BuWaP7azIE+ph}r!I0mpKsQ}#VRo4e3@oBqY8O(UE2N*$Z8 z-yNmbPz;#jNxf`%^BpQP((+U~M})@8sOz3w{#O)94>I&`*&KSt?|y9JxW>58w+iK* zN7eL0xNp#n#16{Nd?8F!bC~UYiGG^BLrf}PD*8j0PQ1#~?;O{IhnCijpNX(2N9+uw zjep54Roaku@I_yw1(z$sg&SWdFMnOxG`4=({JfQ$ zBDHm>ssb*orhDJkTQ=1&zpePFn@V@Y=y>aieA8q6)Sr&WGwG(vK6x0*z1}CW=M#&a z)(JLs|IdzD;;RC(eN{r9VHExoucF^J+3zdbtJ1eSWm}`xss6#b%_mNHhWQsp$R5)W zUh^&JRouf}|yfTLvcG3h; zC9yuZ#Z4P6!iv6j#1{u6OFuO}a)Mrz|HOiGF_3 zmd_7_Xj8SD56#FdR87YmF$rm2qPB5qUowdMT_xRcYo8Q z0#m5L&d8kxj9aPpWm6x<9TkdiWODL6cDd4&Qu&yC{X372#IwQKXF|L_m8*=<@Kcnb z6VE?s=m^}LwV1!mr%a(^>^yhX(p2Xu_CqB zto{wBI6>a5OTDiu=c=YmzC03NT9ok`xFT1dCUoFjmf?OZTYh7auBirx)j8ITGa}Rv z&ptzCGhTRbD>gGcjGFcqCEttFN6sFv>v$S#rm**lRgZkSaq!8-OY5BB?9~ZTOc$ND z88!NjtLe!Z?Mi%R7dZVPX>2x-Du;hwhLNlGeck(8(;<@v#|O8SrhD%=THHYIqixW~ z?=!D~sXCfR=Of-C5}>YBf4sc6rE||~^c=P2+qoA*6`0%sZ^}(+wT|fbvZpjJq%Q2~ z7Aj6+eY54$F4cv`;GzE2j=aDUk-l6($Ga!LMhf5U(&T?b1lPjlIylTH^f zcfr`*JHDeWblc(c*PpUvoOY1o-?Z23J2ln2rr~RfXEXXt91XU8FFR_1e)=l2kbm{-7bEeaBy=QyYxZD zb()n)e zTi+&iW!UI1aS711?NPP)o_o6Wmb05v!fV<6PUo&sjB_+PE^TpCIJZ}GGb2~_p7*y~ z0uO!sA=;%E)tWza>BiPww60buBgeO8`iO6D`)aYpE@go4;FELWO@qtY9W>#DPIUqE zZoQYwTH!tgY%*KSXlUo3C}riVNcMVJ6KtDhbm^{^`s{a`SzN03lRFhnp!Csse3imM zgt9v9c|P~4>A9nIYXh5cqMDU^G^U#b&Ym1?v>)EwE;nuRgQnQO!}4!DHsXK3QwX~< ze|l`h|Mi_hxaWU7J^X#u?;m}I6pQ7-{Pf;_A0Gb0LqhVSQ<9S=Nt7h~(?h}ta7Z{( z$57Iop*_Y_U}n1#Q#Try=83*|yQnDk+1t?;wqBhs?T2xiJtKbH6x{KAhZc0j`8X$N zI3r#UzjbDI^!>i$^HTG6Zr{A-2F+-@=gF%0?Z@s4G~})t<#)5L+Q+lrz2-fC|H*qH zyoXveTkC-1OM%I?!R^I`^!N>*<&|rz4|{Zb&)=H%^eM_eT5o^y4X&oci8%w@^$o`RG8a+NVSZ<)v`Dw-W^KBHnlVO;gaD zKIaa!Eqd+op&n9wyfumWu2ya17DxFa?u+Q~h_ma5f{z((AMDP-s-1J1a*pWs3s27} z{dh!AEvzOt&gisvI7;OxN3=uYXzK`pqCw~8%6QW4p;5Q(m!3bFig7~~D^^JOG~;bV zURzDR&-M?VI3OWFQD~G|(9ZtRzJAZXn5&8MTUQ%*pJ8*_*7zVRm4@JU`|ZJlBR6;X z4?Q1fxhvo0KBv(YZIu6ECWMl>Y(B~AqcLKyc>aYey}KX3g4AXv-KN-L_O@f4{>(vQ z(j^B!dE}=J4@XFKZ!(#Ar}#Kq?7pp@e287Pn9SiVQ!H%{BLhdDZ#9*le_y+|@0G_n zM$rv{fsJ@LNOZasoxtgag594yP!s_2T$Fn;q-)D zoaQ{;^3@rKGscAAZ?kP$ERrSZ1h;c3RjmfB<8({+r$hKp+GdzsO3z@cIpm+sJJcE} z?TJ&5-o5|qv-3>@TBE1BIEHi-yBw!virGwt@64E9=#G5c#3g3LAGYm1Yg{jOckx2{ zp}eD&w?2%ueiUfvu=F&!5mk5FdSPO3lnkwpf5@%FV;1ymVXQ6qaR76pBsSFWQE~FSN&R))qUVR{;WJhK^u9vusmsTA zp@~P8pYM!2ADGX{d-L>L7eljy1vLRGBP#`x8Jp`(J>7jJOb#zUv{)?)UjNR;B@`hQ z-hWi1;mtj*xOb_w{s~5j*}kjC6}g5~+gNxgdNTs-i#_-0XnUTmIm$8mZC@BeK|fcu zbbW`*;_#%1cW&{I>vk`VFWSoR91&cNl~H@HT)j2$d0<+v?d?#d+sQmabRAFSiKl7L zB#)QTy{C+Q(XUX+6S-wXksjkMdF1Jh>8#W{H+{lZ_e&O-417x#iD{_1Yu@gvSXn0L zmmHHSY_&5!t9O&qfPV-IUzH=dJWVlk@MBf^U8cQM ze1qGUg$?s}*?s%ZA7gE~8XZz`!;e5LoIJMnaZw|9^x*2kG>+@Bt5=(2EJ(Ki0siO;2F8KJxLP72vz zqH#@=cd2)siL;!funuic9y5POY<{brT+zJ{e7Qien6GZJLY**3}VL3M8)Ihs0rFz|@r0l`BoF;qJDc!i8FOIsrW@+nw-tci~ z^y`?6is9|Og|1Z}!>4*boT^Vaw)8^BU@`on-d3u_1RqKPe9vynjBEygH)i>-ou*Z2+8o`Ij-C6>Q;%^NG{ z!(QL5J>ZU1kD(Lfy-edqL-Y{W^2H z?!{mGh-ZvEb?$Rb#R}$mQ%&IQeP2gTdq{BRrMiu@_3~CpstMjmejBQ~8e3$VLfIC1 zB8_uW*%=p85~)Mv@vH4mv)(TFW#&{=>8ps<co96QhcQ3x>}U<`I6Z=?NSNW z_IBHZg2@IVR?$>=d^1J5M%H@IchTgOyI+E?In^3PIYq5h>`9dr+?vzkwQY!PBXawj zFr5ZrD&L$#N8%VaMVj^t+uOx9_wQGBMSb$9^N3KXx#o%q=*jL$a`0=*((+ex8n-(c z%RB11%geCWePoXMy(jHQJC)(Iyu18Nol&ojMzPKr;^en$ucFl4?CY}b-aM(LeiB6= zp(XKMbV69@d?0-}6^B35HKD`OIs7M6euyoPWsN5;B;<2)W(m6RMb{cS^=FN%@3Y}H z%RRg!QRLu`+EYfG&QNpjd$#J*(l&4Odb%fyMQufjPNx}He=kqKt}vP+FHY3oRa^5} z6T9L_*6=AkqDoMiN!1m@GmarKW@hxd9n3VoM2|a!qm*&hBkVse`(lmU;yZF45V_9J zXr1}cEWDrNa$=qCYm;oXr$XADsvZ~Vccr-JTlNY$`p8TA`Muc|d*9-5$Zp0%)dM-( z8vBn2@ND~h=aF9TqUo&&(c`{>;csSzcV6)-VqaMo)JL(hJZO!JEqpRP+u`7zb+YhQ zp>`LO+nv{XHhX%8l;1Rz%5xmq_2f}S{@8SzxK>K!vC|K(G9RP;wpxhgPaEGjT{m6r zubv)*jeHdygHrENwcr%&NT*tGc^SHTr+Q3PzCt!$r&A~U)CDGsR$sR0 zIrQ5oo-GOi$iLQm!EA8m7hQP^s4i___yFL>>oRM77)%x}1r`fLfecn-tsZyOl-_?J87(2-4#%hd#c)HiB-eVMC2It zy{F5}AG-Sa9=IL3W=!NY&U;i>=9YIx_fndTm6bJL?zOmiu^H3VK=o&K$JlhE)O~f0 z^9-DxpLHtskR$SVj&%>5>e+6|qIv`~maj?(=8Nb%8YN@k_1t!R=JfcfrJ=Oo`)><3 zeVRz`5`UH1<*}m0|JGVl{%Wj#ZY$;_^OS1p0FB>@=Bo$L#eav{%nOXnC{?cQ&U8fd4eqCz) zknCKjCM>4g9dzXrF7n&;@^KGiU^BvODW$aoFOV zqqzkgfb8n#VsX}<&a=l}r$MVyVn@-^{!4BGOv41{`29>gJ8Jv<18j2B9#x5Fh4qwL zCFF#jaSpaTB;8+25bVv0K9o@(xc$fEx|-XI{Ze`&osM^+URrm=KTSO#+MVfZI&-OQ z#Ixz^`2#D*PNoqX$5U9a^he^l^cq%+8Dns=X4O{9g~N2)9L9(|)V*E-c0 zr1(1Gy_q=k9%0`Af_>v&OZHWP*n%^cvR?@%_9X38uQxyZP*ZW6L|GIkakwO|Vs@a# zT2T_1tu=PT##?nFS}8(;6DS`s*j;%%|B^nLccevuJN(1WeCPJFfy`Q=`SVBe2CJFF z_eD%=&gDB1%Ts)=tZt+ZoZEykOlIypvdR2yf>EwQXg@^&B^xut>9tGI_Kt^-ORnl3 z=B|`o--~+Sqj;1^;A#nrlXkpvH;m9VwqdFG)a(OJ%+Xvg#v(rZX@+j(k4g6RA1!zP zj%mpcE&mPE!uMqVWLnZ4-v9P4r@tPO63M>{_xo#nzb@?lBaW1mAP*G$^pz#ROQ-(f zh1#^!YOZ}aHt+^vw-qM$SlY9Kb)ym%-EsS_rf#?-vfg53@BO|szjtq) z@!@XS#;cy5@8vEzQmzd9ma{wFpVLmvNK7!AaO1_Ckh&4p@j+3z+Adn0>D(P%%d8%; z^pwcyrkr%+LI#AWX+&z_yp0!1H zk@gAZTj!sqh4+P7ykLoxl@QH168C0pi>PFnZ-$ze*WA9!Pfg-XzM1JQw9JO(RK9N; zQXOw8A7tWlIZv@|P;S%F7q_3}^N&@x^*piJ-}ZUp5TpI9tH}$StQ4itDv6Y6 zXVjyL8V~6&^pBfO(VV6`u2={S?h6d`uDPBSeD$nUwsysWq+4-ZcCb;}-I8muI(^R1 z_)hU(@;QOlF)lbL%wgAY9R2QY(ZTqFl+LDa?|K}K+GV3$Mr23!q}#bSa9m~h6c%4! z|II6Q$v|02@Y>Xtg=$`&5njfo!l_lGrTOmemMojN)MB~kGkx0ZR(g5^S@tHe17__q zQs>#YwyU+f7uya=nOmlGNV4rT2%TW4th7kf9uFGbAE;z0b7nI^8=TO-78uiA(`TpF z?&T#`$jiwImrmEG9++H}c$n&vWLw@`87TU7cx+3> z8|DP+Nps>CdvXT3I-TyD4?Zj^O8Ux-m&w4pZZXED1z65qYBJWX2v_6o4Wr#+{pD$~ ze8bX|;8}Hz#b~Ets_C6vk`6*UE;=5-MI8D5-qc@4R832)#`mtM=*<|Nhce$e)WfMi zF}!h9KXp|*{)FM^xy(_T@@N|Mq?i+^Ju25EB*cac;$8e3M?`YBYOOab?I${KV$Jw! zPkA%i9ZhZV-h8)|{hpkZ`BkggH#c=#8!nVMv$~|#1x)&&{SOHoH-6`Qr}mZuhe$yC zAogCNWa3D@4@!6Bn}AI88SN{t8fIwEXs>%;@Krmr>+#92Vx1y}d-*@ay2jYr8|~JS z_}ar`TDD-rVfXxr(sSE#l`#Pii>!05t5UTRLebU>=k;1Im@6kOY~j<$#C*Z_#T}v9 zJ*%K2=;`ys1aJSj^U%1=>8TH0i4T*d_i{*KunzO=uO!0m-tRs=9};G66fXP9)wU=k zH8nV#Wjk*|PbrJV#GRQ6{ja#Z0V&ff=O#)fzF#X6!OVralJV4=BT;U0$iIQyldhTD2W6euinOhC^NLBYWwC zM%E9vx%OShwH7{KI;hHgi86(gi$bb}QaZfC z^>gq^&0deo(F~Gpa@Ue@`nz>9`>8p4EopCjM5o3+q>a1sbW{405~a*ti+;zHjBhN9 zjCB5Hj=S3T>C}k`qqd(L3Hc@-~fsZc#5` zW9mI{@og%lQI_2MPYo_Ywi~5el!;rE&noYw;q0w_%0z8_H-!1g=KIy(xkkeoU6t)6 zGpAj>886eklRaC(j;$Zvr%)FD(0}Pfu`kcnrHA#Neou>}O9s5T12fmRQ5w{o?5%q& zYV%5@MXJ-Q&N`LWZQ(xUrS46+uWobieDPgrlU;!PDu>=( zl*3eBV&^rx6YkgT<7!3Zj$j&iI<&NQ>J1#$byhRHNWW>BuK0EAA^-L}Wv8yMtI7^V z>bzybCeZuEoA0RMb#G~4W}|VRPjdY5F!G* zG1H$BBq>bClz)L>JSQpk2wjnU(bGsjp$)Od86cN{VHI2$d#W>(I)Y9hwu@S~$M zmg~FPtrPRyJDh@gm(`lDuJ9JUJjNL8$FFC}mX#~U99O{U`tH-)$?gpb``**ae>IaN zC7?5gpSJejnn{RF^2f=9qy+T6A5ipP%p^$(#>o7?jL+1e2ZBgO}ZU-SNK>%jqc>yUML?dRAJdNps^)t;T64<5Mv<5^*w-36;t*JJMW2+{2gQJ}dd zs8%D3^Eq|rTTRQtV|D3k4L>xL`4o?2Uk%q0=ffIoEe{j8_xWhdVNF|nZl_+({ev+& zc3pD1ow1ghCypPctD=@WBsVeQe9~V^;@EYGM;n`j?pS;YHTl|XTBISk>6P_t{;LF$ z2xFQD4LnYjGe>xnGnk{)Z_Em-HS^?fvax;L`o@dz_V@`WWmNNaI^VY5BW2HoJzq3s zdRwQ_>{3|K?fsbFc*iDTYFzRhWnph8Vaeo%I?cnEY7eJRYIadlqvU5#cJ*vOv3TUk za@q=0NM3G&{rOpkJs-bN+P`lze1;6LxtJ@iOo{RfJV~u zhod&AE3O@EQxQeEZkC@8UIx=CvM#g92@1@lF-V=%6HUf^uJ_SY@C^n{&xPDq5r_UyXgWrA&ib=x|~t*qIcPJ=NBGTl(E$Cm5i-k z&U?D94twEJ^Bp!U?|Zd72xW$$_gYL+^uMlWqpLiqsl_#RVSVfIi!7eXI}s zz#rnbJTIbZb=P;_w=f%XkErWW!uzSeg}7`Pii$2Cc|C9FH4}QT>`3ITLFcN|EGz|> z1s!U6s-qy`~tLr9~MjC$y%ToBOSXcW=Jjc3)}0eO6y;dOt2veI3g? zlkwL57++<4VeHk+`7<9xtloiJ04{unY~?LCPit?sU|yuE<2U)DbY?0@W4~m+@XJw; zZxp+Jm|Ujl@!_cw`?C2)Onn9+j#pTM%VU&=rN!W(%zMqq9Cpu}vNw)bv|BeuY)?5> z79z`yexhsiNzGQn&wMImsE~=#{ZTd5=>8kKw>(e_mKjp4d2Bjee~49vJ40>y6jvX1 z=%()M=niSho!N}o86%1@Wk(Ix+a3w&y#8IaX~MhD9QSPt4Z4!QZ8A`mUGbT#+&ELc zs(a^yhqo6-m|Rc3o_=%1g*Pe0@ML5fKCkY?VpAtuq4|w{PTUpO197n>`I zM^A7I3!jNkPvbps%Ch~8wTGznnVW~{^gQ_VH!a>j5S(w++aAaG;^m{P_mjF!-U}j( zMdEw>(@V|zuzF(@Z8;xgym;*Kda94=h>QU#zE=&W_T=JU+WkFzg$CNso~LukepBNtQO-klbPS<8Y;tXLO)k-PzrFHtiQ)S2Frj zMLl6YDLxZd7k9RpV=1Qg<68O7ko4mtR5O=Ej_qZoZQfozvHipa|9xtxtztaIKDVzZ ze&|UL)EPVIWJ(*PPKYpfv-g@?_b`&^Fj4hj;i`Qc^(D*k+9d1IbRDmrY54<-)%0{N zau*A?4PCw}6xJQ~&Eu|^X-I%UX-4|)`0wsh5`mSWZ9!j_>@ZYsF0?01>@wt54Hj75 zkxgMlYa=~$pVd77P?3Ho!<|WMb!mCV*m#Evb^Piyf=}p2968k{z&p%vN)B#uuM+pt z;JR@Mk5R&gk%#jbu-lGb>_Rr96B&dq9j?eXw0jJb)WGRgB1 z9Sb!ri8aQT+FvPYP6th+I%(t2aVBG5IYebmEsUR&4tboh`Ivu!_EoA2u}XdxUp7l0 zrF%O+vzJL`*m0h4lYW2LEg#$c!WXZP(uFHYWGJ2U=gQtb9$$9Yo4fPU#A}DNA#cJ9 z$qya|AwgD*7|)QX(&gh7={^~R0#)yl3zrX-&|Hex6Ic5BL-YI5qOFD-K03ITr%EyN zAzH3%lNMc5eUa?!tO7mh_KBK>r?I{E+Ygo>8j#mn+}?*{&)i7%ExP?gO!E3*=#9PW zxFozoQX+=!lF=}B|4CZb*i;`*tJ#<;$>gL(d=BqdCC|0t)6A~zxI?KsWR2#o&IH>& zC{O3n>lDDs8tE~eNAI|>o&9BJtoxD*k9?uW>_hyCm19RK23x2fJnVAH7vk(MHhX$I z{GsCh;RT+VX3EEO3n}-M9k}YB-k&(&*?Y15hU~y6f0StN`L$bDe{Axu*OsqXuNAsR z@A-g{Dl)e1992f7>6#P2VxsY7SC0i6`kp7DC!B*_nGXlBSG8_X@QgCkg(%6kdd*_> zu(Hd?KYG-Q>Y0z-f7YD)=~_LzJb&VA8XA?wB;92dftXSC*G?7;H`$(jSMFLISjf@RLtNs~FH6Tb}#IZa$B7p~omE^(VaN;19M2n+&uy~X>CiB8Yhn8!2_!dCy4_6k+yhA9H_&ApU}dia8M~h612jBnGtyK7$}d&;Qi%6T!r=1gH;y1X7d)00zyK$b%u^K_>zVC5{8%ikFlGv-;Z)Gynp=h5)BzD@E4( zzf8$t5^-n}l;1fVmH;M8l*E7q5y6siJOlz7Dj^a8ng~RAx!~8(h*(Lm8X|ZGsKDSs z3mgGnj|7ZE0tN?~gRfISWki4&01XYn#DfST5g;2t01JoE45J8*0(kvKmW0U$XdnR*1SbJO zLr9LnV8NJJm?AhFG%yB?3uYlfgcgs-5ykPp84UIFT>}PKFmEuI|7%JH`ll0QfI~?F z&^W+NfKSmxm~){L3=T{kB>@(M#Xty!mH~c{74S2}sSuiQU^+O!@nFt?_u(A?mV^gC z@+tw9qam~tVD3dApb79MB1(e3CdrN8}g`xnS?ZQm;}IXU_ZjhB+o%w8<#>o;ad>F<1W7y~9RcJC08h}Gu>=XI92^Sa0lPs2m4pj0 zkPsk9Kmq}WM}rCi8ru2M%HpaWnc6f_?^^y9fGG(-Wi z^iT9*z&DJrI1HEv1`AOGni-HoU=WBV&^E#XdSb|!;AiOF00Tq~Iph8Ol92(l8cDEr zNRZ$F+k$Na=aF(O7Gh@{*k%xe!!6+yEI{Iq0=Nm;z&~ZX0ZIbwdcbTz8h~w#JRoxM z?;c2H|KtM=Bm$T$B4Xk6pY%c|@IPpY41*$l{Mr4Fx<6*}N6o)<{-cfnBp~$nv&|os zq-kO>WGV~wQ%f5V0iU1&H$!_74|o7@65tAm-OzwHNHhcN3Frza3hi=80zjM%m=pu) zDgs=B2frYRv?hQZ1Bp#g4|o!k!h#r2gmwo31E+xdfEY$YV-kQ)0x|-KM^Fp+1d`G~ zkU*>qBp}#KKvDy4NBx_%AuC1r0!hg+_EKd0$B#ip{2r#8xMp6Xo7+b1|qyaP?F&63?+ewHa zO#oK`=?FmMfulguFkJhqcDPO~~6LQzSwDi}oQA3mF~JR&a{U z3Ysed3u%X-iKM;YcK=sB$AdyxK@yG7@{cD89+J|81q5W^LI08ANy|be0WFIR@4tKv zG}yFgV7fw@9WosLFDU|tJS6}MLFVjl$VdsE2$|A&ph19Nf`dc@0mwo~>qEW>5F$Wy zfn~t0FhEoR8xa_IkUoKQ0Avvn5rqu5Ai;$DlJY&mgI&fx$#VzC~RCH`TsoKe^N_6 zHzZFo)PY$Jd1kP&0j~mCJRaa5m?k907%@{Iir@eRAb$^LE7-6{14e^34HhsO0l1KW zJ#moMBf@%{Wc(wL!B&7YBZMnFZ0aCHLPjBt3&R9v0T>+4A}OS3(SLX_BC(9N6~+(kKYeka!8<7PvhYZi7KV9vlYn8)|BMCMD6!U;x3R0e2!TsYr*#N)%6fAgM-~a#nAK`!u zjlaA)NHzl=K*B?SwShSc{CA*NfTM~BFRg%UVf~3%8-Gn9UjT{`0CfgzWS|FtM*umo zKf@b{=TG1vg7-nWY3dKAiqYKHy0o%g5 z2MZVpGCTf0CBP`df*=+!Z{Rk+M?#)a5&)C1>jpW?&|FB+;W3alM4;h+j)CNVx5I$h zfzS(_l1BIqg8&&$2t1_j|B{l=3&}&Xz=FB`OkqqSOad4NXfXt7D4;gjPdO#ox+Gz;-Ah3|OK+r>gITb_!e}ad>AT8mr>aT8a1rCIu zu;e%(V}xH(3j!RcLIeL2m|RHA3h>O|<&oO|oRZvdEDQok|8s|bUP}T^`XKN3XASw- zf7blb_0K9i*hwIE1E+u1{Lu-rRiW?$Y<5C&6p^MNXdnUT4FxLT56Ivo-#|!95;}k! z2a*^`VSFP?LB=KmsSKn#7TRPu5YPm&3!Fm$c?ZIU5Y-7#IdFbKkR6GR0_F#@4vuP& zqNZ?k2!#eQaS%fR<^iy@fG-X>1Go=h7lRTI-3LDi0tFU8NC`woz#Q+(%A01RHP(8PooXaUkv_ z;s7K0-%jT59JvGg@A9zs3w8OQb^CYVkn-OyHF>+=r9a2}T>|I+wKKWl_P0$Xp+F@R z`6Z8*kVi!zMnrsEk`D|kKX|D~VBjy|0g@{YWEfyN;8#Ipgjoy(oq&>rMH3V`2XYG- zFhDH9feh%l0aD6{NdW~aAy*XzZel@A03QP$1v(gCX`$%*GNfB21S%dTk zPh`CJD-uSIPxAN<0s@UJhs01n0YaYyut9)_3Qq@mCJ%r>&qO#RN79K1E07{QFj`>{ zaCqZ)j=UB5YGCkiFVdvoet)hJYV+Uz$j3+W$cUsEBJ8suCD55FNroaU1zR7a$Rc8; z0fh{785B5x;}Td{_anUl-9cy?w$UIs@XV3EBgU_%+nlhF?@MS74*VeUst5XzHy0YW9*8rdIcSOlXH10Rl5lGl9SCUW!3hIvr z5*zGM*Z}+&p#(o7=pjS&Kj5>Ud`R9Gq5N-7hTDL14xp1@+Cu^g{0tPBGjcYF2Ra#2 zXRxLMCm~R1ANH64CV@u)<_pYSI7)zU7G%x>Ek}xf!E3?*`yV;I0q2rH>HrRfunEZz z9MG^p6vCK=;+H^!1B?K}6b`UMwct1(CN+8b8$XC|js<-HP2gA}2KaoCaD`+e2BtFx z2u)B68I~{|(O?`<2P7KO4hJF+kp3rtAA^SuxpF|OX@I(%cz=i?UVDpoiUP%5=JYo-@c^{}*8ran7Sp}>^z#d>n1Mo0OF<`#}8vvZzff86sA)!Eo39;Z*j_f2I#J)*ET|^R-lm;ww z5widm6Ns`v?2^Cak?l;9&9MCbpXhT4{{PqJKc&q7*XEFrhV0+pJOPXUpSlfv{#Nwx zEjs9`9r-;su=61^7fI2u%zy&B&}IO8?_d51u-Yeu%iwcqa2y1-4-!^{T7!dcC`JTs zYC%$l6mBFz1(p(QZ6aeqt&tpgD-4kRU`N9#)PlSY4J$%qj{iEd|MW~+)vsBQW(zBA zESw@G$m$>$6sTy@7&8bhNIe1OksQ(j0|z@Xz}$m;35Y`EwFs_|mT*eO za=$|QkhKk4+^}6pgi|zpf`|qrfUHgkGyg7yY$#9*S#?0YKyd=7HFU6!^Z)`MGK|30 z6X*yCD*p)^J_Z7T2V_K~HIo0`ie%X$7AriD-*xC;u>RfL{&_iRPNY@C$4<}+fCd6u z3QnPMk+tICtC6I2!m1OpHKA}F99sr_1N1R`l@pxz0HX-t1irZeX)-7z1mBTF8bIDM zU_+qDA>go52dWRa#ZbT+7?EI~!WVjwfx*@V#siFRB*g)r_$NN0agbFYt0rF&bOQ~F zeIs;&KY@G(Dw&MFQ0Y&~z*GkZcfh)bF@jJ9?uYCW2ohY60mcci9RVC5=wK?rt>8KY zLr6PP`iIQ>br>RvhvLZai73dC%wEL!{a>XJyq|w~V0D0<0j7=EIe<)X2_9V4gU%*@ zk`0eow!p=Kb`U}n5MltWAXf@70r*-O)DzUg1~>thu~0n%53(_U6^g(HMm#WOz?EZ! zCE!+|C6NEXI)l1^KP+s!L(@bS{Acd>69fhWpX&Y2NdgZ1*$*m(7YmnRf!7R9Bmq<8qW_$NFf?3^KekrXl%!G%=7 z`d}QO6@lyXmppk10vQ9x&&l&3Kn5`?3;`)edXdUuk&l!>x5yyB2EHLo)*f-3pz{t$ zenV?T@}!n91b9VcsQVdPmyw}6h`e6`tOX@W{P_efm*Fs2+|Ng_FMeiuP~b3&_z&O1 z5Wcus`<_AP7P^sXt<0Ja;2*6+L}6jjAS30KLW5a(ClA``>1ki0tEG@t$wo%O>w;&i zK5=rk894(&`%daSV#np+x2V7G&2K@YCFUp&j~#h+`woSM#tV844Kb(D(erWQxU!A9 zp*pO;R#V)fyUa%Bjtf+r`IqXd!VP8V$EKzzB-3#emM1CDG~3bpwlg#PUkwRal?z(b zlA%EHrUrqV&H`k#sF&^N0!UI~gwj z4IRl1!S%tx&r_x|6cVdRlnXhSO}=YoUedesDJjLZ(&bHN{6yE;%Tee}8V58DDQe_h zk4opswaQh=XP3^^u1M>9Q@Guht%=-Kw$Syl^q4m{v*me5tC5x3H4~M_CustF>C1N( z2Vyp!v+T@TqVR0bcBPome}9Lfv2l+bMN=frz(z!hx%tYB)cVkVdn?QBgX@KTk+MG? zo4@vJrsybT59FLJ&0_f?C&a!r={tI&K;w&s5VuL=#{JqKCgK|#scRX+8yNxXe*2@H zaihf6 zXQf^5ZsfMM=~uLEvVLa%$;@nSDR1q-sSVp!JFzK$^~I(*KcfQ_-j+hC8!4;r#hE`x zey&_OC$#a1%2%v;BbDVfIt%~9w&Ap_*893QZ|az*N226*NSEDRIme}WdGAKN83lhp zLUF^jZG!>#4wg0c(@tkFj}1~wgsuyI-|bAvQN12U(5DF3@!PTA|M>UqW}77H*A(_p zDCckRi3?Grv~e#CJ^oJPv;6dj0=F;c#*sem91f7p;n+~kH$&1_d|H!>U~7ooZlDyjVlftTW4?e_ji2a zUgs7X-|**V)n9uW`D2rp)M<*T^|N!l*=sawNsd3ZFPFEDbI+zw=K2lR2BFt!tJjCl zFQE=@wD@J_Y~1`&*}d-fj=Mv8?YJMNa_AiU)JAK1q{r@*5xGH{yM9g<>%t#aj(soP z(K5x|_g=0sLCzs_!*W@;rMsrCdzhP7HhTTjdhOe?39}*UHI)E4j)J`2jmjbZpwDuH zDt>+Ilybra8zT#{MTbDP;^O+#@yd>E6AK<+HuU!~pW630@>YGRcu}O$>h|@n-Sk@* zDB{ZwGEo& zK=*zS`0z%#(p-^JUO`QlW`s-8n9nBe^bsjtv#1cqPaDhX>PhiQo6oDSJ`c;BAJr%h zsM*KMcI_I`+pjNf_ByxE^F!^CBV#*5v-+&nbr>bP>CGeD)D(8wdTU_2P8nL%5erJn z3?9!My7gcpv7fF_^xfmS>XRN3kJPpg>lxi0XN<)`O-5!7V_2$z~TGYDkeV(>P zTgz3OJA*I3?&_iK710*d5#=;?6uQFuwtT?Uh2BJh-|53C&hed5L*13Ha>w+y|e6=I#~VSDa#Z@w|U6h-Gj!Jb~H#;`*K0N4LmaTOqb+q=Bs=dCS;L|YAeIafo7oG1EaW@Zm z&EZlxSk|r|-Gs3`zvt|zxiv$o=?lxr*Mo-rvW0KN$9Mjqnk=Yz_{KQ3DG-jhvNh~tPfmbaml{U;bLRCqjqUdbf%>#TjS$fohL`MV+74c zy(#4;HV+udho;Sp)BZ?1ADuHZ(Sj-qpRTUIg-P#)yHES#J_U$rM$U3IOK z=46>-yVDh#ZxHS<~O;eFqOAKMokJYn# zyUy>pr}@aA>4-?o>9?4si!{OQH!q)0?JGSJj-%r{enm0P%}hCB_)W>34O0gnlu}UV zA=MyDslYKAL5$9w7L`Ze*ZHp5UsabU_EC_#C{04l6YxVG z>3Vj{>s6h#Ja@ia??0WD{Uv3gjL*fqL}$j=-tL3Q@td2sb3f5OZf9A&`<$pMrGCEOyB`sAwLGU^ zVp)5%6*XR55DitrMu!b0tUpj~J|W!HX_uC+n>5gBTgyglw6icuRbf9K<OadiC;o zoX}iV3thF+>7BLouc&)=u|y!)O`H!&?JsTkE_zaCQ@@$QM1 zliX|0$LA(rg4g3eE2o<;%lXlEWa-2pU&k(<9o76t4DkBdygnag`^N{o!(Lalj_eQS z-gLyoO-8v^=Gm8mBV1~`RXfD|B$N71%UU;~jn7QCQE#i~6lbs)TTB)!87^Mk8$W;D zqiRDwU6n<2nN?6?pB|TX>xH#7PvZhR+uB3*_ZAOxdzapw57&Pd5KXb=jC0Sm_W_wR zX4SOYD|_~pPUes4Em%Z4oX}oPRCiLd})Bf@4kKN^F>1MTCqKkWZCtwczLmT>kp?L zO;OvvC(K;ZNT|QG&WRo<_dP;m(0w$dYegUwu0@E(=Mv_pDxi=p5M7+Vvxp?JzI32R-4~r^RM^L$Q`JD zbDg(1_Hrw=MEQ%1pdsf;*=tGphMA|*245=gn`5qC2!A~!z7|*}t}vZA-+FwdM1OzT zUSY0?^+#guPd~AhZ>mnNuej;id*2jVbex_f4c@}Xi+o$=#uA&J2W4fEksqvq7y0WH0@G#g+J3}^)A2d7dVZJEZ9kL z=ySQKI78kmnwI%(L$1E-AvBK-{A;e4Y;e6zPpdt^I$J`u5o+?elfcz2|D7LrAAi?n66LdA!1>v&{K@wkc5A$Q9zC0Z~ z)syai%Hr{fQy*f@9){IUNHLt3b?f%TMDq>S+GZ1Q2dTV!) zhQg5)tu0=q(agd5&a75T0c+;2$y!lcQ*)2QEY zD4IsK_}1Db)e7#{o|Xiq>BK}?9gh5d6_bu1nag%k$`Spe2Wfdu?3C}>q}_b))<*+2 zToglUkN5prtIY!7Csa@H^)baLU3(FgJ)kXjSx`pL!o@V&>JGL4O*Z;vY*qQ=!{Nfy z3Vc^Km8VvYD2YU{>D?(c(WFqKy!e4>Ha)oMdz=8_nhI~?w`pfLHHLEE%w+bfw7v$S zKWKyO-8?f+3Y5PJ3t)ZO*&1B`<^9mE%C>Tgll%vVO%6tMJZX-4e#2EYxwMlOlgFK2 zaHz}vd(>HUCYNB_*0+Rh;+6Wcftm#Wce|JDKS`AU)VPIwrxz?thR02=Co~3 z+nVla+qP}nwrykkzt2AL#zyRiji|_|lX)^vRDP+f`_%bex(oldKGBXu5;;FuqUelc zLgQ9jN9&tu$;0kTow4G8WdHd-LN`Y4u0sQRH6+0V5bfX1SEJaO+xAme!OI-1j8txs zL9;NzwB{%h1g^4&zb-WI-Vo2v%#OF2K-W(5N6Sw%-&DcNhXv0+N?NX z%$Y8!&(?py+&h&=$0+qyhW6eyL&dJzXQdlwjD{)d-nk8IgT#d0OZL0Not%L%D+kKR zWX+(-iGp^&sUm{!MSl-AO<_2az>`UwM;VIx8@YndHs>TqY+zdIYsTsKDdn_Ek;P(g zEitl=%(l+e+Y*X%pRg}c3?_(RdIdMw)e2iJ3BPLzUc{nK%ySwFTq`u`1h>=fjJB)r-D}%YM{pI~pSoCoZdU)D#^40vM z`eaO}Cal=S8|na`4b9(u(B6stAElWuF^2XBF3O|FIVo)$ou@PR7jvVKoIn{0DQ>t= zT36U~1|V`)8a4#{rV*hm;9xR|k0d^po{x}=;aOwIJJvnp?jsg^K4WD{IKdS@JAhmf zr+92bb7e{4NSI3&J9>KH!?~oKAa`;#!buZRPo0cP01FQ-pnWtx0UE=DW?cv68A(vt zT_E577eWkD3a5#Ac_5$JFXa zk*^=wE3iga%fCs{>=lG79o6Q>Y&q^gO%p00MqugNLWGfxt!Jr?o!&#?%1-`n-7n%> z39xkIZJ$}pD5bPUCqk;w3(ktB0gpk7F7K|#rBke`Qwpu@XY+UL=QKZpmPrGtub`S? z(i^>j_Lwc?^#ze8r&4}|BocvV&Om>GJrA-{pa(BDPV>Jeh)?ox<*r;Xam=(X5e|zH zOymdoEFC3xDvM)`_pY0lM_0#T4f~5!P+G9`AqsGNxqF_yFK%r55^G(vx#=4VPRg^h ztvXxn#zLc8PiY^20>1ccly=|1GB)Pg?k&)A@_!PJm^4Bobg->wwEtWLAf-;{rTjM4 zI+%dZ|0{%-_+`RG1D|klDYs*IeJKqI+m3i~$^qn1@>`KaraVnRyz*mXO_ZqBFA$k3}S?IguaxYt| zRF;Ok%ae4ICT0llOcZS8f^T7&0Nos)S5;69z}l_&oWV9%Ueh=GZS)(}6bytw`5u-f z(8Q0JmW&X+wVZLBS4|U^%xwR-lj`nMs4A0^6h*Myl!Qz`(E&VImx}6^!;|oKJ*aPZ zb98X!gH30no^M?!M-XKz_WA*kXsnnM6OsTK;#VE1XWNWA{B67UEyem#iEhq%XW!u{ zeOWA~&O>ygfwl3=`Z^q*i(5;6I`5KWti4WSUa|+`Cl=#ZFBmc>`HmQRez#fGSK3Jps{O}p8F1a0;%os zN9>o71wXb-j%YVC6DptckdFs7{eI#13$iv)xRHwxC?OXR4);A>^dZp9&&k9uYgF8# z)8ToM;^2<5Tys#e=I7up=%#RYZ|%&RUhqO|R4tG7SD+n8)MRs9J=5v4Uo@@awR%+$f6( z{~hz|cZAe76K~T{PLVHpHQ>(d4%wHh!TFr|1;!cyr)Z;5_kcym9w*tW8T09iZ1TaN z7jv@48o&pUXgsyia|sP6XFJ`c(9zb)KP{iurk9kWdhWRKiHXA#mT~t!TctaSb@k}cyy1|`x^Ydp6w%+Y-z3K83WO8tI~SWN4@3t$LVCA% zh3QR5xdIO#8rx@>dIdZMgU2X$4=QTBu6Sa+@@X@7p5t}AIwp@P-O$a6WHD9FuF)AX z4AB+Z2X1}Hm5V4HO%||n_=`8oERQ<6zmo-H%G0@O^f-TWWqJNl|6H}qZKGbVLzUf( zg2ooWV)#~hqT*@oEn0P-e+8*Nn#6rb5npTHiUY|xyJ36B-GwyQv-Dm(X1zDE2fmtn zA7um@idE3nwOK6QkT)8*7Y0n3@=%~E@RP@F>HHddT73O(GkG2-{2JjsVqMB4v`pN z;@K*kZBI(91P75A-apYt<1xkvJlCg?arFemdtF>suOL&Z!5MupFCnt)@;D=)RqtX?Jzjsa@n-+XokVe|;lw^d zh2}i%B%w9_n^$qC@Mp)|OsX-YBV#w!bWnIlt5lYkVD@RS#jg14 zGsYjACpgmt40}#c=_sr~--^dgalWgI14_F7b1(MYb30Ly&iopP3dWh7remEf# zVcHI~SprD~Hxzr8lY?Bpw2?H`vS|$YfzyvH3 zvIk!;&;4T2*k^QfanRHnG_?Un7pSp@tMU2Q1$39ft#Q6EU{*Z_dT7>H`S+JIP@HSM zdzb%sQ+*i`H8F|?b@TTHh;>n zh)Y=5MBDDoWiYJjL_B?McjlfUx@M><{_gL2?6PIk7-XNkigHbOf46Vi-Bx7HL`-H$ zd6|l(e-`L)Tm*(q0+cY~iEecf0VrnXzjJ;ftq*U(d&LG0}+iisq`0-l!Pj?TR zDEh%QzXgSj;TC8?idx{Vwkw+xW+HY&X2n4hDa*kONL12 zld3XMqjQx^e|k8kq^M4JJ7C1QR@4|tE+<1;-KNg(XeO`!ZDa22!skssmWb(v z3+~`R*9m>Bbc-^m_>u7NiiR5AzJ{vDPOb#`NhpFHklN4ghs%d!mN@I1`bM}h-_#N1 zS}$MELLMU#(d7(kpSe8G|(>mq>9!0b6gMH>oeR0;sdDhBCYf9>Pa~MB_V%y}o(@XL!GLemInG9Ex zr~kK@k4*oNF*~`JZT-3k2E3(WxIARRcc%wl3fd zY0FGh5``8)NxtZobqb0@!vO16XTNwkv^tTO1v&=DOpsK?T42&G&pK;#;0{}j&&NqM zk?~0#lRXzpxm12n%Yz)0fPUt)QW_>A$=gzoDg>Kj`eh&i z`=2tUoY7red7_W=sALiZL9yWldJIo~rB82qLam<3%X@lrtSA9Ru)R8Ta9q9kRi5Xn z@H+^9f_Ev}8785Oj_La%qFjQa@4hGC2Ep4l%!NI38g^7Ui>~ku)^3#sI;J{jE1(>b zd=_`Fv&1H==*YiQN_xL+?I!qlTy0&Y=@pNBVFWCtsdq!?wv2hvm8!jj*Qnq+a(H!$8JyBDtgB zbs)w946OEWxugBml$E7C;{{lh;A-B^+Q0*Jd50672*RO#&J1!EK_Y4n`lSXP(ywD* za+sBZzGG{7T?RuB@78Sz*^|CX-ltTKSz?zI=Ao_;_Wn>ZgIvrGlV^;2F#QFDz4e`ILT6}v6O|THAC|WxA+$o-0Xhp|G=5B%OAi&y zMmw;zM3uDj6FrJ@XErCCS;VVjI8?;BKJ~_@ z842XMMRQeH$#?%54d!A#ko&y(uD&af+HA0=VN&&vtxNG~j< zp_qP(2jm`XkmVInzfzsITW&SlPzo}6CTs{8IpIbR7e5$DZ4Q#id(tS(`>VBlrb z=gh3&KYCH+Qp()$Nx5YycmuOqE?7u7fUWKirqw_zXmRC$ya#2|{%*wAp0+9mEcfB5 z(|E3$r2UG$ZWoM>y2BC2=C7L#mj-(qF2&=L1521(az{xn1wRQCO2#QngpvG>gG24J z5`8n?0hWIGN{C7~S2=xrQqb2UQYN5kpS*t+nWUaxX-vm!i}oN8OKeGC_5@tW_BZS? z*fV5}eaM2)u21<{OcfhBI9){G`$pq4a#~u%su;f#NrmcV1BA&pzfl(LP1CGwG%Tj_J%pTg^5vo3?W!MIK7P7TS6GHz`2WubTtvFwy3|;}%9hyJx zj0U((@y2mDV?9=EOLqxXqoB^$iE>Gyc)H=xM5Nk1`+NE4Ovb#`DtWDaA~R}By&DL& z$Ew2KJUFGuQKM>9_Lz*sHpO;i{llUXID0|)g0t0)yJ$C=&O3RYH0u^CnWA2V52Vxa z`LT5=bJS%Qq1eWQpB-I|`|UJBCk+2Xs^(72)vskA$G(^28+yBEbldTFK=Sk==qNpJ zxhPP;)GVV!h<8+>viS=9>;Q(E?vPWVIfFxzgWfdY6r^>PN-RXhh5z&WSQ z<|GG1Qqq|QUm?dh98+OB6&)ein(`DxSKOl|K-7uXXdp$FJZ0Mtf<`ihZ|f903-{Rq zL6se;`g8&+B%ZGGmBj{y+sy@OwGJuF$L_PX z+ykPSPTO1#{t}$}bxT)uDze8nRUG6c^U?MK{`VIQ2ed=uIRZ%zBb6a$-40qexkQ6- z7oc{P!_C;u|)@0DcR z($PFVO<&Qyqj7UQ@1k@x*!2A`*|Z?r2x(=?8&gSb-+Q$w^$TU>P8Fc0Lh9WQ4_&~r zhs|XUbFGTV>e2d>XIcpdr@>}=0)Na-EZEEiv8!IvzuKHex?`SVhR7s2g6tt zRiq(lvvG(rb&n$8_1aF)VFV2i_*~LL=-gmxwr(i26kSml^)^@?I-UK+%zER{z2z!> z{#tctEMX0ysg`lcUi~l^=apAt=oV|a-tcjS-tCtW27{4Y6y$BmGw32UyjLx!1>LSN z#Dl*^{<88tbfpftzM6yWN^mJMvl@GA!Iov8Tc{+5-pPhHHe8_zZn9H%H+$>x8WWna ztr4MqBaA^@?=ex2ptrCgUEvw~fiiDIO1R4v--w=OUyV9O$^;q@^3yP@viRP}{(w(| z{O(Uv{ZTi+?>HKh^iHe5bk<#@ZiHYJwXoU~+JE($&o z1ZPTusn5m(T4he)ycGjCWcOc&R=70l1~`Z_<}u|uFnH@1Ii?tZw7=WY7w*9R!tLe7 zo+$FG73wiZ-ts%MC|Bx|11`0GEd@pAFSAMs%?~A1o#Sk&6W(BoC+&NTqkmy#r zd+sf5kzH3eX-@bp>v4DviEs_@fC%6D@|EbJoiEquI=4MVijZ;{RJRx$8kVDUG^q~f zB^6|Rgcz#)E-7J{$9CLM%U`82=PbN=%#f?Id)Q)=14s((o3W@2Pn-!k=J*(!?HGmR zCQ#<4pm~sP<4+plDLZc0I;&{Sq1A3O(1>XxCt&%KR_uOpm5S6)Al8xG0vVUncnJ*= zrxaUDfJY0M4z?&2UAoyr^7a50E~U1Yu8xYYMC6K+;0Q*I$_Titd^IckfJIGEKByF8HpVD)@FA?*~|)!ehCN3jbW-FgFT$c%|_KeDXGhKvRnGw*+2;n$}?d5 z79|G`H0T~H4^YvXSI7wOFUPq$!>Ll)v8yG703#Z93%M5HRn$is$I=;RNK)`iRcmr&;8+2_>~@cwM0zZ4NGAsoSi2)x)Nz_HN! zLyO>^3WA#<*>p%C6zF|qOKi0?{;$BZndzpj!>+2jc=o{~P3tVGkWh_8n2H+a9)cgT zqw+mn8#_x_K%-Oc!_FE>rTR`eLZ3Se#WN9#eO@T9zcziYaYra6ZI2d&#z(Iri7f?z zL!{90;e#CFI@qdjcVA|sQI76s1kMDIhqwlg^9G~n_mkmsN zx?HT!kB0ZX<~wYXQTVyUU?E58ihtdnAHZq-s~kkmga z$Y2yiP>8x9cD!VRRp0y59;FtVVm-zt2~Px39vQq&AW`NVx{3u}pG$>}E-H7>a(?g1 z^;<4Zc>Av&L1t^zqvBw1-nWn=ryrq3viyCTKWs1jq~D|@^-$2Ag^5o=BdvWMRA{i) z8+jVcnhi`uh1K%~*9z^3RT$<70Uki#AzLZNT=H|1B+p^bG&}xKOy*D71`W=p;ebg> z3kchbA`-XF%~o#$cULg8Xhrkf0PAMXMq{amBPj6ORyVAdrL=;O*(6L zE$2P;u`J%^tkPOj5Vr%kqI$Dd!Pa6N-$2MCDLY$J-=y*SG#GW8+aVh;ims*gU?Q8v zFs=0PSd85gw}le2)uqjs_2+*vvP`;_@4XH%i)o%S~rPd0U(n;U;?@I31* z`l2VorN?r1RUNUuon33=}GnZ3n@Ya|Q2$aE;T z+<_BS!-lWp<>;L11?2Mf$-BP4{HGK|=N;h&fz}4l-`lG%(I!jJu}Eu5~eGGiSrZEO}PpU*}Ugnvx#NQB|XPQ5Z}0gDCp$ zmimGC6vqWbDww*h!8AAhUCap3lDmEVy%MgMcx-9S?Ip(baQC^gBdcX76%OWCP5FBL zU^9|9gr~ii?ZY=wsB)6AYMzaCG)g1~zZs3SrCz;9g{!A17sQ1w2(9n$M*K zORJPk#HcaoA3{0^vQgKc1auG~C6#X7Om{BH4F!mZ)jxD=s>xc8&%EjTxs$_qAagFq z!YSeR=XpZ0PB9UbGw1GI0g$iF9FJPYtpg09eGU2mp_(w&_Xp;cl$jtmd1F3>*&;`$ zKs!!6Xp2S64k|t!MI>Nt^%1E7$hwZjk0$N9AaGw=SJIk#P?I(kTKOtWpi$(o2?PDK zi9NvVZ({xtnTnYD(sWcb^A2KBOQxcsUU|v~o!6Es?51wdvxj-dYtug z990m6tR%$V=Pr~a7U*5${gE-@gmKfAbD{am7#w|*BqxOQd{GzWuyOP#cBU^qbJb}w zp%cilG%RWzall9+>augH4YDguHds_I9W27WZ&psY@HGlzvQ48YrK^g;$NlwMMCO$X zIEm8K3_yr3UbEfI=MFi>rC>&09%f0d@quw?eJRtk!ApW~dg9Qa~Zx)0!~({kF)AjLNn z%_=0~XF{^~9+sm$XN$)z;-U3DT8*T#I!e#M(u@fw#>y3xXndCOLYo9r7&M7=8Tth` zTQE18X8|$v^CYbvpYb<%MFR<7pm&t_sJ8XHx2cEHvoG(c_e{PmSmdDPnVo5eq#b79 zv7<@}H5W$1nMO{}3>f8fKA?ezZJL?TI?YuW5*kbR7W!tZp!1&aFcFvgwLzvduH&WE z3-$WRVq@ncr#Q;Ie7`G}^<9$Xk@xLwrfR&OQKi)uH&v?!|Igogw%p=vi4HQaLG~4Y z%<`8L2|hf@xHIF&G5dY0U_op6rfQo>HtX@Ih{t&ZPT3`U``4uKstv3+;(F_}#o*}6 zJ*`}sOVB^y2%RT~v^IKb!Y2A*lG%gv{;WXgX_m7T~{u)4Y6jROSG7HBOh?w083{xA*b%WcIb;Ddje z4C?OGt$SdsNE8s0a!}X%3qR~>p_fG&k4O$YIjzPMo6!d=f9oZIr+sSiG2uVL;-X}K z1|SVQ7qo7~0iLX~2Gfcp?RlNg;kVZ=odwsaqo=j$M-YYRWyv#6&FFKDAe@Mq;Zi>! z)sdJ_DxV`;JCAI9xaB?KS6HX^8F9!cO2Xo*&So?{Yx^qYyBpyHf2%SHK?^%6a|;X{ z4rF`A6TPKTgoSIt-u0nz)<;B+2lMNv=`RWTf3oFPl>^K%kKC^9($|jgeC`c6788RH zH7@#ypH(9?z{Lw!>ki8l$+iy*YJ4^v_b8#l3l~}#Nb`#d=SP5_aSnDDo}>Vbi}M9bQG|hB@YUA#k#lDXl@b) zL^GzN8rkVaRt(x9wOBETkyhX{GWE}}V|hNZ*y!58QBM#^@ZsLVG8m$&XKu#y2oR?A z>(2>A(kN#7om87qIyxJ|GSpCO{c%}(#z%Y?s&LQudWqCuO->SkT?n!?latPkL(aHt zirMz~D)$7@*OlQhIjW&HfzY$*5u>~X6xQDYCtW}}b=22F~2WARWvg<8@xudAmPm8lPH$|U=c=8dcC54di zbu$$V6m-N^nns(Lgm#l|1ym*iXX2;C!1Z6U{M#Vya1olBIDwi*Z37}@W!%vBbQDAv zbYVXXu^j3Qe(VQ59p@BVFG@+m==4BE!~aAeF9RbzvJlCCfT-t~?G<1Bz^u$V^*lpc zzrE*5M}gNz2N~k{_Z~udIwXE$-C!%Y(d|&U+Ub`jZRWbPlRJaJiz#ByBhukemh>|4 z6h3}|Ics10Ya^$j+R!~V)~}2Y;H?bVs*93AzIFju`wJ@IAkbe}*0F@~mWrtC>TpA7H=ooP;*=_j|dxCut{ZhTWc`c&e3B|%M&*`;D z?F?piCX|zYOMpWBRy_93(h5N>GX{1HPEzAN?54#R+8Jx$-RbVQTH~nN>sTqp^wu$r ztSq?Gy+=xflGaOKk@`v{q`bD*wxx>KwFNA<4txD^i-X4vVO_Lu+EFJL-HO0KmOZN5 ztISd=l(IS4sNp@xSJd2ij;`tz;Uc&7$552h90T34d!1+4QqCC@2|CwFbYVXN|I4aZ z#`Q9(W|Q2c-;{;MeDZe366-FL$6LtJ!w-9S`6c6TQ!I~>kid=&5);Ri=Muz2M7nQr zz9k=FO0*`^7#@a_=mG;kCjab1ai>$9f*;YdPnmvK2+2vA;B+~d8}}oTk*y> zuQD=Ll2Y!%e(P$Y#Rj|f8Cj^4!{|k;6+FJlz6;39%gtd7!}`g5mXUxfeu}%K{r>)4 zTQT(XY9ey@64TNlrSH1Z>S6EttiC61WAWTuo$IRljwjE2$hhQ+$8*k`mtz9&fv67> z;e~eQrk71KAXq_jC}LAm{c4UT_FgvM*n~ z#ojTXYttYRQ95HIIIu1dlYaWm78y1$Nw4|zD?CbYi5uy*}RcdA|E*FlW<`%)&k!2cAfr-tU-fs7wZLOTSIF39#&a|B1 z;>Iar=aaJY`3x2!BmzJA-Q3r5RpTB6m1&$I?~%{Tzt7eK2(=m1!Az6lOSoU{GEvH@ zJlo;w9qZGdgXuEU?dd96^ALXb7*;b*8xmLu)BZa$9~`U*(IK@CGq85hRsXRZRB;!z&NyTtK%a*P4y9?XUX%A=(n$NWb!#=@ zoo{QCCl!L%jG8PDwHjh%uuNJDigqdzC)j9e0~ZfxSZRoN+2%BzCVjP2rd#I;_VF}i zltUkXD2d7BAtWlw%DOY=%IL7(m|J^lKPdP-(&3T8GcPLU86Qbe5((i1_}3;Ju15EpWTXugREl|_PI6w)N-)4hmnt|Uh{oC;7_+h5!| z%e0!4B)m-ZJ@u6tXAK}AA3~JDiR?#lysI&x~?5{=fm2aq@Z?+ z9-BF6Nf)SH7|@;nUM?w35|E1ri_Kd|Pulx>Ezz>%5Zm3>byzB6Nv&(ksjF=8O9|{1 zlU$YV6t>ICzVMvtCg(~|DgEuAFDLZI+x&+*NQ)RnUfQMFnW4kz=Xb;?eH1Th-Gbm> zG?uFoP8&${zOQ+SfFRkr+wmu;7PHqBov>e2^A0Rh=mfKGq|vL1ApUrpUwoMibvSD>1B5+P6{`Vv%QQBW{4Y%c=ePEz}8$zep;f~9MFCYQ1AyFM);{`%Lh z`)><_C4)I3Dd7EXpI|S=;{FXq?+UrhJ#hiZ?Wc;_kB#uYzbK?2l_FpNXSp&1r0Wjg z%pF$d3EY2yj&_56X_Z+Uh!R*a<|d21EQXhXTP9c+MK{hTqaLI6t3Wf%l7yTX=-4bW ze{FXuy0FvkcWbU><0F$6BDRuRj6#SOBCy)XQeLQ}Rioxvw+nX`Y2HMa#ltT<{uZ|8 zLU)7vP4T*Mjy(H+6D!n{7FXU$VMN#}kD|zH<5zyC3SDH^HlzDK4dLw3(+p+UkqU8alDmaBqk}n~xM)Dz z9JvVyL6lAZZgTxWqF@r2X4X*^9$tBq5f<{H?zb*nw27c?dOOiIu3=Ey*Ck?hQA#Jg z+hG&*!E|G&`pkV((Se7H_t;;5S=?~6Y zGh0zG^d~(zWR@NG$uYO?0T3&p+7@_o_WyB^bgDrjMeoR$Ver?eSZ8A(8uw-=lf8Mv z%~q_Il(%2M5)YuIXkA*(v5Y#>XHHfr5&um2<+{TalfkCKdr8Zd{S4>LLeflvHaI)q ziyG*fkssuYZ4E!+q>+b`XNtXK#G6=H_~dj{np)~!`M{1$Xv(qaZxVcr=^XabjbRi8 zey5Qsgs&@Q)C!l}v)D6YucPYu>qf3+(nguuyJ3q7cLSBJBm-~>BynCJfrJqO3s=Cy>Y3*gy63{_pqdVr$Zx&pBzqa!iMRd zFMX7_<<-<%6vzG8yly&@Ls_u5C&9I8L}(jD&CY=-muP-Tf*`U_G(l08Sd9ZTjQ+N} z9FN;y(+J#3?C*eSlv)&n+_8=2A@-gNLF z!R}#;v=Pa5W#h+F9g%|D7;6O}(u;%Z9GccKd2lV>YkPMO4DQfVC;SCIHFzb(r<^5F zA$$g3hHUn0eV;8;v5E#uWmie)LOMoriUViO#r{I|y??mP=`e8=k5B*D zpG6m98afk>)%pCcs2uCvcg08R3{81$8yQx(Ldd(3Kvy!7#fR6kb*^P&1yjqpC=O^*BE_nU& zM6^}*Tn5^1>2q{eu$AXy`j97w`jf#@2j`~bbweyG(qJYiUly`pj7-# z(-VVPv1r zn6faMXS=Yye@lU8!8feLx4MlPBljOS_r!_bz^J#B!nyj^=`nXmnwTT@Z^M<~R7KN} zsM%<2DOSv|k5}^>Lg@FfvA?k06xTHv5Bby0GCgIQNa&hTcr1>2&h+?X2Mymc`$EuP zO&IGGZrcyV8Y3F&|I(KJU1l0-6W4?^>ZfiibuXmUv7$6Vf5Vx>lZGo?WUPE_T?$T1 zTMg&)4qx4)UuX;QEHn5nRI?|3UDxkK2op&cXUdcIfWEO!1h{`u9en201yc?i2IJ|1 znq-|F`BwG_Y#P9%ql)JyNialIAw_Su`cyud5^n_REropJu|x&Dg6IYv+phQ0Rk zh@`nN7fYq!at`G6R|F3bTNzsS^6x^UMcP8@JPsAciuy&fS?tL@VTj0l8$ymiYAgzI zRPMd1?>MRp{X7e0Q|d5=@E*J|cx*Fq+eCx^!@*W;GPaJ}1(p()4AbQa8oq|db!IL~ znYX=Q++RFSGvnLQKjiTjLiD++A(L!-l@^eR{mH)y%U;KtmRM0F?kO!UV%MwbnU)7~ z=Y@nPOb)f%HNEcb5_Y8lKNbw(y?c#KngZ*U&Ml0|Diq`lhe}o%z6T8DU{5euqsnC(=z5JA?6&_DSc+4a6Pg zk$Dl`A6FTRy=3{ADGLkU15NP%q`9t{K2GpNs?jOPtNB`e3BF+zm*0IFkO<~jU34>& z(1wJ+4W(#NTz|E@PAOUk0+r^pbEpL2lLd2CgHk*!b_y#R#_Zu!0o<=CWiotDPPaxR z$4^#m{5@qXOC4EbAq&SHMAHFtWIxWu0Wq zqAHu&xUGmxi#KZb>YQ#3^N2P~Nn}Y4`Az5E<;r&COMAf?vemYsC;NDC9amu@xKXvI zPh=$|1GHViRdR6Zp} zEhCl2CMK)hK|wMh-qDaRU?-bgTN?OV`N+^c#nDV7we-8OvETuB{5M^EC!z+l!!4N zNI->9Yb?5eNDdB=x=wXTJS3JFWv=zBF`te;>W{NUq|;&yrLS<-E;=sj;LL|Ka`W}1 zfKufqE8~>kB!ddKYJd)uNT|l=EmheUVJpQG?!HAU=&;H~xZl*UTGQhe;o#z7PaRqV zx*$-9#kFf^9ya;U@CS|Ul!-1&*uM*89qH9A&#vL^j>5u!7IN7CL2!5lB9Z&!TTlB% z&@X|dqzs4z`B#R=v1%`NeUL|BP=R*K6kAG^F|Ua%3tQ?LI2++{v@QhNC2T8(x1d$s zR($1%TewiLR$^Q88EZt4dzu-7y}8%)E6p!bD&?j<_TBD+*%tT@DK!k?l6;hZk*qy+ zeXmW?U#z}fHow*$Cr#r-)>$5{12`im&2=#cn_>4@msdE*IQHt$!{1#zSQrF!G_sc(f8 z;VPl`L644_zqqE8lM`qx03l#W@;S)wF2cL9d*`cJ*3F3cR*zvlUsq3IfO{h1Y?Px5 z`|JY_%5E*nzk=s%7CRX9j500CcmwWshKOVWCBJ+|bmov89-$C=CiydS+M8QzZRmMc z+w>!ptB7g|0+H=k@;c@%Xh7Ay{wqZ3*10hM@0fk!MO%5Xs9uhud(VND;3m6kj%#8K zR+PBHs}3PCfNZt)71yuX*hckqy%wdG2NL;VMJlvlJ+L5Ra7OH=kREMs z`UVJ@vq_tAV`dM#-MrYU{S|96XVnw3pZRPq2g69_U#PUBH0=)-8UyY^<#2=zAZdw8u9zea0Fl^Pozfo}!+imB}X-{Z086A_^&Nz zXk$tU&{7Z*mDi*ZmKD-q{GnXLtPRba2wDE8hmeq+JE1n+k7-HA^aJGlkWN1w5bF;G z2M}~JHnnyBA#;9u3LDx>m|B>b|1>#%T$ulc`R^DV<9`Pwoeixmj0J7YtWE!uVw9at zZPfnrwO{}m|IbN3pC;J2NNBftz`4lwtyH#fBfSOBa5)&LuTEx^{o z))Zg|u>0BC1ME#5E$mDH4gg1h6Tr#T^{1zkg*(8>+R(`y;0$m!cQiExIJ?;aTmY^B zH-J091K?@uXh-!ww?xe1=YudY|EJ_A!Tbcqn%bJ!{ZM#JKbdd;Cx7<;xH+us|EuHt zxH+s0Ow9k={C~MQKPW!y|4%n3`U%v&z-k!+W;kOdHOF|p>GEf~$VR3jJYjS|j=afc zeP|$MMNaO?m+}4ctNSeDtnBJot81xq>5~OJJ`W}{E<6)iVPk43H6}bO9+!}qqGEIa z&cMVZ*UZEugoH%7(Y^`dOB_MG2*KI8uBQI*D>OKaWM<}7nB4N@!;sR<3^vZS7J{J` zC}pKJm7@h48+alrO6Qxg!RY`Z45v*i1?b=ec+T~Q#o=H==JrAqhh=s;j^+9G08_wG z22N>d;V}Ppg@jrK!lR3Vw*htxnK}|kkBu4%Spq`mHipfqAN~%?Ibd~jZ94vKVDIFV z&)(pW*X+cyUz`WtqREjCn&>YlAg-PRy#p8n@({+|=`Nk^j|Wznq|5j!RH$Wkab7?hBF8Lwng|8o^{&2`*r!LP6)f+ zoe3WueQA9GZ^KJ#Jqc8Vu_W*(poO-xzMYw_XJ+XDAS`S}(T?aRtS$^|C7h2K*e%Tt z76wZN49Ac4m7bkYn;+a+kJ_0K{HXs6`wQlN_BW$8Dl#`NZcb%A>W2PfxE2RUH2>RG z@6C08V_lXJ@8&GHGSLusB z*zf=tLoI_V1Qzflt@ZAg$Tt$G>~}E#)b?y2Ue4qTqpu9mP&ePV&)jDU11h(+RV@FJ z9|2=v!vH2W6?~eX@>jKz#>y1lj_B|ZNRIJuV-N<$T6F} z#|k)+HuL!poYN<{(T8WAXTED~{Z;MonyhnKEn44H15Ulhsrlj32y~Kyh5a3SW!xTB z$ybF~9Gm)~4gR5#^({;F+v?~4Gs{Vg^|hdIczE!*ff~SYWqvc_nU;P?+6F*ALUHW(FQD9+fXeZ~)69EPRQ>0%HVx8I#u@hDC4a|SC z_Teu>pz?)$wtr+;^PX_g|FpmPfcPk0`}70pbUhJNLuy;)l-?6i&36}mubqEK@FNU- z8K+-<&9=lglLYqvz&i7O5B{ftN%Pr!K9re!wjKOuv48yf{5EjmrjBBM$_P*STxRU; zejMHpgNHwM51{I2aGlLB2TOvjZ;7D~IQ?{h73_O3%_Xo#UKMB`*ZlSLopiGGd5NODdo5RMHxHp8xtuZ?#Fs;NibRHu zz>X#oF%Oy+p_en44IN0lHI(Xww~t3remM`%YIIu*7$<|f<5~q9em+|K%(9)YW%bbN zvoE!s$(+nNlT`%zjIfASb3|Jol&i*1vT|c0STCvfe-}(Q05WE0May`uuV5z=PBHBJ zl>vn*=NE>B63ib=*vI#j|jsgy?m6x67 z665&;y}r=!IgLm?QEa%74aX?giL~ao``Ws zYTcx-UwnyL6K|ztweeRlbG6KyhrOH>9%OY&7V@FfX^cMzsM=I<#6&Jt=XND@fGrhx z4i|zjA}Z!;vb`hZTdVhP%CoNScbFkMM%+UVD>pCfHj)h2KR?e5p7L^1D}5%G+aV&w zx_v9&pspO{1)gO|&-|4PXS3(xTKucswvJ(>a>SVtq)FB+^*-$27gB><)}xX7%lwb7 z0=&3seD3b_&*Br9jUt8m^gb_9@2l{()4f!?8*%b~edOESa?<}~GQp+KT743P%P2F! z{)RbgnI8`lBUCU)=1%lAg$vyqnXAvukd_Yy}T;fzekeb*33 zCHL(X>MpvNr}3(aCDpu~%DuZc{Jly^qBk!y*Opf2;)*dxi&e5`Ig_`yhsSNNEsO*O zgECN2TI!a>UC-!~U=^)90RGouPYkNJlxtciENddz*Q`5^z0I-sEy^4C5tV=49CUL2 z9y&1sVzLlZuu(EKrYug?G9qVa9)@hKiGwcA(gN2DY0_>~^6~Y_45+woTG!(z-1=c2 zHk9`u(g{Lr$wYKkaEiYfqYW>%lmb$ZBQjM2q*HPJjFk`KPIV=Yk=Ju2Yr%3!@4p5R z&t~;QNi80pzZBB)Wq8%1_^fbXqA6qLa)b&?`D}foI~oGC_d7XdH8FGfGRqN_q-o%{ zkIEU7bQR29D!%RiB*w^w@koTl+Kk0+dlhG2)j43f*z3uf@)vRn(b5T!HoVe2biVgg zRK#YB75{T1@(;NG1ECnBP;r6!M&XjK21(q(aDZz?3LZg@*tLh|5C9RwLxretMu-mH zD3fz2^guW5T+|h}rk^v2DvP{dt?RTXMh*JH(NNV9IlpY=ViCjZ-@9@)vqnWy)1tuk z=#00}?b^ns2|FX1>{k+LIjc(Us$MW*Q87Zgwyf^UHEv@$a;xalI^C_Iz)@w|7e+(k z`7nIXC_{2=@QLjXgzeG5HouA}JH9N$td&O}W7;u2H?71P!8~HIh-l}Vhv)%gx*6d> zXabA+KF;7$&6jg4*JXudSe5WjT&%zy?94MBW4LAdDBXeWEH4AtdiFOKPCQjIU-#a%lpWS>_MqG0N1XKgs5vzJ=!_Rb z#jVXtMwS2rD;AE$h4P5_FB-HA`HqiNJZUu6Loc;SttJK^W8z_0aqA^XNwXqO!M8{_lMKZVw zi8!G*n(o>{WK}b3X=Pe)%ubS|qFTaRv$f1F3;T2W8?-Jj4u8%s}V{>qy%&MXx zj=|(r)zRht%KI8ydCJtj72lFm(y1c`5lluxFKI1#|0O50MZpKXr;OW&+lwLkpiX)N z8|8$DBJE>rFo<`lXc%c1iE&kbO!L1?c@JbkN`AF+bZtpBaBmy;hnc8e zhmR7S?MsA8OXKK~ec@V7B2Vsj^8hQZz-#bD!{d4>)}N_RuaNLLC zjNW|?#TTr>);oLiZS6ULT(=sQ@y1yENf^qw8vc0rc*f(rC?v*H!9}!@ZJ+SjKpT{W zPW4__E#0U?kQd>Ch3IHl(703};i!f%!66Cc#(NZ(z5LI8vRFn1DWcUIO_J_MRY6BM z3MF+XBbzRXu&1{HBeO&JRRKB)lURQ80!6ClS zwrV>UmK_H5io;>maqjP|NWWg8hid|4I333LZY|Og?UL=zlerD}k)BrWBuOp8wCRi* zksRSkFqTv%c?e?k%2;Ow33X+*oVEk_GFkmpY-UQS+A+KBC2e!+nLsVL=wwYZRLa!> z#@rS!EJk>B73(+K@rAW<7BE(Ln5;#lI>!39qi59zo?TL>BPIuz^vBqZ1zd{c_t0DW z4YC7CX!bqGjho=!CTK>y=M48k>S$+G(@Hv@hp5tNQu$tjZ&aMiDPAw*ok;IrKWySx zyLDFp-IQm`^G8U{8V-y!uldhO_Q-3(zoP&YfWW9XGsbq71w9Y_8bb_=!MAMcT9gtd zFK1l0>E5=Rg(YDR*#ofkXT})+iiYEALj`7cOXPD&h6OSx`IbGYeLTLTmtdC)a)vX; zYZTw0mJb3t<)iHKM=m;`?8zmMwS(0>ob{u3`Vh6Pgj%h*0{bR859q$ps%y9>GSYns z`AE15*+$AFiGfs+p`x>K06#^j`-3)G4rdcRCgdJE9=8+DxN>ec;U*9^9;v?^2J5By z)It>PkcGeKBWE{QkpfB%dgL170vA?idCqf*^}$!#1!#l;Z+O*N?6YvQ>aiYf4^88s zK5SYKaBcR(a7`%%q-^=p2^m|t5I5jBd%2;K*ZuY#Gld&ff%J{WB}s4vqAO`hsv2!| zl|H+PT-CP_x4*QdX z+pfK?G9nkSkG*oxukSwKk9y_Bz;;t6)dsnp9tcF|tlq=<{GL zfFXrXu0=9uVT@oMwC3z}$D7(_G)kStrfT|@KXIMmp6Ue$OIG@C&X)p9vD0Dhlf__t z&OsZfnD@kF!tZh~6v!QYgz>|k{pBt-g{xRLFvU4o!s0^r)Cf@1my74@WldhujcnTM z&LBKBKeiW1IGyyQuSJ7xFp1QH&BPWtH{tBexcluq>S(h-`>5Gd} zozI4TFJNJv@Oji3!6-kHlU1Mf;G3RugcA7exN&)nb5iZ_s+7Gv`vn$3gQQ69Q*d^&P#2bnB@##lE%u^%`Q|$$+QU;>v``23Wngq zd4v-0v}^d(0i1758~(C%fGPxCxn%R(e6HK)kd>xgQIJ|gkoPLiSX8EK7{e!q2F?Iw%djl zGx@^yY&zhb5|%OyuC^`HNGMAU&E%1ZM;)o-m7W#jG5|xn^GAaLHU_<&jAr3!e|q93or(gV)4Up?aU^$(;)K9Fp$_ z1(|QZ2D__OKO986QSp2)ll<(2un4G_$4FipwfB;uo|vZl+TXN1b@j>khTDh7;sy{O zU?t`{X)YxOtpjl=nTW_l1|X${xD=kW8*ZK5&F(+c;;ns~i$R9a7+l4xl6<|#oX^?* zB@u`SC0VnIgGNT=IcgoGy+T2HTY%?NL z%D3K+PAR>oUL~0F*H^IS=t|Nz0e+Nf@?RUbAl&Is&E~6eMnws}v|hhF7V+0tfRSRv z&urCHw7O#jxuijS$^eCX__RjHEWgQAYb-<%m%}L)YdAD+E_059EZ&5uKI@@7mGTg| z&;zrT#Gbq-?}HF}WnEjmAj>Uu%*gZb-PT<}1DOWZJo<4d?-i<*T^rP}QS@Bzn=-ok zn9l)YPd9MLy2R4P@W4&X836@%-5q6{mYyDWv<$h-9HDCtopRn}c2in8j?gTms zEHLZ+D@%MAhq*oP&TpGHIL~nxSQr-AL$$FC%I4xdh8hXLT|8GUWPSx)rMw^}a~{=W zIwlv+S-S<~-7?B`nsRzQ!y;FbnmhQwBE7H?t~8$5lGgWeGGa}X!$T&cd?d=N!&g4c zS){Gn^XLMDKqlG@0;1lSZj7i%!aog2?r3*bzj$J)d0TkEYyky+uo%(p%P*A!vtmzWn*naIryY{PQ0e^zu^!g7uRC%rMxx zBt;i7XoUmkkv(|UW1I4CI6j3 zSYYPDS4=$~Bg)p>nw`^iCJ_+TmftL!?6|gkC>!#}6+818x9nVV7&0TX#NGe-7xItx zCN_;zy=$cMn;(0e6QhC$nVo6c)!pxCJi!tFqobMn9@Lja{Hq zQx$MpIXzSwqhBfqWqsIJ)r2+qyToC}K%g$%Zk2U(a=5!@oQ}c;_a~q2l!Yv#`dO_W z-$)RVmy}9g9{}xPof)~bt`4v4`h)6rcrJ>&;D}r!6XA) zO2NwxdF?U~u}9DH$mlq6t3%BPprpQdF1^xYP;@0$N&gXfuhHj3eUVDmG>W!n>k*LA zJa3!rSr*_;Gp+ns3qM<#n&X(K(`R=ScT8>K!nk}mwLTTScCe=r$qQn;%}%#QN3RGB z#<_}7;Px+zvaMtc(q#)mn(8m&wSHk9aKtwZK*iu=KYd+jZDeye*-|0b-`p!V#fkD% zXKCH=nRX-I90H`rjd5m+h%(nuydXcEtc~^j1Y&{0co_v&iZ$)h(5O68yHd>AeMw)D zyW+@;)}AIrw=aSt6RZ7Dtd{oMMn|qr#DjyY?u9X`;Z!HKc48GG#zSn>8Px(t@)vcT zY<=aG2O29uPU!~q*~>N8=No?=iP-1X)DiGb0#N00szlxQ>Y?9&M4y^@)oO#`@uLn!+YI6RmW(B-jc_-(e~^7lUbYjfhr2DEEb#rg=URQk zVDv`A-EEh7JvT>&6!MOgCNQF%Ctng-6t(*Z3d*~WXJ|=eWV^IykM^E4Dv6J6hnneN zysCC$y?t{{P!e@s75;>h$95+2-n^J<%l|PSJ=7d5c~?WLOUSJVixDsz@?(x;a~)gl z#ZDGj6&Fr9sa}eR3B_?BX!l7=U9Sl(@ zdU|HMFs}%q6@tO@!k@=b%=DaJVC@2^4Wi8BVJCjQY&D)1C`vEDg9XbD$xECKoRc)l zww0MZ%{U{{_|xe?gXr{#&f<0TDxLg#lKG7*;!4%4l-*b*3#tJqKaB_Ia>8ISPwJfd z)Pk_<5=*6n>$%akHfUGXrp;q)#NUQPc~$n8eUqR~7PrZSQ(=)}k9i1vTLi3>W=8?H z{Je-ioRg45te#XjfJkuyOY^gQ^4wC}nB_gzAO41QYvd|`AY}6L(QHkBWjF}W&AWNW zkN^#?`YtS_{A;1$;G#RfO-p%WG-BL(; zC|!sz+?n9K)^Ul@!%rx49!FdeM#Gp1`_!%0g+Zq^;yWN`NJ-YZNu(2E86g);<=XC4 zrFCktZ}7d2jP@5}Y5mNQZ*Xr;-k3+V8Pd0jRY8)bN{KkeNxE98flf+x4V~txY2n^dA138rDW1X$O!0C22yA1eh4jdBkx%FQDl-t3U; z4`-=Qu9YG0*U*vH7pXjxN5CTdSD<{6{hPzjCJrK7j+u51}l8q*wg{R1J%NbRg46XgPYyp6V4UeHZU zk(*C2cq4zhFC@ldb}3<`$Ydxp9aP+jznGVholtEJX9218ALkxCiqr$3;b|%<9^AqQ z-|Y*^5wC7BsvPasiRF^C@U{Jp?=cVVMaP2Vz!o37Q9+UC@h-FV4b;7Om8upU^f?@m zus4{g!Nu{9%wxOwDetV^c^UfBg_oN`e3@rZhH%(Hxny`J9J3q}A&E#bzgJef+Vqp} zFRl(u#L}@5XRx=nphpx4h*|74alQd+rYtFMYZHDnpP6P7w!~zsfHM1E;xzK^qDR58 z!>NCml(-U0LRbg~Vx6g_9XLJVP~CL2XXM*mDh8A>MujCZpd_6YlnQaJ&89f=y?gz7 zxQRy>?H5~W?PMq@)-!$BFP}@4K7v@aqxlc8zSsDViI41pR=Poyyu9pA^_){N1I%;y znw4fkI&6hnn8fpBu?%ymY$Vahu91MPFp^{1P^rZW&%os2iM%@cLfMO7-yo)oUMIpM z2aMb_zqfq;Oj5066`A2m`s>l=>99yi=63Rg-KA1eAq<)H=e;{N;$x>u{1WNv!oI4~ z5nKKFJ@=jI5{9eT?rPl%5qj?VHv7v^h}5GfZ>z$EC&F{fG`;n-6Nw_NaD~pN9r71t??jAn69gG7MM`Pra zCaQ2{%2gppYmzx%&mR&dPks>9MqYOM8~P2Dy?DujGjqMY_&M4 z3ZoI5R2(UGzqd%1FX&7>e(c$pHa$fAdW`{uY>q;8t6MIRQ^*) ztd)D`t#`zR5!^&MKK?^zi9T*~VN5&l#$qOB<%-F+@MTTIP7DIx@D~%>3~HD8MBV3( z!P_d&zoDVvCh-Mhg|F2wR}fQPA#8c_BX8xRyh4kZCg>aA{1*2p(0PURPdfJf!vfMD&$3F;ZP(Bhq2hHBYEfQ>ar^MoXKyz7P?df_y=+46`F~14UXnO;@Lo7{P zK?}wi`#f4!D`rQ-5TmIQ;L%;{#$ss>&pBdr@{$3xB21 zg&Fx|5dC1)rJI-6)8ms^>P^kx?t5MJV`>3?kassv@1d=JM zR?wnxoz=UPNk6sP1QQ}paH%3;)X9ZbG`8m&N`o!dp5-c zc?Y$*7XD_!smni3&I$`a3&}sMWSRu3t&gi1EkgkzHb?Gc7T#5QN%@3v>TOike93ro^`^ z#p}{ARlCY!kCH+c1};S0ANJwGL@>8UV&uZj)bjs41aTMvukg_xXkzUy^_AmzPHzsn7V zC)?pizec%TsPPXHwUoKEVK^az(>zxBTe(efjfs->fgR}HN(UYUI*F#gH_uBBO#E`u z<-C_>noQ;@Ll_(Oje=y{wigFL>SIJ2^QhE2-0v)blgW5OOjM*C`|a*=J))Dr$Cj}; zRNqK-s^oUPW4n!{=}mcV)aO(7yxN;Hf|u@e(jY(jVT2I$>CF<*o1$w-NUkeGrnVuf zQ+KMRkQI?Xwaa*T(<4nQ-lr&=tP;DW$ksa=xQoEfn}+Dxw)`D!OSX$WgtWc>qs>ZM zx!1&aa*_&l=DBF~NE`%p^kvvhzbTvUcFsI0Sp!xO_#3QtuKoHB@e)V&da7gp9M=owOg`eeJ+ zut`w_F-YPSbp6Kgb@!o^dim-#>+Jp{_&i$`&zVlAL&l;eoVl!b=s(i7q_{PHWp2Cy zdmrE?D@%02LspjX|c*dCrCs>c9dzUC>Avw^?HKFP1t{QPpQ>u5U zEv#muqklmG$#>x`(r6_Hcr+k6Ef7l3;1l)e19zN{YlP1nMs%&I&k~?Z*8!0~b0C^J z2IdnHA_{sn4i08G4Izuf+^c+TU;_{0wk#peAYlG#$Z-Wln2Nr=d)NvT496 z2ZOVdg~n7os2d1ILd!4pVqSOI9tg2eexRye?8J}Qg2B|=>JjcivrlvTS=|u9@-EiN z(`qhnDy=|sEizHq@9;X3D*C3;ckgYTOB?9rIW>2Nsx2OdYO0Nxs`{&1e_bfRIm| z#TBh1zAd*Z;5eYs?tZ(!uCjHK1>*bhk|06vIpsXDKnw;aWc8JwVSz}uGO&i_Bqi>( z()@tqakB9IX2Jj)x_ZuWFg!3vOy#|G)McL)sbyZy!Npv3n)o(_muQXL<7;=4G|q+8 zrZ>erSAOki3}$QRk5@B)*@BKwyPO|8NSUuZ*ML7dV$_42li&TEL0N3`-AdD?$fMnf zFKAux*%Mdb(t%B{iYSf~%i1?fEN<|M4MpgN`pDUo7>4SFG!^M=2L{f{!sN?6IF6TKvmuJC3D@nNsI#G8Zr2+y8FD9R(RMt#f8m+Ye_Ft>VBN`r0RhsCH?v~C1G^Rg~$+m~r$4;=;dD0M|n zaqppos59;m$0hc8BguxDV!9-N0|}+sP-$ztVqO zYWe{wtyv3lbvKK@Zoui#I{wl|VQZjNb1^g)3LgWqpVMdXr9#v=`>Y*Vm(Gx@ey>z=-&`c)p25631hi0m=KbLlVzS|Hf_L`Is zK>9QdJA7pf@&w%jXVYO#a#T3lVULcv9Lrue<3}5%99LKIpLkG~cAd8IKC+WcpuA5b zoX)LunO8vgjJi*assp6Ye-}I*fLwX}(qN@5ncJg+10P!$LA>MnFFp)U&ce_$sJ4h{ zZZDMm!<74}j$wG58T3$Z8(B&md_KACQtoi0_}SOLI;L(qMT^ZA$rI%tgoW~`-7k9j z_zbZuGT)(8A?ocg(C-y;oXV;k*}e2n@sMVpcr`zMx< z1L}{4!KE^FvJe{b#%};zc<2tqawUVnwAIAHsesgAIfeSIhHICdAkRnhGX7v(x+yz#^KFmg zk*c8|QS6v3$rRrU^DRXQ@P zTe)0GTH)0%f>8S&(|9c>4WW#iC^9G7WWV&wrG0-0{^GEi?s`H6<+;hdQ_mLW-!rrc z^?;6R&YxyDWMWUkihS|Wr)|mH8Zx@#eiKj%+~)Bs`T;SBUR)bJ?QE;z6A>64xlfwU zD;onx9^RVFRWw?jE5H0)=`crIGk+}8(bA?wzSb|$nP~JxeQLSO&xZJ5FiR_@RSE@^ zvi&(~jXPyI3BEFdWW3NhtVY{rg&kIqi zkTbMeSk<8w7L$+UN!1M#g^}io8UT{19Yj)Rd`-4n!_;J+%+f?^flr%uHKGUC+EYp-#x3d5N2 z=QB2JFFbGpnG1krEwjdK3$u^HR8=D*1hF&=6u6AJ!GiB@>sq2L*o&df&!lA`OaTa* zucL0kNTJ!)^5E^xiw1KOJ5!Do42~c+8&EB28iIm_dDt;{%g8$NQx&2`d~uf`T0Qaa z#Sn@yWZ_R8>|zF-U{DaE)G?gy_FZo&ejw#Q))!!wZK};%*>jSv>fQcmk>cob#6Ori zWQnBybXXnDs+vY4Y$H(DN5q&U5Ex53&Iafj?_p2Y39FtL%A(YQZCwM|Tin#o){=e6 zT|r`ZSrk%@@Q@RdNcKDPD?uxyP;Wdj@etu;Wa|AqsUAMTB+_V$_!y*2+FTtNe z$_cb~>y6~oP>6Zdo5~P{;?Y8isv|(XpcUlAJE0kE{keaZ%lrrrs(ob3G-+WJJh-Ag zyc}g(PW7O9+0pMqptJ% z09G{kuy?}3zYJ-DjOUN1^fRrDC1Zxgh}Z}IH0+M2CKL)m`*@FQM1zUKTw)*cNuUAmZpcao!kcCP z7=b1IW>AP`noF;qfL{m8b<3IffV$z86OL^kTGQ zW49jLF6sCw_RcLNrDWg2==G8bCE~t|14TnP<9n5rx8B9f=hoXiKA?hyUOA9HqppLc zpVMa|OZkv0Q1v1qAfpG!4-Dp&LQK5EVx(*04~LKn;pa8yu{{v&>N6Lr#1_Z`61)4# zeHWQ$n5b8p;01Fa6(b_cJHSJC7j=RlSG&SG^^0ihOrb|tdT6SeKgG0|VcyFUfP@Xj zmkb<|7~aU&a=`u_Cx86Kl*)P=Xfq0x8%YiKa*zZh&Su=J`>0^q;;W)Pq{k8U#$^E{ zeniDf4)Zt!tG<{hqX|-gHk~_%nYCYs30&~Jv0%IYz)P(yA^Rje@kn}>HODVms*uyW zj38xaUPU7nV6Wu)4ltG8b!bS<~#7WP1dOMjI>CV5aF znHyPXRBf`r?h8O;KptAzw9v-eq@82^hEDS~k}u+A#BA-(tfqoVEh=+K-1Zj^X z_=6xcSS~e_p!!4JQ^Pe_xCs`iB~a-&S$0H!5>vOx=Qve4kkF=yrq}mID+pSPXEgS&)wc+e=J|)*Vg^R1%jx=hjy0$3yIXWwd3t;OWxeAr`dHbuNjnyd zL>OD+6>w)Cbj&8zxqdhV+H0Gh*4MD!AMP;_EBmOZVl$XwE|Q@%?$Bw%w6UV;hy}|5 zRpT}Uwhy9c|7ZB=c{|!$^$DvRv{94Fo^88yk(lKN#K|l$&XbT0BdFItQi~meCwT|7qfKS?7!l$YP{mZU&)y?=gHtoB1Y1Nh613k0_Y9-$Y1V z*g~j-I|P#n@;dGy@>7I0A;11%EA;p0te@3!nuN*DQzsZL+B3wT9_!v)mW6~Lg)rBl z?5@_6Zr_DRFqwo}isnNf8Sg34v7Hh_+3^sw6LFJIjRe7mz_t$mTdty6UxmY0iB(hW zl_}$MQf#`uE z%O}VqLCEgB5NE>y8U~dk=feXZA0VC9LSA%+nixLEK0ibCo(lX$Hxxi zZ>Q1sEgJkkAr8`hFRxqYUS5ps7>PaJ@mIv@r#!?Nq#)RImHO*GVYC2U9SFaWr(+Zg zxGFneBics>;>apG=seF(I(hU0aiIfSWhFp5;g*7Yy0OslWa8P5J_9L{<6?sYqV;l- z*u0qV0wYFP4l0N00|3 zU!G=w`6noySX*sV+};RbVJV%Mwfow(G*I?{u-nt27hxCd`AkRmMwA~n8RNmkMIcJdf2bKqkuVF%U%&hODr`;0Ql8V^ei(z8$ z2NK!{F1iEC5vQEtfw;0=QrKD!H-XZT;Me{ThA~r-m)FWT6F89)n^IygqD|c5`8~4Eu=(aVT~ioI^IA>0#X-Y?4Aj9#^i;`wd`;2B>G zr_PhegI%lm6k4I9YIMABu6%;d7AY@pqAk1&)XWTm?f@I97Fs(J88U=s2ZxqLZ{hIx zOZOYvC9}_o<=UZF(RvnSNt5iih~Ag65cQ@=yVD~Ru}zW&i_f9XfcfL$UYxKB7^wgA z({opq$q?@KYsVuu0YkrwY^i!Q` zDstIBFsy5o;%l;LIk0Z;Dp}fyb`X8Q>$d@VPu_Xt=;$gyxK6*L>L=OtkZD4bDh6Fo zYR8>QY<2asz-$(hohDX5K==CUj6D#dNWLtmXgHD=lxZ&h!x>+!Cp-aUdf!l;koZ+t zXP-Upz#Gjxi^Ui`x(1SAxM5?b@3(CoHp@lKul4{zjL~q&z0`uk<1{CyXC;h48?U8U z--+Ob?uYi3stvx~TyHBj`HKaQ{f>W-%%tKlb)KOX7@cHPztB1n)XH)*z0h!c%in z$zJ4@fiQC>v4Js>%FHVsRxp|P`PPMrl8Ad9o1HR`_mq*cLEIH^#tjk6Fri|O8Ou{O z=Fe&oxB5-2Mt>|>eoMzYPf+@4Vbhcp1D|kphZVvveard zEjCz_BFxyJ0GCz7$rIuwfXtiAbf&+Uzj}<*!~fW|fv}jV3VpVOtK1~VAo@)sfU?rj zxbbUdX*CxuTzO`w&qdgc(p1H<5>IFqHn@xV6PvL7d9BOU@>%E)emvgra}_Ih=8CEJ z2a$Z`0(nY22NhkyaXSiB_Rn+UxEiEs$hx#llRy3*H z4K`pB)o*ZzW$&i!c~@YhpbnovP8s-%LS{^WqO}a_%_Mo=CU%ib41JsHnyj$X>(f>u zjERh0uS>`b0l4q3Lh~(qH${Gpq29EWxRRg$s(#9d z=#{dbEJZFA|0j6-%Ue4b-oOJ?^>SFv4D6mt7=oZza1rH2BfP+ZrBt2nAnG|G|I1?L z1J754UGXFJ+fVc%E1>8+N9GGw!q#ml684!`WI<@t6()8AYMoy8%e&1p7yc+@CkH1w zvAOpIa8Njw&%=x>rONXCpR2_X+sXUjoAHe+n$SQFz1nZwxd32&kJ-&`!yBj!xY?&rnNWlq?)72$F@qP2!QDmTA0 z{KTSCZAyOz({~Ig=B%$~IuRL#hzo_HxzFXSJw|D=BUcwUARvI_VdagPxHQ8JsckZi zThvuO|MXMHPxV3?hU7Q*O9CHb(cjfx4#{xBuVQ`4^Mj(?L4{FkM$0TpmMk{Jbp>AA zQP7OY2WskarI8Y@Yyo7`BKyvly-a!sgHBBmlbPGBD8!vqu5A(L#kf@5kRJiu=NW?N zR*?j|eG;N}zRQzmey3A{OkHc)G;S7h>IOgYN^N}-4O!55v}D+^gKS-)yiN;hxT|~m z;eB?t3frTcC3)w`P~KMb)N_)cCDS|>irhKwm_6n(%t@Al%XX$3wFc8Wmj?8vRZ~V> z6VZ#cF=Ud>dw)PSG0zjB?$X@KBVKUF4%kKk$a##smG*4@Hu~KSndP~-L{=Z-2x=Wy zJdMGy$K6;H36SQPqIc#3py`=K$_N+<6c1NR=0@g{giYX?F_?<3p#SYKy4RUUr=f(;(^{K!n zzG%`aE;`YEv&-KWK|}xr?IF_l=%~AX3V{&5MciU$Kz`Q&-~De0>H^3iQ}2PaWi`CB z86h@o7QYB1s>6zq(K1DBs&@|N;~VS@tk9R8PR6&%E0LxQJvAE+KhCMK2lxka`Obad zuVnXWHO#fnUNvcP{<>)r6E-W4Gbv%@`VsAimuZD@cX#}np8qAJy&3*S7*Rfe-(`gz zF4Ft-4SGZ=@>9(_I35p44v47s^S1qR?TO%|mh(cF>7sp8YUVa0NHx)%d5@iGcgGAz zI5iO0G1S@(uIu2g0=@cttHYqJ`-ze2zY{o2xk)Zt&pcQ$TWH|a03^BH-rk3_+8lq6 z&r>)5#92tex3`OYynG{(Vad+$KnBhbJJvY`ZeexobLGP=U^RTA-GBEv0KE#b=NW#1 zjTrue-XFGHhERdxD2$S?{|#PIlUw|IGp=?)mDPao2gMhwm7Uw=h%L59j;I#XI?Gkk z$dTBqDaIBLpdOsx&)uMd6W${*5TY8l>>|&xMzR0ss-w#yL7N9OtNNl(8*!W;rKmhP z$c`=>CNr`?kAgNJ2%a^Ge0IltIma!D%o&QOVWdC&ugN!EDuwNJw0J;cj z?h1Tzs>i+~%)l`Z#NU*m8ky8tK_`oVkhm~@$3;-ZH)lsrK~0U$-P!E-qVNZbGL6@C zkRT5Klf={!jUdv?AOe?RHB@;cFnZRN%sIU*cEMvSeh}yR^8!?iJgOws?w+-#MD4^B zH7skh)YxDbA-hI%tYf37Xa-iVNhf8z8tVJC*sBY=XEDE4ngUO>5EQp`F1x{wm_|fK zN@+npj@-IYfas^C51B+%U%J>z9;WUsrsmm()8alHQgr5l0!mpDQGvx}j_^4R_Y4-t z8%`HQ(^tl(Hk4(;tFj4~)`M~>;O?V+W7UP1$(igxh}3&;gKO2gXqBp1*9>ZMEkD4B zY6~zb-2N?}4`p}g9mVWo=r9&z%VBfJo6(EKwsO5bOB%Td8b2Fw&_3*F``9VY3eCy` zM25KBdtMG%Y!7*!Vx4*kH*}zbeRqWq&Pq>*D=>#*iY06%Q%u`gjxH(R`TjW+J;eN3 z0I$*vD;TOZY+M+>wr%x-D9>U3EH4yxJ0ZSVf zQzwG|h#4-XBBsXnCZ_)ZA)H;DObu?00M4dZ50|oOn6={lL39W34*>$a2mV66 zj(w^VP+YY!L%@W2djuH(Dr7MCLtelEo>f{s5`QOl10YP_qaz;O!1g_ZzXuiE5QJ+F z-YyCPsDc6moV5<|e|rWaD#(|x_pvX3tH%TN4Q|D0f}T`>yxs-$C+xiST_}eU5$tVt zfJ1zB=&)mK!H0c(9)W~%a(!D3EsQDmgMd9h1X@u1?r&w?{n|Q*5daniB?%oE839C~ z102A+A-<*dbMzxWV1xWH?Y9d||8jrSVjevGeSi5uRPYZ--K+fy02t8E_y2C{P|YC5Il;TL|G1?_ zn_p;TS!6qTUwY^h5EX6b2N)qI0op@OLO})r5ET&xI5-drDDVec1Q+~8dBC5=Vj$-b zc&PKT2Y+^->Gc=se>WFy2l$OCh3-qG1L=RaFV+5+%nY*c3;5mj`n`VepZNNRGn6m> zb`h!KyT9&ooa%@Ch6eK#+yMGxv@Jdh?)(Xa`*OoH_?2Z1{%YysLJ+TrAM-E9l9<2d zqUg`r{$-V@Xro%jKd68g4buHln$~wq*6%uj3l)6Y-MEbU=YDQ3|R@`>h=Tr8w&7C(06->pHPAzu%|}f#?`*vwYi8} zxRZBN5a7Q**w%h}eF*faFBls7OYkc`zv;tQ|4W<|a)%E9c`yFc`eO`afIn=@b7Y^o z6L)(1cyGa4zvTZ2YB(EA-RP2fG-auiiG}*x|nL1QC~yKhlA@!|HJ` z9g!R=Q<#?|+L|h7>;XDPy&^Y_Y%60`9LyFSp8k3fhMaBV?sT*gY*fk}1?%(t{_HL0 zm>plwla~e7dB{facF~0T;USS=k)DwM@lyHG{;KZnjnB($$e>A0=JLjLghW3{vdDGq zk+Rh&{L2!{42J~&8`rK8*#DsNFd5z?)R;Xc%aZ3!uuF2#lwu0C@aXZpzm&?D@Rq%~ zra6t}DPzp!mV8YyO23Jv(p>S_G(S&{k(AqWr(!}g7bBc-+vkBpr1A;k39$c`SnZ27 zN;oRBE6QOY266DU?2a4UYSB=>?-TWAi~o<(qT}*l=}?SWTPuTD!5l6=CfDKkg8~$3>oy4QB@d<4XYK40p(P_$?U}69h2Gc$a{R2KMD8Rfvx>c#Rb1kv=7i?? z`i!Sw>b?VVyD#1c+RvU2R3}+TYu(PrEVct}+xa0Xt&?3xbohMC%y)Yt1SI#^!*U4>8_>2>q4Ym+uk zhGjm^{qU5MLtogpVim32VOX)iDowt*AW&p0LT5sc;b~Rb@)-1dLG9E!Ng4Z#w`x-w zU#>Q}g6s7HFa`Iky(m?%FLFvY#!y`SuQ{uQYIb^oJGNi>xdPo4ux6dK2Erz&?DO#p z==tXlG16cMN&6W7tGX#Mkm;?h8-jG+h1}8m1Fg@iZ|9(^rOlU0W_GWvFn7gWDZ1|V z=|eo+Pg7$#`4gXrAZ{h=m9|nbH~f}u8KxV)e1EB4k5$zAKhP^h0rvaNXO2pAfX({q zB80(ho=Q8wLwLkN}K zUDUWQ40v11X~F)ih+V1=Y>D}JjMc6B+YP+g3q9Id_biu=jn=C`S##obLnQQNpM|=k zIpJ|XyWlDT{-6`T;XK%17_ANIyHP_rGSBuz%VoH|kb}Z33 z%Bq&r&mzP#=Ns261d;dekxm;al`Gq0Ow9%6VWm2!!)(OwwhW}aRM*~SJ3{8l(kUDL z?kC#vw8x%S-c33xEaK5BlOE3*1G8%bff;+Zm?|@5sE>}#?_@)9G(s_cmAs<_l@oPK zbb+P^V}qM{^-We)!pBUsH*qyLj{T9bWgu`$_23Le5io9T>9RssGIZBFAM1RQV>(b7 z@Q1@!M1g4skyTG~#=N6hF|fGABT2QH?h6os-P^w0R)t!s#{revtc}z~ZY1Z0oiWmR zo2$NiwP%fp5~{yL@q($__B|408XCQo3Rr}ZSmuNwMs91v9F%#Qybo9N;?5d(9S>*y zu>h&wg>z=FJrteV(F`b**2X-xK8Y+fq@q9x{zzlIVWN5{OHIYQ zImes>w)QnVH<9Szf|{e;pRNUT#h(-{qj+Yz9xpH0KXBvQ=_M7`cX_bu-q*6AKEY@| z^-JCxk)*w%_nP9-mD0^|OWxU|l4csBcXHXCyZ;Ac?-(OW6ea4mZQHiZ)8=X0wr$(p zr)}G|ZQHhu*E2VFW^Qs{-m8CWSM3y%N>$eW*80dNaMe$WPrQlGIgFLS1Vpz$B#L3p z!#nPwCt{2KjFhjoyeV+}BL)H0#ZAKJXrr7vP*4j-T{fb9Um&Bi=edo&W`mah`QE2v z!Pv<-b?3o6QvRnq>8>!pAlfw_Be!sszDi+son+GZ3^f&+V|A9+SbFAHgaf0@vMyyp z`I*j{yR`3o)8b`7{bx1G6{S#bDdewvApeD@EFQ*~O-j+?j7Dv8jeY@73bUMgpL_yR z8r%DousZE9M9GYwGt(mSm(P%s5qfp%2&L~4JG-xq@zOC^^kV{zMX9SNuPM8-p^onjo7Y3 zHk7Bc-FiDcs3YDC2iZdLg9Z~>7dK=yOUA~^9NM4c+d=Z~j!Cz@nl--j&eJ{xarBJv zWszXvE@R87Mu~j+ZnN5y?WCnubK6ZXuG+oN1j-tw-(Jhp zx-`2R&}<4SwmVvCW~{cyuPXIOsf=->4+DMk@KP_VufH z2X0ewK$U^!U*w)F!*@0*{)AcTWo9$R=!@!Q*}^K$wCJETuETZyi4LG+ykgA1ZKN4h$zQ}cU+?Wc|l)y4lMNR9mf!;b^^d>2Tjyi zjb;qO!LU^FvI%u@RxkUS7jU08LXGSXB3p6-OJ-Yg4p3F`+7zr>Su9%v48u8#P$_fmJ7%rbSozn$jEF~ zcW3Em7o8sr%D*}Ol`GO`OXb+N5GYM4utTkt1kHEJbfEu)s8A_J_ZwWDQq@0oXb^ks z;%VTFPa;i0m^E#`AkAd9WwOk>>8IAel_VLiTzHU)N6HGmUg})gRn@R1-))&T8l`D3 z7hdF*H39;e{Z?!=%XFFSn)oO0&h+IAO6%fdD>gN=oUJYFqC<$WK3#dP8J>)k$2>hni|%RlEJoWQOQ3gwEs1 z1eB#d{Gdx7Hv=&PkI|=9uL=O4^vtjZ;rsi5>%P$Wgg&0tn)z~M*w485*a#HMd?&QR zzSFpi`EM1^2oTm4>@hq-PHK*?Cn6vAx;){ zx}oV~+fK%$eg?f9|2^jV%)XPrS4@Qm+6a#JNbs?%?P2-gK+ZBH-(>gZ^gA0X%JoY1 z?!ki!n(=0h74f!51GCfaudC6+NypnX!DR|Y;*IyuNFq-=L_5N;gpSv^;gpojsku4v zU3o=IVbMDLrA>*0t?Tvu)Ww_}D@^joNrNK(d55P?g0(8YyPhGT>~K~JPhc2BD;Pr> zCXG*+@FTuzCPzUH$GJFD=NmxB$X4+VfZ2JW)bOZgxT_jkOy#D6)zb)3NE|}uC@`${ zqgLHae(AMvmS)az6a|>ySC|7(*?l-zh&CWe-0?9y{-WuT!bi(!`Yn?T(+!BCn@yK0 zWC`(i`*&1A&p54-+=2WQl-i)WiAhDY$5+9=%SGE!j5B%&5vh=IQmK?1-@Y*mW7YUV zzPO~A=Dkl(M7CR$yV(OZyg)e1bsYjAY=hPhTX%GqHt!O&6aZ{>5Fc>+)ADJ&t}LD^ zhISB1h7ls=Q>@mAIB{JZrN#qETkffFb`#JQVWh(p;|75H?%S;@k!UYm3G{g3-u4kk zq5pD$L#(QDuRU)lpHD=#y7p(bRxGt(wz=G^L^8s6F?Y94Vh3Oc+?;%c5;O>hbc?zJSPCf-{{e|ZrkrF18X-Z? zsFC_MZ#*?r{BzYlM1;=Xt?NYH5W41yD@!AHM3GXYOHOzrh-olu8yfBrT&A+00ePM$ z2(A(j8~r#x%X{!vlLi0mMOj;yBmmlMy|H>kyXCq6p68N47G0D|BsLTOwR#{X&xv|= zHTLeq0~>mhh3VS12<0k(JJ8w)LHkqTUC#>mC&nJWR!1yqzBvuS6wd%v=-K6%uBRne zLU_V)!ft}K#+C`Ur11U*3}yYagGBLSI!aX*U~I=T_}OPeSS^nGhJEpjgdG#k2Th!S zXybaAzn&RC9b4P>VpH(dj)KPXU0~FGd#jswKMPCz|KFxkQ5OsrthV*-eJFv{Gz^HPFs6NGNJ03YtKf>6?r8ULyE1jR$CnKcCTBQM3C|`mmx*D-gTfsP!!i3-PI>@}Tbts(A-t$04ocQfK zE89jukIa!(CX0%UvnxJXAE5IHnAweSjJ|*q;hxw8XxUkz&P(IrH1bBRm&@sAwO{btUOTgrZ8q_~- z<*C3Cgu#QQl(Xxx)QI-MJCU$I;h*6}T#@vBVE|(wDM3DM*0mE}f@ljf;-Uosv^P)fs#Jw;X*xx^X>!7pbq@5c zYGuJswRw>w-b;~u=SF*!ux?4D!#s4BW}{+MLrg~1Q_IHk0_q7|g*Yc_>Qk0akSF!! z#blyQgKizAEHuk+S)3eRo!u2e>nGRNC4Su-i8UEZH!;wh%wh8dDxfwz+Z+E2>4lWP0YdXJ z#4#oa&(k|p@KWwt1ier|_zM!?S+Pz-TuAT&!u_Zi9WJDr-4rd^R>OWhpu=g+?j~ej zuOoA|$m%4=N=diP?--;=M2FDoA$x`~_o3Jij~>hav+XZL;i!X~v5c!(YNk|U)G|My zi0v^&e}S<`G?XpA^8LEaQWTZh!icF4N&M=)^isTtL8yDc29gR0qoz-@LwTEglqQhG z6*UL9qkIkuU(w;nNM6YKf)hl z&OzaUPf}iM_p+anmX73vVqSTQEq*y0gjc1lKQ3DpBmh|~Vur(W>me@1n~P3}{WpZ0 z{PpPydlE#9j3dZL7}{o zbr}sptFa^jde5ZFFCP6hD>UK4cdd4^%^Km`1+LbLJL;}KD%!&auh*mbY?K_8GN2?~ zDq;kIsm%35L>^I3K)&{1gO)p~5r`{d>BzL|7F{3pB>`T{FWV@h@>2c4J8|;eH#nN( zNSG>$EL-_Dy?~~aEc|LRu;v;fnPPo3jy9Hd$nsv*8 z-+`@!gAw+HITzKU^Qi_<_#r?YLQIl#AFw}Y&->&JsoQu-9^WMZd3p)YXJ02vhFg)J z%qQ7pS@gEEe}_Tvo}LaN=7g?Z{Uk#rw>rAYsUW)p1q-HtbK@EZzf=u`ij4|3$la85 zGX?`EgJyr&Emhdf+@;F=1d`YP&b?WMY#8)~h$b`;ZnUu=qXyc&4Wt9la{bARW<$d>M`?@af#fH-F>;)j1JwHtwlQPhx%v2gXdu8 z=rwnIFS#qQ(R=xNe+D6~QS0`1G1nRoJ37614OJO2m#B7th##?2NgRqivU@ha-;ZJw zyc*>z*W4XvAxRD+auG1Ay{9A61g?8;Bjo~Yp*O7Ly20p&lv=bBAA0xL8wbR>M zr_+X?eVc97mTJV-sMgc%Hi0n&r^<`DKo<2=c$m{e)A8N0i4u07#@Jwf_{d4$8ME!O zirx#V#n(rK=J_$v4vK3>R0Moaowz`6WYcbv+&VAGzSUT_v@%qw{iHDQhsNnt21#+WQn|b(cSyb;>^9G@;`G%m}H|=I*B4;PQe}6MX5%ZrLZ#5O`j|u*Rz@g-L zsMg%065j6@FrKRHewot6l_6VcE6b2ML%#YpQk2w0Ut)bc>C0_ThlHN&B4zWX@!Fz3 zX$;8esN}j0?}5qa;t>py{q{h~P}h+P*2ilf>k71nsOuh~dN$~EhTh^YRS!g_=Mz_! zw?_buiAx1pz?0!xVm->_^dsnA4!#CdB%)0ut+iBE6!h9SwIOR&R7bqM)4t5GqAdR| zzw_B`;MIakYj>|qz6Uk>TKA@6fW4WqrC?)S*58cfVG>r`8ARRmhkkduCURubL$6e` zjAw^IL7~K_i0YMwv=|S|3hOQ?-|c2+p=8IJK2CX+!tl?gifJU}dS47E#(HV>nbA@d zMqt_nVz0<MN6eac{189kMva}_D^xS)@_GBDAj=WZ7>e(`pKSaoZ= zvvb?v>>e5Kz%3LTcsmE`c;@j_%Jh;a1w2b{WlFfYSft|Ox+$-1!?^B`N{ShBD;!^H zi;<7)hT*OTGR$z}Us0MXlNL(Yu=(csvsN9G=aCmPPObv`IWWFy6P#r{SX&7eNu$oTw2-JP%s6>1&`sieP?h+Fs?NM+fC9%3pMbG zjdRTO0=!9xBcdyDul^ueAEd+xQ#3XX=Kid4%9Vh5w@QO462dZuY;XW}L6K-py}$t) zy@T)i+x=5L08|lzaLU!_8hpSo!-0SQEF+pza@oPt3_-e}8fbKAab%OI^${icL0>d4 zllzXJ;QS41lZxM8Xv4r!jqKtuar52YU80OPjWSVd0EweGYgZZn!w=w#x}rV;6J<)I z4oQE}iS8MUUdwM2T|OVrsW>*1&5kDfWA0>gULe6HmYwEu0ksg@4zh@P{p9!&)ENuj z!szE* zQPoE)GHYGoP-k-DJLpoi&gxvc717^H1|EWh8^5k;ui>=En>6g+cJoH-0ohgJV%9vB z-afwkkG(;B2R?NtpAw;F>Ll60bMI_C-|l!fy(C3CieW4z?LSIgxm}mJn-ijJ3jgjo zlG#VfM01X;y}ZLPrZ#tQ9l}^Mk{4I0<-PbA7m3GYRVr}rEL(88E|gL8!A}~hSg!n7 zlH`RIk3XFRhUQIh_V+_&?7~!MrJG{-`?!~%4s(v$wICP7GbadBzr zjB+07>+Y(Yv7PeM#*mhRC^k$QJ2r4Ykp&)&G`yP*;zQTodBUb5Jn?od8Ac=#a)7q_ zw^s-|oKbdTGNfD#;9fX0P*n_2Uqq_~>{>*43T|A^yW)Gu_o=MT$sOhG6=8RemriRI zwGrQ72g;L?M3d{ZvU%v~cqrMhAhydVCA91Shggy?aNvhN4`7zs zgAB({4ZQZyG>EW@jqJy4Aq($i^#`9zro9SR;g4j7y!ul7)*z&3T8v>`!r%THR_ zsLIX!kQ*kmBm5{wfh@zt;i5_sXmj}%sO>7AIjK6?5XSIT3bVf3!E?b%{HU!k2i+^S zQw3iMdn8G^!H3M%RME;U+4AD@nQ>^`z3_Odnv|SolBa5@pz3N%j9+n+vJD<`n(6K- zTz2?2Z>TkjF;T!L53|s$H_LguWh!OPTnPh=D4pC$a2w z*T_Y}cUou`Z%3!$Wy?ogGA9~U8kUsuwo3jbn#j;HkSYwRXKyQuKb+r(c4QQ)+vw1? zOU2D==$!gu5*m6!AEH?BazC^HMB@42iB*6UHY~TP1QlZ_7S-aV{kDML1(}ojzW^RA z4F7{P`2PYtWTZ3{rImgG50U>@5eE~?FW|w+_G{u`Vf{66urvL)iG$@=uJPX@j^E(F zG#qRUztR6y!@=?^r}!@m2Q%aUv~UO$+|-o*KcoL-F#a<%xA_Gh9E}Z~ z%x!Iq%pL8l^xgj#rtx1B{u|o(&k4>p|KrI244jPJoc>Qt<3FH`{{z!tVf-Ht?|)+& zOw1e{|68H)Yt-OmWB&TfZ9? zBwe3&Aen&O%I@{`H3GynUO>lIHfI9okEikrn)0mW#riX=lF_(D6wxtUF@XfQr>ZC# znTd{HYCr%CG_zk?T6B0?8ftii=%4AgJ}X})mrJzK~$^K zT|M}?FC%C@ec)QV`+B=OCT3u@v^4i`!_(bKXasiq1~zaC20$a+OF=quB?Gva?CIrX zmFiudpErnH#sbjV+gm%v&nq~DI$%!CjI>o?6ltw00hiq<6S8IiR&Zv^xQdfsp~hZ| zgR}D?DA4bnrAc3ErQ&4Lf|_FjTrXFv04T>nkFLQQ!M#=(`Q?Y>p6(Pe63PQER#j^M z3N;*S?VQ=|!2o-KG%cCqx}aB&61zA@F#)FGH$^X?mV@na%yt7w==Yl$9?aU z+g!mg0l#b^zuxSvuX49;c>aK^t8HXxekzB&k&ESqbTuuI$3?yNSoabY@-s=rQTqj^ zWkg1200TGx`SDCv`uUQ|y*PnH*RLA6i=f_E!?TcVV;#2Gq*p z_xI}h`Soc84fX>uw6HmXrUuYdUB!P3gGUOY{q*m?acg=4Jf`+ti~#9vYPm-zp znL5DlW_m`0^Xm!t8baSJ{jqcTctM)|{P^=LE5VkY1MF-k0GP^=Sus7C$R z@$LBh(R}F1|Ln1O|1l8aJ=~I@}o+9U;)Gjj_4_ME6H46%gosDBV}_%WPSz6q}uGl+VH-z{wY;`x6-$! zu@RVrt5x~qVbH5HIr$?7-p#~}eapNLv_0ipCau*=e)9f8@Y7FlEB{3g59!Ga{?Jn$ z`!5h#Z~xM2KO6*)55pdyQ@z*J0`C6Rvjb3o%oAL-78*dSfxfrD5A&=>(9r?FkLW+; z8h`?G{9(`lC?A1t00QAZM06$qa`*5CfB;3`1S+=)--1>Exs&)H(*!@@{>&7gf|~%j z`@V?m9D(=0gSq#=gQeesyDMcn$1bWBnnp#zhmp0qgNL{dI{GzpFuj>#$=0?V>F#Ll7X2K6Oj|#}L&$!H zQbDJdHx2w0{!&H<`~;~9Q@(`MZf0y`F)_ZE>U~Wc>8ok!KY^gDqt7*@Kgb}NL)Wp; zsYP2QzAX4wwm)Lf)#Kl>$*?fEmjcPY{f>TO2M|7XIFmmZ{=^*Lh5%MPz6bo##-Qj| zukgI7fUPgSi@WJrRXE>*kXApT{M4=Bbj!&edLF&9b*mz<;JW(#iN|U*C(+=PY2bY(}j^%WSA# zt>jRaBQk$$n37+*;Jy65|L?^H*Sw4TgO<4LFpsqCY$dowbMy`5hMVXfw9zC?tBOP( zY5Qgx7-4)+{&Xws&v7!ag_0Q`zQuS5=mFB5+4s7Nvo#~G z%FaRS@JC#i^>0sYat(eWb;f9|n4Skf%Iz*FZ$~pHH`IchR&px2Wm>bFOr}Xxp#a-d z@l4!qNk>-rC(e(K4GFB`mNJy&+weDmH8AUW@2dTxrR$?`K+LHY8#?L(TeLZvo=&_l zMjX{T5yec$`xoLV)%t#kyo?YKh#3_;IJOTnxXQMEQ6(L zI<>}e9hdTm`q;jx=k-d>Ckg6N zZyrOyn8l2uW#LHowhim8cO`c#%u)C?PLy{Qx26sIOdC3bK~e5oAn^vtm<}Q#gWFUM z;!$c9mv{c1xFjKO)=&zSNlMR7xWOz8C$msJAqQ%>C?B3X4^DqcU95ACGf5iZpscHfWMo^=8QK*)c`1c%31Ge`;h zltTch%5+K)&oa(30uiU%DB?}}e#N7+7+wcOXq;!iJ+*BNO+0Rj$ByCys|zC)aI8mL zfXbO2mnYC(%!ZmHIL-U8?RPR9gZ@pn0%i#>J}q{OgwbQ04&Z5PvFCya` z&Qf9Ak@+(B+;k3@nS3lwPc z#UO-5Sg-dq$J54Luh6k}LBt;N3#vFj&F%C`*hgxrOiOngHa84aSP&UlG+@_SE$;TJ z8`EcqVvGLE{eopF$RLOZZOo1oyumpfFr?*;mFZ=~S&*YXoEj+nQM4pC!F7HbNBEs2 zj|RAPM#y1NN1^>vDrS*OXTR~lDC5jA4=?@`)Y%c~2_r5gsM~O~{WPx=?ONG2EjyD$ zw$P~w%VJAn3A4*=Iy0e4FRZ!0YrN|2G*HZt`0=Nuy;tmpH5j-CS3CGD*Z|l~Hw8R2G*CB>meSo&5G~HNPnS=d)nb@e-#)%`xZV{jd z)eM}Wuif;vCpPjMqi?`cD9RJ1G1|?U01c4UM`qY6zIwvMcJVpx!4;aF{zeHW>Neti z1NmZ3M@PJ96SKREXe1l{jSssO1Qe(N?agw<$tRA>Yt?x+Tgy-+ifjU$1*Z^@4v}ah z9uo4??w$u<7F)r4$YD^&HNE8tXiI`4s1{dSh?NGn~>{WzN3EJcoU}u|6^TvQ`>aZUa_5OAVR;m%G?9&wY zDds&CXG4KEF-f6i-$}fwb10@i5EoJ9aeSTFOn@ILlo$=ixKgwPQDVN|x}P*0s){z7 zPUj?9zrGJ{8K!OW2RpM2=BI_3EEcgT==}%8irj;r-)@t_P$Gj0FtcT1mF9B=yFc?j z=d1iiR;xne_`s zIYBNl^KRWdPAN6-qkuGDY;%+^{7f4ip^{Fr?2xH=`M@9lrCCtL>Yh;fmkZMX5 z1#%>>#P_^DqD_QhkVF4{?DTklp6rCjcTx34%-lO<3UE;C4zs?qy~Z@5sMBzzi)&3} z5?a{Gf&vdMMwv#5Qjg`bJEz-Jn@_bj?ls~bl`3LTjhzPn0t zGlslq39}fy>Xq|W5lI;Ull%N&n630|&~AVvATqiQ99rcM5eZU{07Y}-0wh?g6utsF zbrwE}4KH739z}QE++C7T*kk%mZa~x*p5NLut(cP;l%US= zNEml4(boI%KlZRf1vjWeR4+>?Hoj^(UjpiA(!xU+ne88)FE%#;(KdI)!794NuZ%DH zC`U(`GsbA@iAIORr*1|M)O~aHUO+kV{0VK636(I$hL#FB(+pF8d9=8dON1&rywrI+ z-S{Ixoy_n;3Yn(cuUHqXWjH*HtJpf~8H?s(G-^bA^ zR$Frx&YEKBGWz~-311G=Hy~#h4S2to$4osqi{yir%SnwT*mIiakz-Y9ypP)B!!HSA z#RTC9?o{j+q2qFJiy;x+$s;dwCz9?*81txgk;yB58z&DaN==VY>pfeLzipbf&7pSh z7L>lpmlg{YtsreUw7dsY>V9Q ziY=iwRqCYi)9wF(BJ7WUUEg8{N$2P&yrr%f`!-^wr!OFuW=T|$JV>KvkLYE3Y~rHLFN;tXDtGx9GYt3yf$FQX9DL31FEE0*!8Y4B3b=av8-fDYRt2Ve+qQiRy%Ao!< zW}vSGR)?L%*gsH%f=ZJ2FoLff?cS*G`*eJu<`Q z!{~`re_+MsGN-F!u6AzsfJgg&j)iZ~)>L`-oroR^&V`_MI=rf!5~VDvM9t1wuvldRN;f z@?+-o4m1t{pSy9QU#og-sgt) zHNAcM{(5%+Fk_>IV!eC&2HoC$!KV7*g&){0G*E!mNtRUbo!6pUS0blUkSB?v;)BIGaXn6A!%hOeS_@|7C#y?1AziT0hrqQTpi#u>!W3_u9KpraM zAUQFjr@*+JgnAGWjVdSy`u@k^YQA&`!tpxE~h=H~5n81&hVZt!;|e zARp=UIZx;SXZ*Ca2FlrZ(7;%EDcoNnqvSc!niRCe^OT1mYezwVZ`qJA%faXiptp#>hUnB1?S`c9$=xFJ&}8F|<0g_+qK@I4_kW)xgj!A0WkzK*eb( zcJHVPk*?4wY^z>>byMn0?M-Q@II4+^bRE!0CYk;;p)Ul>R!LRT`2LpBkVVa?c3;ol zQeAqS5nF?S!1#x9Ew;jtXwXsS14nv@t}_cvD9CHR@?Rcq)1PMTrzVrt)Q%d2@nF{# zBZ8pMe}P{pXQW$aXWHz}IHS8A9(ya4MrI;ew}Gy1|;qe<2{dqqVO2usu;Q<99W zq{asz2Lf)}c z^G98pANmLj-}bH3)@D(2HE?#Iy}`4`OLdYvLu@DLqLFj$l6~j#G`=nY0R!s$yKRtIjPhgAWw#v-%PG`N>(rK}E}9$o=@}S1s$~ z70d6TEQbWG3JuVtj0Fbo#NivF<$4mzDLLv?Cha8mML^9Kouo?ZQ z7~wRo$Evvc?T%BTWVaIgl1HbSOh8lN9Q?XlBj?|9#Us(AXb<9>-RAy?h%k2uN zf~~zo-Mx*nTWcuCHaxu+)XaY2h2bzuPpAx`KveC| zzmBX)O%BMJ!20mgw$=yVxb&yb071KF>DhsYR`DDypX-voy*h8#mk8y2y?fD3q_ZKM zFxFNt`A=)pixeuG5`7hqTnW8B{q1NzQfk&&nKUQ!p#z89A2*1&ba;=pO!@eOgo0lF z+~691IHJjhV!5_**KffY%U3_zXuC51&Jbj`+6}W~vc(cK_+}0~oG=XoHLnZhL*AS< zl44tfFChc3|47pNhoz`Y5pSGg)5cv?u+aXX9vC&uyF8Dg6B0~6PwzlWzLu=b zT2!L)0dDVA1|NyJUXvi+rT&g@A@LS6w{Sqb>h;6ZzQD1JlUpHlNkMdV^HLV#hJXd7 zNH~oG#OqqdBUXk{1Nz=wvW=~3olHW+=Y$G>npbfkljnWS)Z)5TF+9j+z}y2~n`sV} zQGybiO1HP5xz-tg%>whtG=A>euU8Z39opMrsS;^MCpGMbL#LYWKDmStE6^`g-sx`| znAJwgb+nc&Y0zzK{si~tpS(YW;GX-n){F@D!X9-i+50=m?Ymcv5m6NTG6mAx30|A# zj7CxHb5!q@GSXhsVA@<5X-3RTxMOP}B0*&@yusYE_AMs?es*?wa$6E`y&Lq^%pjw9 zqv5LTj|Z(zTG6KSilQ%6pDS)OHguAJw0-As&eUxD90^lR+IWeDhL!gEGWs7X7mc6KOj21r)#(O>O(E^I3tFqWlqr9u*5~S@sQkU0 zvrzz+bDiZI#LGVVC3yAVn%$}phRuHLQL(JZP=b#A1QtZbNr^Gs~01}jk zO$bb;>~4}aFFC-Sgc|yGsba7aG06R7p1%+dRYkl?hz}v39hjUtsq`(g|KJ^>;163c zyE~=EU3fTSL|yLa_zYlR$YI(B-N%CHYdr*`Dm=Dt8Ls8ev0}$-j{r?UI4vIdpKBR! z`h4%{QYx6RgLhaVd$vi~V@X(obEQ`q<)lY=IE3As@eOyTUC-@7y|#)XGo?BMl zxn+^u3dMaywz>7}>+11>PDF70!a9h}GG;aW?e8h5B}?$s2()?gSsXkX6I0zJbJ4I= zeXb!ntS{Vfaw#o|mxOnR2abVW_p(0q%6Vj%yy>8@D%z8FF$#o^Q{5HO7%($3Qt2ML z+qiy4ub*&qzTT0IzNo(mFR7K;zcj&J6~K{|5=(!CT@K-Ce^a%mzxF6D8_Uczq+Ve!52!BA>OJLPA9z(}E}8 zJ*3C*?{2SDCG#gyhkbongz+Jy;U& zBegL32my4uySt#&W|`IxWN|i6f@uS?L6?~;v2o5V_~%SPrkIfid4_nREIqyPBzc0CfBsr%>%Vm#wy1Fsu?wUf4)uH5b)m`&rJ~b+iyaJ3E zQC#=~nvk%*K#;=RpFYEk-K#=sHI8{hPzJd5JpBi?xbmNPA}AfnnAHZ ziE&(*T3iu+?992B0o9_BJf{msaU^M>FhzNA=PJ>$Pw0LYW4RD8BN+f82}gH9sa=pQ=-QkY zD5w7#^ia3;_`*mA?#3?z)4O4MOOo~Nr_Iqubbi6zAHMPgNiNl`$c#Ad`U_64y{=@% zfl?_4CVM=T1+|&H0m7JrLC-@SAy3AdlMRF~GtgGsenr8@&q8UI3b2Kh>plz{LgEQs zbBdixBwi8K$K?BiNd7`T=WaQn$Mx4TfL4|JuQDp-GZ5`3+2d`*%jwu1z~1ZV%gSL z-yL}iXK=`|BB=7>>(OyBHD#Zbt?#)}`7asCo2+a$fx%>(+RBkuE}TYPg)g^gB}*(~ z@9c>P0m0;rVk#pPReaqyhY*l_h|)>13VZyqKH5=5Q(7Bh42N~9b(+5Ju=;f+|Ln^n zCi=WwlWd(k2uuD%694Ma*KOsurwfKvcL(UE`C$zA*ky?qUN^&FquR_HmoSvwII+i?I z=DNmwa*)?w&zhGHJ%Mo}DerYPikJ!Svm1?UvZ@uN5osNdv-bnhMX)LR@80xO>6Vcs zZ25`zP@P*xZr;Do;Pg=Wa5OMmUyC`|QQzPu{KqtnaL#~sylHI(KwzTejOej#VPIvY?v^%0mSG*ZTeIjwgUvh~wm}-zl;+(!~ z8;fQx9n_-|ro>oimcDB1mFe`Zq~|}<0eX+v(TuiZm>#0K8@uH{$??24A7UkcWrm8+CCeMC03L}JGxbQ{(Z&z;GlbQ*Mi z^LKBwd!SZ&f#R7&%9~RYfmOV92WAFsNuo)_OuvyxJV>pc-aE!lxKayrDSBNsyOY7! zs81o@??2!{bDbnM8lGXYX4Z3Sgg=3H=H{i$hQ$W;^YS)u;Il=1;V9(;nN(qkMqp1u zbnaFyc~`|hec@_S4jw*AyZxp~c;8=)^77cGX(fOHx)a%vNe&ybVuZ<5lf<7fKPiBG7%;Y(5@`>l-k41 zp%cUQfPC0R#RT)E=p08+C&boI5_s@jID~Mvl)5_7RTJJ-+iu4HItLa>8Pr6~bSW@g zbmi07NS%xy0Yyqekv>fmVtK|IU>`D7rrvbmr&2!sF1p zs;vd`$oV34;=xNY@21 zSC&=laG#6f7lruHu2T(|B@$Ljc+2y2C5IuU8pfcX-<5k{ANFf`VsZrt36WoW!dFBu z@oXlJyUf;UdR=OLTIoSm2}olI#);-?qL!502xOE;B(;Ydh3zQ#RFkd40jJ4k?jPnZ zvY$*$d8+sFnrNC&@25P{KN{R~+UnOQD)aqARyCF3#5VUl#OPgwyj=%X6yobwNnjK7|>iw(4eRS{F+C zTs#tTlR#R&l{wHF215($Btk?8Tr#btz6x{^=+`qGfe8{04ieV0AqR~v>v0O5`PZ^J zJN!q$-mz5Ij?Yl&nU2Y5=)4mhb$V6(GOO>OG$YZ}eoAuR*6wxaSK`ij8Ig%R z`aFni9^j`mW08RdC@PS!Lz%PZWET7cI|7>03Aw&TmrG7 zABA)>_VUMim`q#nlWgfBAs?-f(b2L_&%Za(l|jwn#K#KRU+AY`Gp0O8b@X zT@s)v^gZ7bkL13}J1cRMaB>MrxruWhcw^ozA#>L{Y+MW~5Tcsd9bc3BVvK)C@aWl{f^j6A0+DF&9|*#!&mu)us)urNDEA+O$?nl z(H&5Iuo|~0ET6=5li1_+#`aV=$D*qxMv)2cU@Ykbox;0xZW|-q6YlOH6*UP?u%cKS zoT(5+Ya)3FeOUny!Q4JWF}7i$oT8g@J_#zeh(GjGV4%>A{J#4D^S_Mk+gflPQ<#07@@(?~=k1# zrR7GBU*}8G+P?nbgU#%zqHB~dpJeA!%|ajp!QOPo(q?DQ`d%@~yfzOGkISLpgA*>< zGQwNW5Cln+dh4-0|I8+b9p&lUCeovk_aC?u$kx$nTqnOvxu|H)9pyL))Euy77`rc& z=NDN;n<>68nqeA-2j%(2sISc#QorqT=1#8fPTR#@4q|_Aq-~gfl(E^Qt4vmM+B*EO z9^bw$aq!Q2CT(W}Ww}cE4`O)*(KY;_BpEZ`t6`UxpV7)`Ex8?~ebI|CfQ)qGW_-0S|1cQmT`z7_2 z~~efJ!2s63#0%j%$(T7r*-L2{pRnmq>JhM8;8Vv*v(CB(h$RhSa! zL4dfIzcv6}MnR-_*JDd%%yl{49288f z6q|KkwtPOv^CnxnJ?OjWS3^X7iBj=H6Z1_J^g=~_qa{$uF34~>iWt<8iR>ddETVNw6CxqjjAe(1# z?apTp1?V~gzvFlI_Wd$e1)xZqIvvwjGtnUhp05 zI4j9Y_K-Wfo>RBQ+>u++izi_ZH=)7WLB!4|KELxDLBysHM}k}p@wPO7L!E{%QCF!N zLJbx4j#V8>;_o>xs>sJT;8K~D{PYX5PlOp?>HID&4|uPSO&UQhLDnWC%MTa}v#8(# z&YqR!F{a)Qr~hCKxv><$G|Lp_zB%hR)@dgl&|3eUXhS~YZ_9&0JCNJ@#|9PI=Ct5+!a@bn0e%OmT=zIJ82b}~2zl!~mS zX8O8lgcfv~9j3NjoB7T`bJ{Q}wnFJU+B)ENZd6aw*746yO+L=NRh^)vkI`fo8 zw?@ylK9qW1g|k*q-m$wr$(CZJTFo+r}B&wmoO;JHKbMH_ztY&1V1T zRHr^kbyAg1rz`b-y=FV#8H*T-=aOPd!>Nj=BSlR(qq==eD76bZ)8f7(q)Ywv2}e-vy9CeQHe4lYp6XbRsU~AB%twpn`@ztPY;!=!R8a5dAtjmF~QvhLUemChX zNn>k8t=+(xCLTTPzAz%^I-ACK$f;`gCm&daO7(1fdG6Izq<2Eqf!S>b>eCwAH+?ZW zn#qOo$tV+U+PtyK0H4I**z2T)zriS@udZ&8xsiE}_ASQq&VON`e5>#9K&^a@h-m2w z#zvr~r+40_#hccw$yQqH>T9JsF@%hC5<6?3oIg&D-*L^NqK+xDGY=cD-WfG}bcB%+ zf6G<|o`*BP7>plaP8;77koFmN0Y!2D%r7pJ8R!&hbRuLi=o<;6+F$=2bJ9_2I1zHiX1Z#Rnnr z*#S0>Ivx5frku`!P+A0$=+6OmPb-r1fjFZi#W(GuA(^YYGC&7~IHL-C@}#49kJAM3 zSZB(M;;WKoo9qI#0X|h9;Ob9ySLBWn2wki zl2g(pRKj&LKaks7y>_XA1&OEviMmS=G{ zm4sv7&Mgrhts>Gt6KZP%PGau)-UyzTZp7a`Kba6`IzAm*Rs>V=Z~WVGWg*F|-7G5F z_(~pRyL{u9mKw(=2i(<_@Hd{s(u6v$P_VqBd`x>ThSfM=is@Q$T`e?Fe$0xZO9H=B z9qZ`#^N4S`?*SbKE2&hcnVb>#g~*nn&>zBN@T%ka%Dh4bH|O@z`0^afONWI6L|Vn+?-sDdNs{e6d>l$wIrfU*T# zS>!mOEx(|6yF?mBezZWdk@7kmzMeDFf|BIN&7J`4l&QgE^>Bu^gH;SDULn#9*XLas z(c7(t_X^{*wU3}@$*?3Vkh~{(3@5OSm)-X4KpQ?}sgG&_X^|5rPvfPW=zkd|IpvO< zD#;4HoHh%U+6O1w5hS=rs>W6_E`Gr_ufMsrq^^9A z%|aRQ)SrRITN&ZRT24sg6bUtdko(?^K^hHM8*pb)l(F4@Ai}12XtyfN*W9TvF9#y{EtS zelPpbLDw7o@ZTh5+>w1*L7%iQ=?p|UA@K8V5a1|L~h2boisA;1w>TFYv)#GuVlq2l}|htp7;pGG%bS#Hj8ja zm@$tOjt=bJ#FD}a*@utnyj`QX*jfs~)4lEr!Xy*`JlMpUxx2Ets6=Wz*6VSy%bsiN z6h&s*&_6N#${1vh;DB?>gjPtB=_UcT`Z&z$HANSXkk3%pKD-nf8pV&G8*~xA8cdzi zDU7>wTX3Q#14eg+;wcD;yC>w7SMw_zSy3L^ssZ|;e9+53kv=hej}gWI>?pB(5+>nf zD4IcDiAtZ^swudtd3}(#V3$94)46??gAvp3B(802>S(qVZZn|JNi0||6!IB_WHd(y zt{4R-nQ)o@l-bFkotW0uX1#{{*e|`57%)16VS|7i`P&yN)hm+K201g|I>|^=WPK^| zRwi|nPHj?n9_p0JP199Jn``|jrvyD(M})eyQg5D`XjQHlC4Jk6W_o^kbjN^dnf}*+ zS;I))f{sFD=H(-Ws)^`g#=V+K-hL}W4~{vq(W)gc{+fd>dgMy`pL| zqn>?l#2SC02oTR+6#^*Y3%ruW3K9E&j=?%+3I1;Zl4;D`Jt{8T=kQ*L@NLrMX9PpUlilyuEr{LBNOWByoydFq~VoUX@()73H=Dil=@u~C>CJ?Uj+_} zYZsiT{ri$cy9XuE_gmW>2t>#jbE$0F6Yvr~Ks*_uG}MCB{UocA<7d zF)M6<;=nZ(<6oPCk-v>HR!}YLYt=RZ$kr%@$=?OJZET@9UZQ18QIL-OErf>WZp+NG z(0Y7S$>5f4aV$}k(-&0ow256bMEE*MPj}+qQGOd>e&owMtI4I`5FQ{Fv*R=zk9SfB zWkU>kqAZa&Q>FfTltkw%+=y=PRD_^ey5}#kckGN;A`E&nZR20R^L>4x3)oPF4D<+l zwH*3eX&l=e?-^xN0e$igKt?^2#=8|1823!GeDZ&4w5Tm7x(p}{63Pu8XeQ1=OZ|?` zaaj#G&|aV&mBX4#o!jG!C#vc_l0}-w{zbKkm`#zz&WT9+fIkkd3|UvLf%Jo+cu7BT zv||ay2sONvsEX7J{XO@*yPKpM_{;Vw+SGwiEwp4O8&+k>s&)@AcnX2s4K+_!8 z&_oNw)!y%xmkisdrLKEmpM?B)s1fs0gn7Uc{F!5?Tt-BNLvj==-SWe(4%12&r|g{8p zlj3)FSOu3FIHujPkafJtH`9flZE>W}w5@%j;*5AM8;N3@q5{Y5x3>S}tA-FE{hgq^ zX4c}5aAQ~3^Udx-?Y+1~AZaI@%E3ToCfj{c?&k-B7Ka%9 zRgacjZ>c2botuFyg`a^xkT=dn+TQR9J0}I5Xm#%NpqO0BX>KVzBUN445dw3Vxs`yo z1pf_d2%MS~dcAu5cU4kH2q(?zQnP!7^e^7OJfq~0MNRNb!hx``f%0vQ>=`r@pOy(_ zZ~;=>`*uqD@D{@go4=!;;3p$kqWMHln=WCGkM$;zz`w)1YIKWqh!sq@DmbHK`9Q{lW%FT~$)k{z#-H_qdF?3gB(X8y6bS%~Y$-=PumQ(QisR2h%X?)l z9x2aMZ6goLQCu}n(3$I&(`%P){ITxL!maq1EpkF0s;8%>wi`7tRswT- z%s}Oj-`MZhDQ6?;nWO5?zC3q_oKFd6S$iM-Y1Zo(jR>p#5#Sc@wUU^v)mdI|?#p>` zQhF&d+w;9oe9!N*5KlyW`vg@u4TVo&1 z7<_&?>2XN$_iwUCBoO~(#KF|tZuGXAG0E;4LvD$2@mjcp9Yb8=?>sIk2||! zPoAankIbOG@2r5}&zhMTF2>j;n#&i}{1mld{xW;UW^2YT#lhlHZGPQVCEa+2ds^&6 zZIMiKc_u3c_Fb3GhK5eoxdfBH`yGU@Bl|%AP8RVa}6oh zL&m!y)H9v(HOncYw$NIZc_f{8{Eeqp!A_LDcd#EMYfn7kFxQDcH?-VH%GJC2FLwv6aD8k)WA zZ5tn^?KyKbcOj{p{KwvEKDVBCn91Niqcb-D_K%8T*OPD>(dp%f4xnJRUJIqP(T6hR z>}{6G|5gW`rrP{+y@FJ8?7?VI=qj3M>BU#j8{BmaZ>;pYD4mEG9~W1i=nmP?YMVz7 zSclK$`^x-7CM>gpSjv$Ltlk)V@cCT1RfWl3w*8tb-U$<_d7W`Z{=}#5bf_A7<2Do{ zx%A#gtsrZ}74g@%oD^AkQc_eyIkc0^5jd5|-OeR>YSwFkP= z0arGvUs&&sB)FRc&27vM-zBaIkF-uoQ)We1bx=EAFe$zjaT%0uG&wBB50P;r9@5ng zP)JH-nI|znU&t$XV&i{+vl2iLROE`;ny{}B7LO~ElscYKZiQ_G+af%$0PsvK92*RB zd{^$Qx$NkToMz0`FNc9so#+Tiz-Z z0?op6HlTrJF>dxR*kWso<9m!i%_4krx(sZVP2%*H-ktV!dhM_~wd;W&0(rlga7B~o z-+1*MGl}YmR}iH6%rr_{)XB_>hvREjCJ^OdIxR$PY-__1P};7xdLSr3gmJO z3WvABd~pFzn0_U(B0y@KVJCkUErPJ+$EP53q!W2xlzooYn{orlKU(swCOAew1pMQJ$Oe& z_<W zb(uteyH-EO*{-yf&|{_RBeHG`2gIeQ1-|>5zh2*U2xN(SKLqa0;K0#2{m*_|A zFGB0+<9{c}la+YLAt-5Hk8o`cn@r6-9rXe3ez9E&ZhZPMRu-Xl0MR7o=_jbCl6zw?M!}e)=&Ur!aFaCCn|NzQ>>r5bj7`Lk=X7@XMu28juBx*N zR`EEJfRCo`#Zkt_VK7Nxx3Dk-kHvb^i{Z^nvI#hUnW77HY&b9YcmK)MMc1NS4hx5P zK1;51?ABISo5Ok~a~Qa8``fEgIP$^NEG}Fwx##xs=Dw~pGT@I$#@$;c)|`6)!f9|7 zs{#J+197%(XOUkrl zC}4}bL9~|;+8EPUS8V(j#%*OlcaQc-oazYrpVK%A+*a2Ljs=gu8LXR@P8o>oR!s%N z(u>Yt)gjuM3XgC-q|hBkdL*m5*@a_8O4tX9r>R*{j$blr5ysv_TM5n4T%MLtA_S%j zsQ7L829veH4-(edw=~z5>$+>{?<`dpP_1zFe)xE7Co;u zP1q89ESNXJpHGy;6LywPf)5?Z8Dept`HT(!w(AJ?2C_B8b*1xq81h+HPuO#!^*Xq^ z?(0;i@_j~$k;`QR9>|$%wuP^$8q|qC7$*xYd6r=l)|fuGN0!6!bg!c;k}MLAtJbG_ zCzs1%2+${N8bF(+q*av{TT##$D@WiQjZS{)%U0aEUPz^wr&4;DTg%Yc%P=Km zeq<(?kTWk@0QWB%s9Q)Rg_`HK23-#y9r=O{LO2ca`t;HA@>i1{h;V99ev;szF4A=v zj-G^z_ui`C7cn$0#U+eZ#TB$z>`jJ$`73Rod|V$L{5zh`dUAv3VMQyA z)G!;6L4NI@rF^JEj`Z2!3UU#Atp~#2@}9c47gF0V$gMA z<&`vD6YToBy1n0o&g_1K&XWMg4)^(a=%1}7Shb@Qbe)lFQGp!Jr!(1(+fKNIS#xqZs0rdStXuYE{rx^HE^)6I86W(R}#n=S>OEuj4jwRyL z52O@P{U!mTa~CZ=&KXxC5JmuQBwr*D_VK)s3D%Fx5lYZ=Zt&TmxbzK88KKzp=FEjA zCGBfEG7P>X5Zntw!@!@OI<99{CxaO0&}0dA2%W_my0uWLYpbc4vwE2=6bym-x)#Pi z0X@ZC`9fpI(>-bTc{v1_+4?b3Q3?X1^{T}9g`Rt+acQI%(VRe(^ogg-B_2&_u6@Ne zOm>9UVARN6tg3w(=dAy|kODJi!JS;fj}QIqO`Kh1*YjSj0RNGXbU@z2*MuP!V);|l zhJ&hX47*%%J=k-VZfA=GhxD#q3IUans z@w!+Vw(L&z?m{=}J0(n7<5ko|2Mbr3R&e&SD?%yU9PK_Oe3h~J%Pav^FA)xs5hG3U zGDl2q=xmVzQ~q4f)xsD>tW9!XsU;PJ3qR<^EEBY3VsvNzD}I&Jm#?oY=XYhsj_eYb zkA*%G(Ah2KpWQ&Emy_6Z8knta$=KJN zk3u2S>eY|P_lIj;Pnva37DY&`h~HZ0G>FWCNTp!>n6rr(V*av~RZf%-oXP#WZhe8- zTsUwQ*gRm9tjbpSH-C~=`GsDQI{h{hWE)!jyfvn6@)uZsfo+f>$0f~!M^c15O0l)$ zWDrXWA{FEbu%Q=56#O~K!joUuwkhTKc>8mrF8?NJCu#*Jr}R{Mc*sw*V#{R=dJ0~^ z??#&4LQtfH+YH_J%~Am?)dUMiz(2 zz3E`d=}bkL!KAD{6mf~j{L#i;RA+n2^DT5hgg7-0Juk&BH=PL};fPG}AU0=*6VKYx zeLhd?rquMNhKvS!Dn97hdJpHR14rREe2a}w-&aDE<;Ee{TU5&cLix|ef+|l5QOR~rw4~()j3$fvzAUgIu7Z+jp+39dz z1?3V5DgN$b6>VFEAazQS!oe0pweT$2oPNc2{wfV$;TUYS-X|fxOb!UBNm$L%gmB@> zm32?^B9h~_j`pbaFtR1HnDlHf`|fNOIkE*qNAY)us03IYy+HF1)2I+6EgK3rsq}rx zvj2XTY6A66^iz~Qfx(g-bf_ev5LM@)+%+>;rg`l~(OngFovH!-(nJ?}ZQ);ZP(;LS zLIl|9-EDH(MzuQ%8vrKu3W#zVeEe^5xjHwTw~*;LE}R|xI#+`>=+A#4aX2d=1KaPF zT%`BWZ=~;U?AQ?(S(3;2WoM~PmBneGn>$^|NPJl2v62(G2xKvBd^5A`_qmO;O&Th}kIojrnsVT+ zB|)xUyf_NdULE@Jd1yAZU@v-@W_YSoL7LNJ|LVua| zN7Z~;NSsQ}q=H%;dT=M_f+H4CWm3G_@rPTZH2hA!MVz=!(=XAYst}A#ev!467C(|Z z=nq?ly(=@_d6~GqOs9AC@l4eUB?QveTd3gCp@;s*D0hEMpzeNi=Sn5ZMF~pnYI*N z>exHBKP8{xKOTRC_4sUs{@fW5e`&9WRGy?FyYp6YUCzJ44%oZ);kQQ;u3cNMd0x4B zdShw@o0zxeCnWzI)ccXCc1&4u<;O9^#89eWa{=Rk{?>IS{+jhx$yJDU4p*x1t?xD_ zL!wEBOk%}T+}VE?o4(%i+~kqkpwnSgs5^Q4!m?+G?~%}@m*7u2Q8su~4lMyWHSh_V ztm$BKZeuqnBgp^k*UgYqmMcwHb;z02D#K_y3c$mGBp$KKD&=_AxXrICmD^Xp>1L(B zY$y$yoE9`V5*F*&`gB!D%Gru!`Ji`<<5JxU?6DZ`D&A#MxdipBp{g|4w|mr?P%#yl zWq44C@G11)&A>(P87ByVyDzEA=Q%&cmVTw&4c(09f#Y3lzf=Uivhn~^Ig%Vrs=fNp zdBr+`+?aj9EO_o2hSUoauWy2$voE1%zx~@Lk}tla?5Y-u{FfqkmYW3 z?do1(ch=vnnSsulqi?;-aEuJjPSjSM0101@_rEh|K`CFlW0)I8Qay@Rx?6A?DYAj@ zs*D9sJSuwqDvovvVU+gSlt{yBTJ3;u5mQPsOXog(d_P2#jvT6LT=rBh$*krP509Px zWXe3fujb>43vRH4K0xyibC$~UjS;Gbg0sL^3FoNkSlqxvEX;xBm@}LK#yxaUwcnDI z{(L8+uN;u2j?Ql8EEIYroq_wS*FMvXdNpN)eb+9M zCw8T6H3F61`mvPxsV#>zHz2O~5WO7JM^~<}DIENcOCcxNarC0cjE^rgB6prCyOK|r zBwQ$`-0mD}wURxSfNoBZ7-;$B^DBW}tArSPjK0U*(W1xI9@7P3n76SXsuI=I;}x`d z3X9Xf5m)wQVsA#ogYsND?yu-=#mBZR1NQH>A^9xeTP;P^S*UQUrHl{wPbiYCg$F#k zNBlyZp;*Y!GjIu!sq4vwTWg}2q;S9&|*Wo8hh<7DqH1QvHsO6RQVGF%2yUc z`!3$h&$!=N7(G?i1TUV~3B(L*-BmLcR`7w`VagyR!!I4&3^>MQbx|>jMfzkmmjK#6;;EbCUN)gRBJF@Y8i6PBT~--!Zx9C)2%2{fXNY|s2$muXmMjbuMvvx^k&pwq z4Sr&`kKj4f!Je96^w!%9Ir8>QVR_$T{O%UZeogf6X6cev4--~H;ck<*i)+3kZq$gM zQV;p%c1QRdp@t�e(8^jN&gL55b96oEvm~05KGE*YjKgd>?5K-CV)6-M||{o?Ml# znkMgj9pf-}h?1|7^SaPNxD{srg$+>OH3ptN|{&?$BVv zjG1(K`FD(_CH+J?P+5EcCm`i22wz(p?AIqvVqBbE^i=^Qj-v{?wLNuh!4b6s$|;kT^H+^4JQkiU;5C+j9BmzeEl4 zRd?pLY^C-bPl+Rk2RF|cUB4`v*eKWA4^4CpEyGHylsBQ!Cu321lTG_63FO2UoTiLu zfc0|{Hf6QQo_E=|&?_AXS6XV@>Ozv+fU8u>V4X5kxY|J5xnJA`Lv z9uQd8o^cHf4WX-ul2iJl;An`>Q@P{fi5(LMKjcud8!2wZJjBk;g)0Z!Nteox=z7Q#q0Sv0rGLi~eG{bE23bAm*UzpKzCj~(R1ie34h z3C#Rm{?rmh!PH2wBHbs{SqH9>iz;@JrEQx!x8{-afU_Z;#nJ!J2m8tiFHza?Ejum2 z`I5*L$oBifFyZV(~@N4)y3?j_yJM1MHSTI;?%P0W4M@+fp_8UttzD7Lt)#J54* zcb~_FRl0Zl&l>f}L+KQEbq=dd<#`zGqg@Bf-U$DAkbTuJXh){oW@`{-_b??yV5IMf|XFG$(IEd|_dbtoFUc1X4yzb2rpyf<| zi37oGq}dBPCh8bC~A*yLy(@@HoF>FV89`r|pqNWJ39~yv-9CisY0@Mpg6;u1j+MVzP=`OH{6TuyOsJeU8 zo8#5P&|28jSnP6zLWd(CseC6yVW~MFvg=LlZD&vdw-_UOh~G0FoQz`@(NjkIQ-gEu z?&(<;T8mdIac*1U!|0;dlIPKD0<&?TUXYBQb0R##?S&aQY0vUZKWOR4PKfQyEdYo5 z#BFz2D91#6t^wrV{$eth%>hS7b{*{P8BUX#PK}66&O~GQ%6e!^1(lF{6}>bVT{=DE z3`X<2LmyLVozYleiz5eKr9YZlX%0qOR4y4ozzIhVzOfw_nyF&BMEs7(QTIHani;xD zB!yXVyY0v0vVqCLo*^v{1tF0KY$~U@wX=@U4J1_JTtW; zV-08iLpIwggss{NIabv?W2jKhE)E_}xN*}AXm)%ms4cms9IO0+_>m2m?`|LZRfR4K z-Cbv-z6R;CQ8c`i!IsHxz^Cwv@_VKR0Xz0Pq>RhRSY2T*Y%;ZpLLMh59yz$Fjwi67 z2G&n>YQs3`460OE0Pp{g1j_i|V3z+U5~#R>nw;Q&NT4zj3_tA7AHk@Z69Mzjjh(Ht zprD;Qffg+j<9}4IKOj(gX7>Ms>h(ut`v0;(89081`R^=HT85tvC1(>GRRXpjtL*=V z1}Xp${IR`?07L;||K)p?2K*1>tHOVCzN!N>00sa9YkPA8fFZ!p#MuB~1TZqU02tZX z*cbqeO{{-2401JSH-A~C9U||}=Wd0vdtbq%_1>g#B1God+EdU+>&;Nx!`d_Tk|CK)agA*mNGqi-^=Ki06(I2rc z(|_jgf8a(L30N69epcuI3m;`;WM=%ok;EojZO~CDN)qD=QNjtOIg7V4vrqn_hhm~< zO7?e-@F&`Wo2P{f45knlFLjpqG57JEZ|{6PyG?7JRB2pfKlj{R)SR@}qy>r0#LEE( z)`e6M?V9rv^yZ=ROK54~Qh*_%q8?+Qq7ohM(g)^e=lQ)ubKnUiP+)@4J@z6>ic>(v z+))P2V&<`ez|Yz{fdGX7^D|K9wI$~f@QcgK|Fa_ip#+zQXdfg1vhnqY0D%`la-<;C z?uw`Pf@Ch4*{KDRrN;oGpro9B=fcg~{UtKcN5IaH9qj7QX~Y>QAPXb}h6y3!^;rp4 z8V&mUiinh8cW3h60r?V(Vi`b@Fcc^sD)Rbo=zeK!N^&ek)zq zUh0MD-|mbN&|~ghf&_Z??>+%>rK6zcRaX3sdlJ3};kO?J5R5{H^c@Cm3ec0s(?Z;O zIV19`2;c(^Sih|JQqUtG2a4Vm>dW@JqQ0m=I89R7ha(THVZn$MLitUV{t^=GPj`Ao zez|bW?L)$|zv-pr!o)Frwt@@Kit=Z`IX;I_QTu`oazOezXbda((ZnL}4;U0vpf7UZR#|3+U(10;KfP#SeeSY1Wh8SRi0lWQsgZz4r1eZo@ ze)yH*@um67Cm{qJ>c{xmORnhR zynBLI;n{5&7O{{ZW9%^#xwYTux98nY=#{TCI z_tl^1Baq1NgFcyR5(Q>1D8C=x&-{MG?nBC6mY!W1At3PcZAiZX4E&oqQ~~P+`j{zj z!2VtiDtJH~{_~y4Z%sbB?29K11}ED8LoqkL3==3=IIs(fAuX<67UI#xTp9+b@dq>tA3*ZqGAAeq1Z>u-$2;J+1l~!QkUrcC9boa+`l+=qUq+59&CU`F zBn8Q(3fcNmrkwY@tA(4~-kkO@s2pxbKl2-ZtD4d9o@JSy$40YJ-Q}D|erdg4M{Mp< zZ1`g+;aL*SsXA@cjn{Mu&dYQo?O384EKFsI^ahqel^FP$p`G6j&6?M+TLSR!>wwDl%Y1W2v@>1^6Qr(4u||%ew2YAJ z4a&pq7E4q~<(6ZxQ~tBoy+- zs5UQg&DBB=Y__+_s`w{#oSfk$e7| zK6JS~^@hmjTAO5@^ep=#NtS#4xidUgEU&}!i1}>9!q+jd4DHHF6#V*sDk)6*Gs-m` zUDs2Vm}#B@m4U0$Lrm=|y?vEfzatWiA!uQ)$NsA1LO{%VfxL2H_P%!Wyse%EV6@YF z)-n8SffDvIK;s+ep;wyyyPHS&cX~NT_t*i0l7w)!`!CEoDaV6Unxc?OZ6*=qieF8T z`(wT1R3;*^qw| z^xJt8F!8D?SKB9Te@BiZAE(OfBwG*|NU;s!P&Sxb1jzb!n?eVIpeJ*d%t<#4vC6Ic zr>C>T7c)VlK|!RUeloiQ>+EJo4?D>s2jyExFH)tq8H5QHURyjJo`+pC z`kfN?k}6g-4FEmQnZ&eReZ03 z#kE72M|#Og%R5!fZZ!pQryFKZL#mfoE+}}VZy-};uZ!e}y?vq}3KB%;vmO6piuptd zAb;VsDL{CnQ3ZpP)=r%LRqXy%2{DMb!fn_B=av0yD+SUQ6rT}-M)H-{eo>3Z9+S%Y zvuaFHV-}t=@=}^nn;xsG-ML#8su~X!-b+TH`UCEpxXONLPw|!Ou1B{opbS>EEcxLh zEWCvf_Ub*~cJVYC_KNzGf-h9cLFD+pz8a&t+T~r%b6a=m;lmQnMcI;dF?((4tdm8z!VwRQDxCtMT`O2>vgu3B&t?#sc{iWfuJFri>{4mi@?B{hFG_ z&4Nqb{F2n)!$k>Sb=IJz{J*s)?Ybq`iZ$81jYM|kd|v4&UHP58jOA1fDg$%w>i+LW zz$fV1y5v21hl>q8qjeMct#H3GHGI??9&I%?d2dey;$%*zHM_YuZucZ(=Ju?@l)c=S zUAAPW^-+jNv~N*xF>l02Q55r5_tHj;sMN8=m>Mk5a2IsVrWyv_qT|^lf+enbr}bMe zOUB}`Zf?psYZg`s;qSVU7VYHrJA%o-PrGg2=AB%?Fm6^PACG?BIDs&E5NaIH1DV9t z8N1Wok5ojdk?S)-XF=93-Z;%nZH!!d=Snf#HCg|%eGT6J=*wFloZssG;~ym?!^K2e zLa1=artKts!GL}vJ%LVN7?A44dCWpjoCZ3@z1i`*HqBV)ZO@TB`YLQZF|A+8G$=y$ z4*Y!Ofm}paq050txiT9}fQO98OK3qc*6zWOXKKOd1&enihmx+l`qJK(TwV~%+31}v z-7YjcupG9Lc=YrnMk^7XZuqDiW;AJMw}R6LjonqYO{iRigfmEQWqOW9{r0V9@@~JS zP;;O;wM6wX5#}BS+Sx`L7p2J8ch-Omf-Y2!W2*%S0dtx5@+6w~=TV%N0 z>L-sq_ZUqI(~990e=gb=)tTePd(?YSWk*1<(@0`xRV1Nzmb}@7{?Fk<=7Y3*1-f7u zPs_4b+GIw+zROVoT;Sga_D#zRWU6)+S&d^qWvPXms!{&whSq+RT8lu@2f5-*Y}-o{ zVfN_#V_NXdC9D{{U9{E?=yL5brINdXl}_|Od7d!*W2b{~Q%yR=yhb+-X1!ebXvosq z6O(^E`{vZ!VN2)mO!j|2y7s41)%;t=sj)jEo-_RDd>J+e9ams*`PN|kbO*d773Kb#?=%eSMf{NS^Itk%hVE=RO~Vh-DK46|*0~f)tGbrQ z5vJ3PaU>@GQD91J<|cAD4Yo}t`GM;Z>e!7)08I_LmD+8&J*LErfy?A~mjk<{Mu>2% zqcI-;fNwmWs$b+jVF-bx$Ear0I!x`akTduyI1uHp;g?Y4Ypq!0U=gL?v5>FGe zKd&re`QNqIRW+VXcUK6FJI3D+hQ<|tkCt2@Pfk#Z01&6wb)Da+NN58K4>sFJ91*a( zk2K>I2WPpenB+2gKHi48BeuD;}T9cw|YEjL^nnuGHLoX$M3Qd_QRjuT9+RG(p zbJd}_00|hRaMxDr1dS(M&gP}I^HpMw`&L<#x?WmohfM9>vGs@rSumyLipaG+VW{*b zPklgJ-GD_PJC72E!0Z#;r*hcbw(C|?W;!)1vBb|AEiEr*U8fXz)8l}@$#(W*&AQ!Y z$c-IdcaOxL!Xa?+LuYH=ZL+QynhV(udl6HH@8%9-z%DP+P`knAu+8>Kzu7RReIjh_Ui={brMSir$`$KR{fA2)uff5Gaq}UhGt`}r>vQD*YK>V$u zd2@ANjDh2T1RZgKI@Wj>pLsCk=ZoE42pu#1UcbY);&aCT|PCpV+LY1DG~Z*IxUHAh8(T#v7>e zZVvQrk5??;Be}_&&yg3%{;{jdpNR-OE`nbi3QT{1M6c!M9F`6im6*gwT;}gq>bJNT z;Rulf$iX?EJC5PvDM1*%&yGyPZt-^Kqot~OR~_X`$sNqiAtt^J{xv3HdU1dgF;}hw zOH4kE0BjraX73x3uT2DudcUQ$E|-@e>vBr>&Ld8)U@gj2o_{%`WDP=4QyhM(;PhBd zH@+&3jHy*FzZY>XhE@6_lXW`9nS|Z3=Ras&5_#@!jl;Uk6fE6FNJR#8SL6`LIA-C+FNQ~ntHRhfdm$!7P zOkzp(MZO~2HRz+=`;R>n2ERst^xctO7xNVz<)ov}sS`a~l;8jOLU zy_NjQ07Xm$+A);7bP6sEnfJZ=ib~1=R|i-l_p_mTW|gCDGDuG8Ea{&-9>o~?>e>T( z297I+qzu4em%+S7+FT+1)+yhg7a}|+gvfI^^5~)2>+#oQzqG^C-6NFv_4eNJNZqFYfVFvYQ$ig`1Obeyn0?e!ug(YpT?l^K6D1+$P0u)cSqORUSNS;i`xD2)ze!nEx8uhK%--6B(&Pw(8@ZAB{vg^^jd zfz3>|hHS>x0q)jP=@+trmNj-NDHb-^adT=(D409_=dI`HUvH@0-8%+o=k4Bqb7xZ# zJmy85Z8u#B8gFv$eQrutUg_RMoQJ0u?%3Qvo?p`46HVF0d&(mE+ZuYN>Ov0n>jSkB z$%u;$qO3J*Wd!dsK;jCP5WuNCWw~LV6f!dxb{eh?AOlF9#)2gtN$O;mEQEI;iW=V(^U)KB-KjcjLBgVav=A@?K z_J`=XC>LiIzeGBlol?l9<%}%7Nh`&T7DHsW3GVaib4R9(Ae2t_z)8r?9%@d2yU0vO z1qFrU`eLHkoiF-kVc3$IZs?3(B*gJZr%IP*>;aZ$WqciA6LwEAU1j2G6yhej#Z_#9d9D(t8~CadZ+Z^$sARtq8nBl2y@#1D>d{MT>|QD^u5_YXxB%575oJ z9MZBbivz0*p+2;u+8(&HjpiD8rXO#b*)`{>7_~bvVMe?KPa8U$|Ke1^ei%0X)~>G1 zm(%zHuO4G@sF4PzyQzX^+afZo7V;Dg)UDCw<=zcKyFSzk#kHKw7(oZs(_Td|5An$J8=U zhF|k|FDwkNhsOe06?YO8tHDPfhU{;MZ(vo|a)xK#Nh}AfuvGw2H@c=%%9^2D^Ga*F zfpQKEgdi??+L@(`UahP(s_uGuhEH@{j5UZ;8+>t zc78~&`{e47%;z?v+GItAb~afcJmzk2wu+-@p0^@ZwPv#y8yeZD2i4j0A?}~(i>t|I zs6ls!$An!y8`csjFyYB5bJqjsS(*HKos2eOdi4XNWv>66i}BJqu4Yy^7m1FwzU-Wf zDpl!*Aau6oc>iO(%q@K~Vb9nLl(Q3QW;q_LC4PKuB9s0-dV*b4FCgD_N14Ig+5eV( zPk*!83crmE%|4=?xPx}eyp2*y(kDjr=( zV1V|`WY}rwydyXGdv^wkyTZ2=$56z2EydkGMOzH7KC|8pE+?IIr6{!cV-B2*f2H z=7q&BHn+*ifU#hHl$_|fqXCVIMUc{s%AA|t2o~W(Pd3g#)ELkQKAY;GpMv-T4-zo> z`+O;MFC3{qWRYNVqvwc8O*-Mc%Hb?Lvf#Pd!YtKuxdc&uKB_0#hE5vw?+Df6%6IGQ z+3USHc%KJtE=RAeHXDZfz(;srYv@MH{?O@D{huHA69=6n!EO&pcwLH2+6`pkwn+<- z8R@J|672HAq~oQt7M8qQIiwEjt9!c3Zbtk49y)n6FKH1Y#_&?Dk!htdP7W;&!U8ia zZAeaNaiVf*R6r{~1}|10Fo{GSNs{|Py( z2};W=3jYUk{^h{`OXSS(Kaevc>;EI<%*yh=Mb6gF{}s^wHyrz40WHgadc6ODu)lzo zh4J^6{{zsnaWMT)T>GEbA=x=tIR38zZ4-!6k|q|bv}9;P!XI&0S64RiaezP23_{TO zB;u(>POajQ;t}F(zgI$;!ST-BXE<&?ek{FrGMaPNRA&WD9s^Qz{Ug! z=v8D{VF~=2Dk=!+`~m|rqXPq>vQt#Rpc}!yj73YA{%~~q<-_Ouf{1ek`qhbLLc>3! zmqG>uBxzj%W^Dq<@)F4U5WvC$pn-+%`U2%o3j$!|VXY$Ojf2Vu2=ddOHqFb6!I{=I z!(7^D{!jx#qecP93JCb5?3@8efWuHX#oTL{fl~4uU4NL0Dtga6@PXcYhy?YB|yG=AiW z;fvmnW1|av8Q0(iogT>VP{bEz|NK(CHX4wN0|>?VC(6B<;LnH&OaP!82k>h<2s;2i z8Ng|CFw95oJtuBV-j3|F?(qnOR~L4E3_#@w0Y9%E)$crBM=I1T46q+ZXMk7N_tmRy z(DWEY9k6CEz%jlhJ@8lVd8|p?65glV+w|@V08xzCwLK8K&)2t3I`{kpB4qu`E7|AE zSHlGP7)2!o<4^jlZEh0sBTH{&CSLFO(8Qg%Dy{&)&q4o5Po)_^pRaS@om>UsASC4O z;p@WH0mE0RVQUX~?`^G z^Zr`hYv<|x~_);+Rll{kV#^0;Xz7kWo(17Or+Pyv7DI?UdF+X=a z=M(+ccVBkyhevp5vquV6bvrAsP=UBdk2~I@g4B5_Jx(J-6JP+GTz`0G@oK*j?tr@3 z@jxsfJiap509;tXk)P9m+_Kid^gx_Nf1Ibhx&U0pbW3(l<7+PYJ;ktgcTfcY0XpAy z!c^gVzsa3LeLu6XV?la<0=xiRHhcwq06MpN#vK7x34Q`%+i87;YDTK{_*ZsbdrX?_ zoLzjlgLW3Zxcz>1ci>>aA2E&md6^)Z;bEJqAwM0IDJ0IPI~a%qypp`05+a?+caTw* zDY)J(NMyN)yj9)`H>JT!v&yX_Gm;jRkM|ehYM(5|G2wEcR3zK2EhQh)#zLW9@7!vo z7|$iLJle3ogef5N2~T9%VeY{^|lKe`#eRZbDPiMaq3Xbu~UjtB&(_KpD=l*{{gwSch;JIn}fMq4r-FH z{X`$2_0^R&^z#@oa+9NYJhZR6s*Biomd|ue9^DZ?Q*%kBpd-~*EXrCh%e_dKrDbt4 zUW9SUzd$J+9&8sK3qK7>Ko6^Yhq2^P!}wG0_Z(weAcR8WD?~?a--GjQDT%lhp83yl zvSGIOIXbOzUS~KeFgkmXKPuSjd)-N>>FFtD_jG*n1Pc8um?b5h!)?ByxS!bOgphH7 z5QWAD`#rn1jLT=6N)4}E#y*LxJX&*!9NfFb_&cG^xa_2VIH3HaJMDPK)tTS^R%h%> zPpWrK|9M{aT%1$WRa@8eZjTyx0Mpz4Cy7)HX|4bFf=9^j+rFE9#p_5z*o?eQEBXVN zZF8@S&I{R6v5;=7VQ!8kIfQ&PSC)^g)v_UBO9=vqx9^pKZtUmXnlDI8!`7%`4@efS+ z;omS41iT$)1_ry5LmGWtR%%l%_NDDdHsdPQH>#pyg3= z(_U;S*XG?v&-@9S!+j|*tPiQKg}waTDgG>By1}K+_A0)jtjLJtg+AF)%XN44WAJM)R{V#N)C<-j&IgTR&$Ox}}ru)*tl zHN871_TJ8NMWgXP1ppciFz1qbE%0hkj6Ha2MR!OD9;!Vyce_nY#Pp|Z$iOz;vlY;) zoAT{e?`-xYyu&(o67f^45Wo&M8AVl*E#Z7Au57A;&Xm|oiHY;Q3j*(vpXM7SWCU1$ zQ&Q{6KK31Ud>u(BYvDH~Hjpx5pXbLRpe~Vv-pX2E1sR}!6q**u)?=tG*g>)<&aQDs zwue#!+G^DptpdDB9n5HX=O0h;ZgsUcZB;t6H(}=J*l63NeOzpy%qVj_^#1X+vqpXi zBA#xEeT1)OCheMfit3;v@m+Q5iwShfyQ2LilE_YFvls;FhjQX^0r_nQL>*!!JGs)hKExL=ir7rpPZF9WqZvBdt}tZAy0FW!XO;e;mxd|PTOa%Xb+xi7Zz#_$yb$RHYm5Ujuc z)a3h;Vj&ilLp4zve?n^qCi~D3BTqZU9(&t!EBNo2EBk?n#IlIX7Q+xDb!9*K?tL4-ayfG#Pu|87Ou5~sDvO4 zw4h_BBAqxWL2xOA07YGpZdMn1I`gopM?*iWTLwt;N8(T?kGQfCW1HBK6;x4CG zN-L^i)Sr>7#n{;^bvxYyy@ol-YP_3C&6E?K=g$uY%X52)H{rVn8lQdVtN{T~P4nFg zV!0BNAX`x@2u+U2E>Mj3B;Yi)K^|>(D%7UJJ=%mF&t0+2@@Y@=vYjMme{7bQ?ql68 zf(iDRM-e^y8!bqg|AX|YJV52?z1R8BYA_?`>v(nzrMbap4it=5~nwbk;T8hmA8T8emyAEl%3F zVEiueVN?_m`%3EUh^cFI?(UZ7+f(!v=PraDOV=73l0Rrkws*V=V_g_tW~dW!ETHC* zSuwAsa`?Sy1gDdb1JeO%AOOr}Rd(^a+o0YaAfn^thJJSPSPL%GP*n7$+?=`BeCR2# zQbNdJj-XQM7lP!=C&>6ty(z^U@2=%^1yOET3g|RImE-PUkZP7FL8_g4)teluaBQyi zV;AA2>$|Ta)Kc_K+r*yR1!%(8@_AX#9)V|_b_{FzHfv{K2)zEOgoQ%**L!`>TRV% zGPia-x_ACgPb^e|LqC5qrFhLl_p*+Z zDN16{nbwCy*%3x=$JD2c4H>>)T+N0N*-9<2soIChV*Z5ghAY}J-i+E%y@S)sGG&O9 zSr;I*hw?Y|G)`3nshX#Oup6`5Qx8kEXig?F9knwf$xQZ+6tH(Dn2+V7g>sO7&3{AA z@2pS%DB?~{e_+a?q|hl;khTsW_4r?0fpK`wH*rlI?ET#9?Wm6aE))Y0bG)!6TrDPB zfd*5yP!R0+2kgP}@D<}fNov|V9|wLBip(FEsc zgi69lM^F(Q9+HM#&N%54_p|x?#ff%3p@zz0 zG8TPU?$YbvOUZn+Am+Kr`)I@VY;dD|*b^hYfeYLjJ!6o)b5CfUg+DmiGv-Ze3mi{h zh91`EDNMOC5E~48cl`g5!+dJ`-NAMOgapZ^8TOld6g^?8y^f^9^9sL@Gg!@AX^D#O z7^%MWCM-Gx`f(atcmeH0Th`HQd~^GZopizxl8=`YbIVwlPV(x#cEdvrxOoO#*7bE6 z-ZVtk>kS9kVg@qBowjiOM`JHXf$N9IGP~CxWX8gIUy~nDhK{W)tX65ZSQkbGilv|z zK&+cXFE#P#R&5QZ`&1>(!YE)zs*$EQRdBp6%H|9vVOY8)^hc#-2ZkdU;vWthXOe9P zZcCR-hD+1H?MU%TI0hM6BY3jU6)rO6CXVv5Xh?G;8C7T4GgK@e9m-Yc(g~q!uKA)A zLIyA}r@&1qU}qv>p&2v_3DULg<`Oy1*jjP0n)@0^CvVWL()?O9h?;FUrD`vLf*Cig zyj5Pn3x$y5*A1c*nv&I(8})|X1+Nde)pd9}Hd1evD7frZ;AngOoJL zdC{*!Mh8*a#cAyD0Cm6Oc5|642QEasui%BErO#_cN*@w0_=lG@m!kH4vhKsYNPNDkHX7@b`v)bPPg57}?S+tk&sD1qg z#Ej!eQHUxFfVdK>uk#ugc=j1I1s*!c7JM<>VrRA@cL>AsqT zm`$LvQMu-X8%mOLIV*OG=Q|U>GgL8OD+p z9P5EwyA)596|lJ56%7kp+-gMCjrm?C^NEz~C$fdNuql&h*w5XNx+?-HkZlRMcIkI_iYG8Fsmr&0k?WWSYvn z*__B?=~-hb{!2h;95VlcllvG!uvG_wzhA>2ln)@s#Gx3wH;nZ?{DIuC83vGD>wvpn}#6J_J6m=V;J3Q-W z`^g?UtE?h1l-ky-S%=*_-1#`WB6|`X2q~Jn_eO*3(T!`d$2e#5^PzioNk`V(wSo8ii$HU%Ib%q^v zRG@rHb zeQt9wj?m79df2ptm@#xK`s|G;;g?PkLhQz^YDFcg7->Rr2-2{A34PxVc84RH>QPYA zaDU{bp-_?u?p*spBY%yAy5%ivsBl2B-8kVI)Fh%nr>4&>>qu8l+EnQGYH!uYtMf6g zqmKNtFJNspTcd$Lzb8>g)>3X32u{(N1v%A0Nw%`gPAR;)yAam4pVRfQ|97#g0|N~q z+HGq^1p#!TY!S%e3Tga((66fKK3G174uminoR}+Vfvdzyb?s&@X!;40x`DZ$1iXmS zx(t_5CBo=Nk?R9grqHh0@UHk8{Jp7NTS7ynGi6v)FX#QloIav+?(O4S7AYb?QI_p>yEr>AUYo;lGt}S^PE`~MVT_`vlP*;h6fSB( z9;XPDwcW(@j)&OrpP&IqDg+hUGtd#{p0_6~jJt6=SvA!kopk)yCYjgf^*3c-wrgVn zpeLG6F4KG@rK#=UsaOgX-FPA-m$UgRjDs4i5HJ}8-23ekmA;=xSgH;3NG9S0;29tr zf39a*j(MqYO25?fQc3oK%$eqJS=+iYlpYyd%9fcVo?ZLKqna1kdzp!_C+vll1e_sf zl;!%ER90B{8Ya|}?A#J0hkJcT?dE65Cq>=8WiI-FNMt+Yykk{JgwQQYYGSf}n91zg zRxplkRG;vw=!|`KRSv&aR!?OkF6CC7vvy-7V|bj6y+vrsxOMxw&nC|VWk*4x=yim# z^*{L$z8Z|BK+qSQ!E7&}4?{k7uh*V7lXs2p3CC9s9qBuAH)_6YtT3-E*wtG7N1Tw# zDl9Jgz0G5>*y9{3CWWea)tr-Oq$!;^)ouycEK84C&i0ZAJ3I4m4RvJYin79lM+#X` z!K$i&YVV^lkW&~c$g>KwMOVfd?YXXcI>9LuL+Q-kCZy=7^HHoX%_aL&$}Hw(>s*58 z3{-d}zyC5I^SYv^ts3aoYU^#v0wZl8(?|l1=Omp+UgR%N6hTKx^Hly2QH(~>XCmON!3!?7cVe8 zH=mXORZqU%pF|8+mi_=!1%HuZ0S4Cf=~ER|tMZKnA+Pf3kD(xG{173E;W`fI^oUU~shO@Iinem6rz4zy0RQ%X-O8K?3y-WB8Z2iM}3QkXW< zVNQ~NJ9b#4F%yVPi<9D-g3mYw@JRv}+#m$euC2%)^Z_{cA^A80n&+i;uzBXT@*+9} z*1ingXB`k(R!igHBDFGTdGGChSx0Dg0)M7y1GxL@Bua=#bw&7yAv82G^g9IFuxXW> zDq{qw-uxu`h&!C( zqa2}_T5anc#v54d2xi^5rP}o`lK9_vag@fy(qX?ex|ZtM}9Sl zWkNxW&IweYpLzi_88VGvrwda?&c{kf1oe*3T|c0BL~qa!Gk|jy*zfFsiMSucBeU^EMZE77JvZFlTDi zOqDCGqZ2uMIyD&U!N^iqh?J@Pi+|-1*Vc1*9+>OxNmI-l=rA_m7;b1o{((eAx|y0T zx;lci$VO`F)^MpTB(ZU6dGe7DzPqZ^j?{j&&%?cxfdWyY$FIA`hOr|VJ|d2pl=L0q z(r)FZ^cBB7KJo7YjigZ-I8X5vh-e&|ukX>o7Kd@2E_PrMDo_9%9=ead*uC^h3^+N3nmK5Wc=jn$3P$qP7F>?8CC|eoQs+= zf8~K=c^s*|#{_@WA5(U^jniuG^0=Cc>F!XD74Ca|s}TXyV#YD@+P!!eV=q3y$J0g2 zvp-!h`s>FbY@B#G^jL~K6Xg;u21UxqEEaFy@6`L=YZcdW67MLRf{hra>D|kvpKtk~ zm?RFm40XZ@z&3wmm6z^2svNYO->i^cK$)vNI0ieDbg?^!8a?=uZ`H~-1X9-5@a2OZ z+%&IhcX=u7o)s#}sT|=3vQsO%R50pxbT&enjaGX~_Y|%0r^w&5o47#krsOPb`}A{; zmRkt}ce-qvH3=LN+3_M)q6&_|*<~d)4cZjzB@%OVAHZ-{y#=vB6(D1kZUOM*6rI z!j2KJf}F9xt;?%l?wLqyURo*i8C8#!G zWdX1qazD^awx=>_TR?6JmAbFWz)y7H&E2_^}udv6w@Y z%=}BUGuIX#xV_$XAjxs-hH@Emj80SDYz@O~;;%a`r|5L*xF*-BnxUjVP-gD`oo+aD z-Rbd)myBdq8Xe_x(PuTa&m?*c#NJ~bKy$|@2rP&hv71^0fg=Y9j9*xbq<&J^uTKcN zVX`iSJ!X0$gl_MQ(Ms6pQky-9n_RvJp%U?iCA6fTISuoTbmlHxePe(*=Xntj@copo zFXD%;G#A?O9DcgsVSQrMDK*D`;T2?rx^s!`=Ny{x8OSoFJrM-M!DPGi7epU(th5}T zjzXy|S*w;s;)Ezw@L@(YYG@`^swVaYahK%3$+T0$ zS_=$1L%K&)v2xCDjPNLF<&@RuERTfmGop^DKY`}(q-sVhOtU6Q>`=O4cSTG$nR{G_ z8Ku7Q;LVZNG_CA=D5hj1QUafnL6UkjZP#P%_nvpROU%fO%7?s)chU4kS^Sw&Y3Mvp z7bC}+kT4K^i1!V6k`a}+qu%mNn;~tp>cF#yn4J+ z@{`BS>5^!!6jh4TD(TD)%V;D$&?G)K3aSB{A{bO?7dR{vl$>bVOP|3;2qzWJF!#r) zU0>p5de4cpl2HE83`q};Avb0J6xMvSq(zk6BBD%TA?w2|yY8HDH8>DNI7M|P!V$Bn8&7Bz@Vd#_*OX&h&?J?Q5849}Q3LE#9E&qwR?SbIUib#>yW5%ou{LC(bvBQZZ9p;c3QP;gjXz zPs7;Lus15JYx}rTTJi$AUmCH)n6l0V_&0WAUOho0lLJ}mP&AH`f_HC!Y0{PW>)qm` z`7&goU1$KdZ6HgF8k&N*i10M6{Pp8A$t z*q(Y;T9yPAvs47omZAF^h#Jb67N+ln+5~NT9&x6jKdXXwz+xn?ZXb?$%3$O~@rtf- zOg{lO=}=1mL0e!FVTnp6TEx#ld))Z-w`Ni#WZp4+60_8I!ptQFG;A=jQYS@Th@4d} zMtfT*x$w33hLd?uJPq+M=dtK(k#N%&E~QgFH@x0I_LHcIi#4`CF1ai|zaL8mz8d~| zNo3d?BKuT}#wA`NWU@4#PY#mRpi7EY?wEmPGI@2jY=0t8tlWKC*u)9bCOa%&Pd4)) z3{wK5hx-*mw_Vx^nO#Mjb}cTKMbKn}doQDKhDq16PIZCrqhEo&tL!%$F=P7I)Ng45SBKJGts(NaCRW4*v|(8FvBNvH@@q|d zJp1Jmz791n!PDBNX^J~dl`bR1c*$g;fyF*(SH3`{Q3m157hvq!E$M${6|w#&?dJbv z6$wjzbjIvO%M^yl|u zhbMobBSa*Dn+5P3$Org?;75xH_&|K1EY|UnzZ)ZKw#o4G4ty&F3}E2kz$n-=09au| zkBki@3IN?}MwW(kEeyVjq8Aa=t8dohTePd{Bv`n0BqHMN za{#KO@D2?GEdDE+qkk5FBCjecs0tn67|`!cFiY6CnC-za^vmTt#2yD2w2f#B5Vnm} z&)*IV{Tff*k8BkSl)tb`&mZvT?6p*cloZsjpTNwIXA&U>|AUJQHiYA|-hM!=&l_-= zKkIoApjX%T=er{|5e+%q?&%}*+q1jC1JnXvS*ni@=Vzm|B;*kUcy}5ZH5CYGaFApO zfUzyM*Vm-|Psool$nA|hPS77je9%utn(K^j<@y(0pxqx!4q$*EX_K(Qa#YaWAI(En zehPfx7oun1l=qvspWJ?5TsaA*!6zJRM`%o;6e=JE05slLF1 zwm}})v~`FDE}45S-!+(5`Ci#mA~)hOKsA@cDw(Vf?p|yuFm|JZ%wLvWo^0*TDr&Qm#OVj1It*5xhGidx9JCTZz09}SY@Gv zwt0h=+jV!J@D~$QXTN`_(VYLv`qXY`WJ_BL^B<245&`B$V-tMWJD`c`m0!? zknR6bcK07 zdVsrak}B5-hD?1Yh0hlIt@=)1yUDYPCIm3+Ob||2!5mz)qAnQ1m^kNWUPqu?6* z4RwkP&^?R>7u?pr3=fJK+A7PyE{N9alu$hRWu86k=uUUtK((faw^K-#RD9KFP5B>o z$D_9>4G|XC`FcQ5grwjZ)tJ>Ul<|Hcwhl<4)CZt}o^ABlDh}EsAD%X;OMsCev9r7r zGvh0aT4bqo-2D+oNY<-Vi*aXC6;_ai9bJ^}QTjtwGQ+f-d&?#YGw88>1Fa`=0W}Gj zb5rBhC64=H)eB~vzV(+fAr|S5;3V7)|28F;a)9rzpX{v+r9M#jv^))n>oSUzAzy?@Z{C2u)%!Wc~To0(w|9`j;gEn1hL;zS4djRhzmDMlF5AHgp9tJ zSBvCXn;_Qy4TbRRO&8KGLJ0!gqhg%l>AJ(s@3b_n<}lf@dZ!=XMc5OI0K+*f?&ZhD ztK_+iK)&^Jl?SA&9)^g&5}Z82dagh8SgG(^Afa==F{iMLP~?*L!br}1NV#*R!}_WG zs5AsGjrMW7)~2dGpGfRWGZlhlvsf6ISO|}}Twu)`dd`~t!6NYiD6RV2zS;)T4eL5} za2(*YDI561>_*}Ku~hA;PGp5m9EY~(`}WD4zan$8 zrZDb4>Jk~46A`>=?rq;yzx*fHOO=h()gYq1cXWpt>lMO3vj-WS2LTLIJcQ(+0W>ua zx;wUeU_ISfS%u+%vzmq`bxXIGN|0il;1H4K9W*0*9al3z>a)dcG-wjijjV{P`Fjhp z#LPW+f`>w%$r|pk=R>`kTTx|*A)Bg&O*~UUxByKlhs%NT2jr*f1#TsC4No=ZBR0yK zmCX-fz(^<~1!6a}7mp58W^&l1&e-w`y4KTD8GE=t5cQa+cd$rE&}AQ8Zs$gFheK|g ztE5eRbzxf9p0f?A*!I?a!v!i{p}8w^xkthIF_RB;<4-Ax@7d6mr#_!TCrgtfsTzgI zKnD}SADBX)!XeV13a|Er~BCT5nDhvcVVAAfl7p)U2`%u{)Yq z^pB}__D$1YNnqgILozYMsx|Wl2VEDULc_v z`RbG}-GR^RC0Zxj^1Lb8x&s`Ksv<=L43c1UbB>5RZD4R4KH7EuF&hDf9G__uN#?eB0bThjVaJ*2FMjD@vXW5 ziubg$B+y4JrK&I^tn0kr8kWo^GMJ5Z4bkRd88^gn1-aNiE4BS*Xd)>Po4ra1!X>!6 zv|%Hv)xcW|b(4wvNQW;|eg!NYSJdgBI>+-V(-n1z#ffYcKZ>p+aR);0Z|G58Z>R1( z+`Nl;lu|{AEc&Im3nz0!5Nw>^Nz$~>y)5+>^WNG^&QaRJw|po4J7?q9KfzHbC|e47 z?#*zU2t5wYM9WIvxkv-EQFM6vF)}^ou@)0i#Gi7@JO*8v@1>P2m;$Gos$NpHn*brjb?$F<@ zx$U1nc^)F*3Ag26a_>Igly4oDWhSZwM~0(AVjVIk*bcCw7-&5&7RI?1^*HAZk|Le9d@u2u|T}1{CX~RK?mOuOSg3y{+^Wa!y^JXB}g^WkUh? ztdu@ay73#Y`PI2j_jUW~n;v2&SD?r!Whh>eMGaf5@E861k5hGqen|S;z$@FNWsF!s z>qA~>|4G7A{kM+$k~g>I`yUN1K~-cVSKz`)-L6-D#-U6KetGcJl`D zq)6q2z!QsYH`zvx&}*WafDr3Xs=GnOPHhFMN-Z@~T+%gt3ZbZqNC2Y?$W!&fi4;{j zjX}HA{R7T_>T4j&?|wQbCxz8G#XQTdrQH6jFp%+lxK-*h*vzCOG7G{U;vM<%{*MX| z5?1V?;4SAIQ7wBI96*d(@+yi?cc|c|%~d3Krlg{c^T|`j87Sh`->I)d6?ebhmvSl+ z3az4bYKbi{EZ6vEbA%0;)si&9rMi^@yW6t=A8s_(v6_2l(GuxfH=D}BIb8j94M4LP zp(b@S6kw_Xr|G+uIuczG8j}-%T7%iR_1#bpGq%-oxTt2{tCO-aD{j16 z^$d)J56bM-4s`xEZNZT#0hNC}PS@?Y&v1jG;E2vfoS1GmTXYYuW9bF(E z{T}JwiTZ2N15GHnuLqjC%=uxY$eJd;lUmQi1zZ_!#o3AtPLhLD&xt#wanqO`j&JSL z9*wHuw?Ggb^cjcD5bh7;3(`66lJO&ar_d!w=Pp)H?Q3B~d{WvmORM@>C%P*wuazL2 zymd+7Cac)<_XF4)lzM3Izg0 z0~OFp;+a|) z_e&nQ8p7V+lhH?>GGW3Npm%vQ2*(%pr~vm|lV)xj%N3hL=`QUBS{_Sx+*q)mqO}J5 zDZdpO{b*saaFjc*(}QolB#J*iIddC`5vu(tk44uec}%elcdti7$Im8bVzqeoB(a6d zcxUl2*2cQ>#awBoP$(3U^BaSVpxReN7f5&4la|DPIdIq|nT!}z3AG-)2NN$mfq%lq z&@P$l%g4~QHz4$~he}ow#^qh?qnJ%wj^7Z7XZJXFhS{&wU|bFEmp3(sV(XWwqwzGf z0&*GrzYdl*4!i%J{l0yk&c2<2{An=Ep(s6kq!7r zhF(2B&GsdA2~K=DzZr&IYUaKoE)glinmlos0pRdi>grx)pi5|kGQ7s4SRl*LMF<5? zME6X3ldSh|>?xW|K-VM~qN%?e7vW(is8>Z~bva94xiaZ}9av6aIjDb3`ed4ufq=?^ z-69*u(z+9Xap#iz4(g>~+(b8-j3QxYEq}z;bsiFK7IRUj$tc#;I#EFj-Qs!}CIup$ zB0DZbwY$CugUZ|D8fs|+URjyK@WG6MI@Cb&@yZ!nDlJs=l~6#LB^PK##tUUFPp(kX zGYdW3nb>@{f$@3U^w zDQ@p<)$W04B*p7^TqFUVb(rW6cV1%_v-Pat5+US!d_=y(T!e^d-OxyI+EKExSS#x3 zA?tm|?_P70WvMtF8ki5*O252o4ACKjS1(JMZHcy4^fccgBMrekK{U^=5xSHtfAU~k zuNmZh^EXe|0vsFo+bmZUYwOWI=em3k0U4Y9D6TEhQGYTyVsSjGrq*S!yEuylSRAHB zO2w2zKZbL}O2NG{hQj#<(Qtk=K?g(;*Rw%%5%=AZxeu@V@9^}zR6cjM9lp}BlP+Q# zf1C-HhX{xx4>c*CJicFQ;m(yV12Ij;5HiNwZ zE2#+8;y~yj_20ZgcueEd71$No>)M&N>ZJ_0F5kjCMj8VEQR~=W;{s%?^g1*uzn)Sf zT}<&O*g3^7b@_YByumsDt;qATe5&i;)eGc3Y;bd&Y)@wfLTiVQGWVpboJbCd1)x2H z#f3hJjmX7MfQx_S->GDw_6u&TGihLl$uQUP?laCtq}+0q*|@~=Am-lYK63gobiV`> zCiHe&gf71m$&^)+kr`^Iq+lE0R;Tk4&_6 z@|+$U_}MVn0s&QHZOc36L-EwVbMMP5$Hl(?FdnPo<&mYPX{&TCp(&+i(CdLLf9jld z4XXR0PGVW2cY^jqi~$5e%VUUIcFNbDWo0#>V43Rl!~aV2>cPo&E=J>J;e5zJhwz+t zpN+{HFKWMha=u!CwP-u)ZjAG9*LL<=s9*8w@T`426 zg=og~7Y?lCL=Jmp>w87lkt9zr8J_Ct6ym6Vg!YOIbo$XS8UwfA4tpUJ#-sZGUN*Dib-JDWonX*gtbDf& z4o5iYZ`a3yV|S7TLPI(nO0{IDe>3?Yv@bfP0LhWl6}{5^=XvE&JxYVECvwH94UMCz=KZCWtxEZQb$7k+2%2*zFH+uyH?O%Q9 zKzQ%fAD|K(x#se9c5Wlhlffy!7%j6l_!p z{Ro)QAI=-lHacgzg$;@OqyQcFOIeM++1A@FWGI^>y5g!iG;_#A4KKP0cDi$-!VtMV zei&&SOc2+Y4KoY6thsA(mK@CMm90al{RIkXm(sFQ>81)Z)PPh$j8_{ZvrG`kWdf$&Ck({E)o}wkNwK_v~dMI>@rfz4thHA#(ogLV=<0y@_Xq7Bw z1;;!O{lvDs5*-6eiVZxfN0GpBQHkKPjvT8}^`*d1F5wTb4F|H=rJGfu_f*9vR8npPCShvs zId)Iw;a6nt5n+s^FUejcXT!%4il~b!Gn-f(p`HB^mG=O~7mQTaXRn&l9uLethUys> zvkW;P3Q|$F2db&^J}I_z>M&#D83t3K&7gphWYf(U`6MhTWxl*-cNHunzFO!^6FXi;|P1NC}Bz4)L~>Vza>?Rn%4fA`k>yW{;cl1V!bz$ z!|*e3vE=6pM0-!ngRGqMEm6CmT$C54-3kZ3o}M!30qXX)ZHI3(c3oV3pm?h@zqgT! znG7=b7=!0@U&0Xayr<9plZe~&uQZ~sz<$D7$lvm-ZL;{Z`uy~W%?36#^qol;1Loe3 z3G?gwv6h==@T)a=SA!WUJAE3dghTgYBO0HU1UKMKWT7n{u{m6s&KsbtCI4!Ca(?uM zr$3%BqU!q{pGX%)tSR9p}S^2w5;NM~bEGiJ^o`{7dD6-(Gw+cUTM z_(*@A@5K}X2zEYl6cd`tT1v!(hSbh^FR5L6KaCrL$@BquRV%X+TCZ8J9AY6!H@@16`bZ4Cdyx&aOHh&U)vSrD{D3cqUWfeww)Z`oMN$uSk=c< z`qX@TYDg3UBM&agpK0j~+#21JEa(610$RI@OlgnC<<;0Vdmhs-^?yoE)|kE9dn*?n z74!a$IowyNQ1EW-rJy3zO)`2i5%^*L74guS?D|-qOFV#kZE^~oNe{+~fOkqvc=rGz ze_G_#bp}_Q@C+TpPeud^1RJr;R_6(7unzk3J~7ABcJ3Va1ozH|T;4rYwx!a(HKHZJ zBrKj${JXM4S8maP7EADF-jHdsS6!YB)52sa3cl_~j)%Q5#afY`Q`2QLy1naV^HYoL z!F>F~cZ=tw9c(l=iC)7~`Qq_P?D!;Py+4kA)%kh-g!qqvO*pk$DQaL|vMi-ru&dvpuivDK1EGtEl<0hP>dI zB80^YjetMN-mAUJn}4*;U4XzLSf@IU=#jU?31~x|da>rgw<2ctJ8l5ZJu-rpAD`C< z`4j?I%2c`UBC~2D$nXWTabO})n{%^c?S9kpAZt)Rt8E+4nypb)odRVkR1ay>Iy_fE zOBEDcSbVjJ_e6xOYfrMOx(&Yl8~)9Fe(V3l%sKuGJN|z$b7@&2F+uhJ&dk~VkIbC$ zKYKWs{#gsySs8Sp=mnjPP3>F=*#5&#AZ+L$VQOh^@o&iS|EqrB_`mmX2>wr{!~Y=W zcK_44@V~?I|3KsaJ1pn?FBAS>u$+^X<3I5@(|@QG*f{@l_+M!`BP$~Z>wm}P|7LG# z^G^#w@E+}_>}khXV82kd7_uWFf_-#qE9^oXMR6pP2_?eKPyn}|S7x(JQ7h6y-oW0P}{ zd5PHtL{wLkfCnTdhUO(EVy4B&jBHOpy~Sgu$-tiPTi96-eba*@f)@lXb;&OGU+l=Q zu7VMq*nk=s0Wvf=GdnskGXZ5_Vs`wDEvyD&6IksV*})`~fJh}hh0<4()Y zAfg6DMn?z#rRNkF$2vE#Gcf>8V0B;u*6Pc*FfjmCXk}#r=j!-Xhmg`^ zCMV~%0|Qf6SN8(87WdKySN5aQ3aIKx#uR`&hj4KK!~*t1he=?r2m8^*d+T`e^&asUNgbR2b0-Q`@0`TN6nAw|U^5>oh`niA&h|Ig- zKloAng)^~xN?-3EA79;^?H}FQ9z`)QvI7MfkDi+6?%-Sig0YG5=f=|D-0Z!A)q$C= zfq~h>{h8bbAfWpL!QerEpZ|yxi!*(bgL8p9Q{$IDe$PGaojzg{BWhDq6UZhPSKs%9 z%<2w+)zh|-#CcZtm{L z)W+KQNlATlx-vj5@d;CoLI1!nqp zBIqGrWpQ*Et$+B2NPh@KP?#QesAE|X0HqlqTq}9m@CF6M(nOH<0oJI zn||VVFXT7w(I5NqH#ecZDRo7k=S4VMs2ll+i!1l!W^zE@n^@~;-)mfE zEUv-+zQI1+r{Bw61nmCAb8o?@KwBRfcE5nV@zpaOVE5WJEJK59z_;(rwG9AR;a+JU zB6on`8-GMFVn4wTc#kuaKLU7w;9vMd5Qgz@aL3*&lpg{#fZ#{`VJHKI_uyUQ%5T9t zMV6o7UG?yR{>jD_uXS1SzrFmU-7S9p*DZlp!e^%?cbnZ))cW>IJi6I&o%8wzJ}l6-;X%} zkWRo@gMYQgu^vG*mqA>3Rv`|$7k|k;3F(#aSu!rjpj`@c!A8uUTai!EVPcLdqvflc$~Dc!kJ1)QD|jVd3ft0?)j=+vYv<%;;^DtN_R8Z*gdxJvn$IK-=YWW@WiZjblFE-~#c-bW;L z@yaO`SyHq#)<{2dr1XzJ+E$Vjgj4?>{Z@%05=GL~542kzt5_U$h>}Y2b@;SFb;;n& z)IRWN+{Y?sc%pWtevX#I+q4H|>IR1L0*K+{8-@tFOo$w_5uAeT(rQd-#3{!{LLapYU$8-|TOPV7P17Nj{S-_X#a;VP8QdCW{PGo7Z z(7VqDkRm&f5G8fmib^BUKZ;_?ZSEhHm0v&;hX=6m!}|(T#Dm$c$&oD6*`0%%3<~&S zq&o+`N2d~Yg*O^Qud%MZG>qeT^cF2AbHQ<{ZwsbG?+!-?>k%wmh{=Thlb-=aX&Go|4dC2ZGpU(U1s(3MobX+m+riOu?qi*FK& zb{-#=nv{Jw?(y?r;I2NRrn{bjdd23=ESk+g=fjWLyFL${I#C?g4ur4t4F% z=>_VPBw^`tS_4S=0varYx|}o%V;3u~q;HFS((ytalQy{PXnws}xHET*`Q;o+XW&6` ziD)NiHn})kQ=SEUT}UQ9Otr7CSG1p@uF6 zdoV}8Z#B!Tx7@y@JAx&)9`2*MM5v%qayCcdjw{xeI@7^ka*hnBIY{JrQII}_vbaWa zZB$rT&2MJ$bENDHz})J?b&9Y^Z-g^9tMVtCWtK6C8fQuJj!f_|B`E$(jBSH_oQ_x6 z%M#>sTU%a8tKdz1gP~LY0@y9!WLy+pj-?RZ3ngfUU7kXoz;k2hOe4`FG;C^uA{0Ge zzk(%I^uHK`;Pvg%#HpTCE*2Y^ST0#gV)(>)eZwN#vgZ-iJF+suZeJ@`tvgFwCCOjo z_`IJ`qjk)l_DNh4=Esh8r}#q*qUs6le7=~xXcVQVCCPl*`U#pl%y}&CWW8snq!<;u zc>E=#v>pIcKXKFS{ljnu%SC}MnTybttXX?^q!rCNN*{10S3uS@G|`^h?j+wL$%wP= zyNg3A|_hR;OP4$;XA)_GgaH_r1%D>xf(M+;!sEGl<)U+SRl zJfm#?LK^w+f#(z&#IR<=rp3!ms&f4yTd8DQ6Lz+Eb~Cj@Y@tuIgGnG3@xe;eO*H zoVsnk{sE*G2(!&W@VRpySC1hr+JmORx*D0L%u;c>RNE_nP`O&N*hD2c>eyuFsV%>X zuwS!oo)ow=C-!PWA?#U!C@g6S56j3ENcIuZSvF3AFzV*LCe(Vw&6_F3ZMH_%H682l zdisnmUA)WZE8-a)8Aln94*6Hs!CE?MA8uN+OABz(#WwLlS%KhExh)Z)bjai^&>X z`1UEdpni-cRaM3T?(m?8b8TdzZnaRCEgOa)!3~?sqcJd?U=kQM*1nN}PDZ>ZAsI>Z zX%P6lMCsu5g18IT_}>py0a(j%GSLLA&I zT)^(@`<3L2Fp;$AQ@qXv7szsEFaU)Jy~5qXP?{TaBBqt_CVlO-Ui(<;m6@pHJlXCI z?mrQyq|4pwmkVqp?gU!FqhWDX(Q1!A?1URw0Dmv6KMtTAK%hJO45<}wr9_1*fKGEWmLRa+tW)*gaJ_D&oj{Q-am@I3N9U zWv+Xu9~cLtx4BK1xwMHa*=3@A8mnCU*-RlD2@<3U3+}~_Zcg8el3E&>6C$uPWM6fQ z$1hgg1#>8<+M!KA)d0+BXo0y>WR!rM))| z2wW2vq$7pYKbmgctyHa=WEzU|tQKA)azQFe&YY0yy`EwnHbQ|t+ihDHq|i;+P24QK zUx9jX8o8jQ)B%7l8~(9u8$$|H)s-|lA3A}&S@YeV@JdQ6dR8kWLwuNQrq5d480f^G z11UaNj84Nr-#nyybCiwXJEEnPBJ|JAL>2sa);fw=apS3rKx96mL)ua-xowYWfZo$@ z62{Xzqpt{xrr|pvcijcW=@R3KA}gx`PO9|HZ6q104#w0N;`lu@5_J+E@JoGQY|MKi zWJJ<4YLccfh$JTdb&h>E!eD|{K=vB3wehj%j~T$-I({O(hWrIC@44;u8*PZ? z2F8#2ps{!OwoYS@*geX3P679pIf1SU;qx8CbCyCAs)e6b1ybn0mrocCzp!2XaK+MU1`W_`03=z?(Tc0zNfX*!v8wBzhht{rTxBy}&O6 zeHh>9MPOIU;7WQE)tC^ZX|(jgtcOwM{Q8K zxoY#JYP4sn%|~-73->WC9zW&t2npjF)P1w5ew?7~q@ac;q87#z7`nejqoT~yt4Yy5 zE|Dj-cr{V6o|489O9!TduW!u%1g$L?Wb5enUkb2O1nqAtgh%inE^(J#un!+&2wcpG zD0{ncW3$|mZo}B8ePx-;PEc($88qPV)u_r!fy?S;h}2^CiI{%q!&uE_lJlw-X6RYF z&SW&$_q#z5O8Y+|kbstm?L>mKC$<9Bb!aD`6Cbh4CTj^~q#NTNkpv@6A(0{i6h< z1lAOdGs#Z<5DTL!6qUy7UKgy$nDE8DY>Kvx{-q`BxK;Pzn}362NW4FkJi%or_Lo;p z^q^~9P#D^bT1;uKHL1DZ%Z2A^Q%>~a`dHkI5HGYahWpKRorP&^~a;B zU~MKAE9_pfEe*;^91}Ctx!qVL`cJdqcueKr5cD!Bb3kUKPXY3L9>bI9M(M2`Y|L7h zs6)wNIM989fA7vEYIrJjRs84cO3jubGW{(G}$6u)NTw*Z#8Y zkeYlbuU>e|e9K%1lOV=}2w@N0=C%pWbNn^W)n@-es)nws=^@@oBLFq3dAi zu-||Q^Vrjq%fFOu_G~dLX=-9Yj(A^vXi}UJSj5&MJCa6{Pk}l;zQfRgt_fkq^ufc zQD;MamiKA-GLvI;2^!mJD8w7@;aM78+>$7}nw^&`MrTZ6RI3vN`mxF&3nPSsrmHQ+ zaEOG_A$J_Sh#1(PXk{QjMuQ)fG2_y147S-hL(8_^`ASkA~vU6k*G7b1!ZOE3o*`r?5*Kk_%$JO5C5ow$OA*yKtS_ z46BK<0)s_|DxRX?HTq%#oz2Im1#`v3HB#ukvDGF{89N&R0l~-S~l##ejv?RPsmlGJ56tE!0LF%y=8;LWX06x)Z(N4{wcIKnaI!zs+rKON92_k zynBvMi-`9Ci-$>EaWfeT?^Pq!_pcdL;6^r{h|A_}EL*(oK{*I3Zh*H#p?cKL*rp&v z-#aXS{z>5E!Kcv^v=GRB3UL!5zyYCdjQ}mY=B1#OAGR?f;84N|vT z2`-nR*mNXkW8w6Hjq14iTBL=C_x#PhEJB~w#uQ561>F}G>`gX@PoJ~_aNLE#jnpk7 zLhR=ps_F?Ln@K<3>E_yB859K{K4`}b8+6-TolHQoyo?K#HO*kkt!b$` z^>xAy{|A0ERbPPxiB~i;E_a?D^iP$J9$<@cp1o(ZEi)Q+rltMZdEqc|wMiaPS)RdK zX|O4jM$IWS4+T|6X1neIxn!lsu}Y2@J9`pC*|-Jz_q zKU_x~2%#F0OIkXQYM)jHlv(YO*KQ=%4*uPtU3U1=8VY=m+(CNf8ZYm=*XbL0WFuIHoiVhcIYhx|>_ z)M2t%`e!>D7?k8#$tW#7npb{&vi#K+K^Cb;*-i*oP3SJC) zm=(H8@d1M)|Wtkfy}u0=`_*f?Afi(Z~WM`X=BT8R!YT+~a_ zAK9n%9?z^ct(aPo8<`J@2LLkhm6BT=SI6!zE%PRF;(JsuSN>E2mE)yHn?+;c-sd&F z5Ip3gp3l;1Z#9A>G%+`&`saN9+rxf>x;IGp1bmd!fbUh7pXVq)VOhN?PT&nQdSw-+ zBHa^kD@g%8L`xzo&S2}?yk-!pTYbj8e5BuKbd_#x8~J2;8gXrU7`c}W_U=j}nb62C zuTfsd)6z!v^e6-EtU-c59W$syn9>C}PR)ybvix3V1P|s2iBbLaRF73>(M_-JWdl-6 zx?n~s%5Zd!8jEI&j4TbLK4Fk!G}vSKu&6AUUN^h2f+ZO5C^ds_} z(r`%5S^bwJ$gNJ$s5pcuc;2lNlt(bLbZ5M^I8czi-XQx6D@k>mM}Fe`H}Xf2ZV}(3 zQ}U?csIi5!@T4EnhIFd+$mWmXD)CH<_}$~Oq-lU*5Yk7-rCFfLUplKhscZH5IAh5I z(GgOg`D6kpD&wY8n0G;~;qrwZ^bFj{iI?faH+MT!9r48ED$Lpm5=?ZkvIM}38ZEHP zjs+j(T%R(D6e#Z%7z{~EofsU1Ka7TE&VAE&Lt4f|o zhQOmL?OSCBo}`m!xTG&%v9~aQk=%^(&kvIh>y%R{4xs@*Z8Tb7wrEtVU@d z52?$}VeJCN-F--IFEK^jq3;Fd?BPwI%2; z_;*@uNxSRid)bi!wBv#>rf`X4sP-hu)o?Txp`=?+*1cIy6K+G;u27#=#?3fMN0eD$ z85?q%J*lU=W3{xJd=p0M4JQ@nY)zdrG#{oYsGmkaORsI!DXw>!5|Z5VZQ3<_*Ku|7 zPq{g~S+BJ?bJ{FND2Y%E!HiSO`~&NAK$7M5Rv_ILq;npOA-Ur9!&3qEfcyD}Xt566{|q3i~M#9ifrEUQ>{A5FmpI-{JzzCv9I8oj7b zm#t|3%;!vZKvg=%tJp^_GYLJqe}VIWuI>v9B5r+ zuf5KzgVZbsjHKpESl517rDu$GG9!a99yEZr6+Q-SO^~ewnWNrvOWaGkvK_ZCFirM? z@At)GrWoAy82o53&31>QCyginr?RuiG1C~n>zKM2Uep-vOdOV%TlO2v*RoWczB9W0 zwp3g=)~gg+`X~vjD%))@??^N$}0N%!x&d$!Zf1?7g+8lOY_i_(LQQ zjZ&J%Ohl2y-BFX{DPYvX2ckH%yoZdS+CvRl+N%5uKyd><9Na$th8PE=fUG;%qdjd6 zuXTReC$iB3$6W2>Y8!;~((Sca-dN}82xYp-eKsdc;N9Aa5+~&0aaJ}B?r!w-hy;C& zFZ`h`H1l7ueAmA7Hve`DYeBlgVibc*Fvus~zz?hnhk&rz(SGqvmeO`#o`zAk7P{|| zU^ejL^k@7xVpKkmunlRv+6qaVw;0xbpT~X^h*sSLSrGd+YbgK=_U#$W{uMo?eoSB1Lig|yW38++iSDb4)O?V0Q9nbgdM$NE_0YPa76X$xcj4cXK_}voKiI_hAk@$#-p}1aVND+?8(Ark0T4Mc~qM{NN*TrE(kKsi%C8t z<7+;_&xc6-RPOOe#~1?u#)@2Yum(rzJ~S|C~%U4mlB*g&>tK5Hc=IHEQve zmYUj4G!X^5(mXLB_5^#~GqH059X8`hbZCPQLlL;`A=?vBFC!SJYy_{0Tv%`=U2ysZir+dY2dAmXH7yOLMyz@tmrg3zM*6DnnY$g??8O;y_XPfIo?I`nQ% zApl~%6u-pDhr(Ms_c}DmTdDUpp_z5pFpI0maHN-yVcsKG>`eheLS9sTl-$6b0jFbb z%l*T5g`!WL$CwzdvLMSL1BJK~crDX9IjkvctwXm=yLad~Vif9g6qsf5)k zsni>#&K6Gi?b}}jLTS)tMT@=+%9&A_@%gG&_ujz|>ESI8M?D}o$L>8qExDl-N-i&!VfUwIx`MYJ=|@rHbm4(G@4XwW`#fDsu8~|`T5T8< zuuiG-S}}W)#)vrGH{vP5n#be&8s5e`P zzsniA^x=!l((6(5?LcrUQEyx_0s#eQn=#fKZ;s4~iA(Pw&3PB5bS?IMNRO2``ji9? zo5Qv2-y`guYzwm5v2=_6*q3)0CGBJeGLdI@--SNf$|YNiXqXRA$IlNFASRLwKffim zK3FLU#pxsirU_nuVbFBSz!t^FiMMNe!v+3nV=AfpnwmQY1XWU85Vb!wQz$aSWaAx} zB3Z@Zf+El8FlsdCqvv#rylv9h;>LIeAgPi(goN!by-w$XIkS8=(T_6E@F`kt?Fgs# zsLN)vSx<2*I>Kx)nIsd5ENq0+*5Rv7&M06yrqJ`t?tb!`1qZ0+KqqIJag zGLAEZI$mRJ!nD-T$G>3WSdI|CY=*6UlIy_v%7F(v(uiu5qun3OEbGX7U@g5@K>emR z#Y-xBsUma~E(V~#Iy_A;v#As@WwY_T6npNY9~~JHsJ`5}3Y!AewMg9y!-J}}0t-ke z)6_wKUDHG#lYSegSb3E?t79TOo)TGUUn4tqJ;uAY?-fPW0gqnX4l?VLF>K7-ip;-@ z!cH|kmMJO4H4~8LVBJm3X5gZsxps-W8eWGs*vLyuMNkl}Nv$`j2egYel3Q?oRL}c+ zhY5V5!SQa)1KRpA$#&lAt57r9Q;bxGp|%s_Hvy1=*aCoj$f%J9t*%BY#^*DX%U@Ix z#Cc{ASm@cWEf~6dgp1{&fG@FTOEY4lF7l)_e48!T{Ik1gPL zl{|Lv=JP{pQ8I?|vXAf36TIgQ$C|_HN!uC(=jlN(yqTE$=S!sPcnwEaR&DL>(v{czzj33G(LdTm5hMdr^#jLl!;fBLXG1RSPu#Agz(+Xb^L2PR}*ci?m zlU_a>lQ;W1AnS;w6#@`>HHvONgN}Ckp1Ae^eOcO=G861@bK_7ZN_nR`_bJ!!Vc-viC$2v=ek0>y^vgvq-PbNs3 zF8(_r>bk#QxpsU`ysjw5KbSsO04@xYZX75bDinrNP=W|~SK2ik=%z}BZBm81Rbsuu zk9M$jYYB-FO$<8JvzA{5<5>G?d-d=4VtwdO1{ukoh*5a8HrqN)qK>nQ^4A+L^Z`0Y z07WsZ39Z4y<^aY^rPv4h9X<_!4~iGD`FT6dqMEp8s~%UytAtF8`blG|{{uKH?AHae z@*3#2-IJ~>YWmri5fuwDNaTeH+qZh>EM&ZDgjEuhxwEjMn6o%8k9T>ND#LNv>w2T! zvB#APG4{{$5G<6ZDZMT&o%TJfpi>FwX6`AJol#PPL4R)6F7=YQ9gu={y};45q!evq z0<21KEVIxg9A3;P893!W)9&%b?!esR3GDfWUq!ALTW078_=w>FP$$h zEf4iO%L)>O`_MUMD+KsvXAd2&q*hm~|W>cxjGV2A%4A}bE1A?|L zV@hETY1oqy-{{f4NnrGGfm^r>wU160C%k1>*@w;DziZdrk}tr?j0*kx%UIJjd>&P6 z<6e~adBHMNY2Z@3y!oLO4PB#>PIu^}W4s{Qr*EEeWS`zQ)>g^$z15ISS(+!z6?a5tBD&@7J zcX`~|KOf0HlF;!5GW)IE(OojT-5@f7R;(XaNhP86tCS{+FQY?WfY7!-CX_lel`~+o z3%x2;C>+mZ6ciBg>DTF|(asEG&NZ;?8M-%cgFBtmx=lO$hmxtQ+4YWq4=kA$v0UoB z(Ig5)2yOwdbR^5ouiqJbu2+izG@}zPNrlaVq7&W1kTS>BHDc!>8E;AUFJ7j zjd2H*7rYlvktP?c2euhvAk&PQnqThD;-o|KT9B-rxa%ef$sAeZ?KQ;@gH6gpGNY9!3Of`LY8fAa>-OqRAu5-^(|*rH$_LX$?NA@Y6)cen zvtBMSxiHN@5m7vF?(NUHv@@)@Amkp`dIwLw7FO#DS8eZhySJm-+)i3ueUPQ>)QLA> zJjQqgGj0uq2vhZ`R~4l4{P2sx0-dx_K32$GUB`KAHw7@e{#}v z4^c+I@g*Ayr4tEoWWwVDk|d6HqXM@oZC>y20P+Za6jqpnp$3KjKr4CATBkI$v)Zt$AbSTp5XVcZEY z2B4Q6Uv~tV6(91J$7kj}7}Ed+FMoZzwXea}cltOie8I|nJYF?iCZZ?od;|Ed{1DB) zepNSy@ALzkuc?WsCv^o}o|*}!Eb8cxInj|wfCIqU+!U<0ltR=1`8Zhnls_h76}gSt z{ooEp7gs{Gp@#l&dX0v6%vnnx<+lJFQ_)X#Jje!KFs0iC>_L&A7Xt%GYZ;4T@g1mU zAl(viE@m&*e#t_xSLzNX1Dg{QwD^A=NjRL6VCW8Sn-11-pYYLj!Il%~CRN?fZQR*W z$Vc}@cm=k+fIQO35tV91k5e+mIrX1kdaFw)$oF2=-4ASd_Q3G}72KKW6UqCqR5Mth z8LMK>h%VFQ9@gB^(I@`8R>2`GSPv3N7e=iVNWOTd(q#*B+lp1}ipsH(gx>$%@Wv+L z*BrvMR1fueL9d8nf!{>p2uBT!v@71=2xd)j`rV(&K+AmS;LWkm4!<{E132w=l2NJp zQo?YPK0@H%SfQ7!X)eAcoal&~o}Zf7=GID$Z96J};s;_wLUvtHq_mlhO@kLko2T)! zG;JI0)#&;L;~F{bz$$`p^|ZlC`6=dAOyIFiPc)hu&k&wG*+;f{T%+^wDYwW#)^GSA zb(dHuCgkXhI^UWP8B_p*=Hk_+qV35G9D+*P`QV*VN|Hl42^)lbMGV0vplK#8`;Or! zno#3SN6;0ygT|}x1SJf^Z&qamgB($a zHq>803rQOyfo#6I4dn}thoN}j7m@DFSJIsW^W2Wu*WzPJr;w)wF+7|4!stvIvD4+v zb1j@X^tw<|eChIHWt}!}UxdS7tA+Z+q$QNhFh^-QBw_ZKnNjz zhngan^*FiVytCSg$}`f%~^HJrgEI8O9O_}?{Y4h}ma@fPTj2NARiUC4~ ztj1`S0ox0>^5)R!!vc`YD_eIeC#1m#fa)51-G&jUU=Ghon_MZfeFk+tre&)TtzR*9 zxCZ{|0O0$RD&&NSx$7M!bPZy5_65GF(B-%8$5!QvTv%u}h;%Kvmol2kpSP+^F$fAa zuxeu~uE#@#0zJ1+JXAhjAC0X&7XDAo3R4eWIeVyT0%lc|EcknLWub(c{2hbfiB;Dy z%!XJGPpi62HXAJ!ovDuT8FS3jHtCr^@B2a3&EZ7F^UAs49By{}tZ+IKs(d1F*6vxI ze<2YXiRltksCeN&<4<&cJOH)rz|xA!E7->1;a0 z^FZBgv!|L(^^mdW>)||BD%kZ1?)Gb@U!n~;ZX(L^xDX&l>Yx8kyi7KF2c{&HE1M_r zuHTYuDd@nIzO4e(`pPUaX>wWnai7sn_3*$$(cLv>;3~v#v}Z?U)Xf4J^}`zS69&9y z%6R>@jG_Y-OcxmM&`ZJ;J73*@UR{4mB`sQ?Op|5t7%kZqC`E2E1G#E^^g^ncF)RC` zWlvWbElC1h7&5liP{q{H;hzF`2_LAF(X}Lqxb09}7>>`N6X1^LB(>OUI~n?sYg$^) zbG~ZeA*tqs3_C>|Vl?3cTsHC`y947v)tzD7hw7xF;VpW*rE;iXkaWlp1oG`6P06OH z2aG53Iai3AM*#p$m_!6kqstC6-O$>&fBPuqoLCDssj#HuRAxzEEolYbg1)y3s#<{a z+Q8>(57?By5YL+uuTmnplW19ulb5@ZXMagOK5jE zA%!NR9#i_Nzc-gh+}Fq~%Ogb}2=1se-LmW=$Z z!Bhj0?wDbDo8Urb@(B>-4B_lNF4IixFliw!#*I`))3R)NKrNoDBsfTY5uA$uMd6m=P?TxAj&e+#lBrNZY*A6_wq*l2QOo zs)Z#z4tk^Htx*Yt@4n6e#jj5+>7cpATX^!g^&S!nyXuJ`bY9giBv5*r?ptag><34_ zWHY0{q-&sdV2W=Oq8`v8Z=+1b=*$|{pin^fXGqC{&K-pV2 z(6o-tzmX)@b4GxNao>8wq*jb_hGiRZLNvin+XPPkV%XTQhq%47uSFcBDgGxROI9HQ z!?YSS8Nqd;(3e%7;se4mL=I?HzkD^CXbwuXUyx~pa1?u1`{J29xpY5bX%p}aor9~Z zT3N!Q#!3OqT63CUS(#75?r@XSI0Xs zb~Vy=BZQ2B%OYrxz_DShl@B@l;06Su@vZNsjll+eM%AU5ZPA9pf)IJ-#e`}FpedH6W*S zXK}sJ*6)%eL~RmNF`w(p0=(r>`Hy(AdOcw6Z7(K>`8fP_yWt3eq&B)bD!CYT3%{gL zQT4(YaHwSz9vyik;lD((lgr!_RoB!H5q(0eb!piVlDns}+aqp9vsi;krC1 z$6r1qwYu1iPkg6x$Ie=o`9)jN9h{HY(^hFVZ$CFsH2z2JLaAby>!*%#Pt7KqwJwH*gSECkynPT zc>b1?x4gy4#G>*%-?S81- zc+gRuoWgUJGw-6JWL~bj4><0aJV@aI9e)dIo zmY@+>bZ@k6!OaK!zp?g?F_y)FzGd0A*`+R=vTfV8ZQHiZF59+k+g-M&-@ETl?n~~> z%Ovx0pXBV5eUkm@zt;La~N=s_^U0DltBeNl^#cxCj_72qkiFbdbbOZj1? zQrS&r2-kgFJAGh~$5RT3401GK;wd|SM(qkOvROf_vp`+(nNsuoBOc3B;h~B{w>87* zADf_K17lYn)SsS1fXa+Z0FKlK2|1P>#)J$!ZOw=IZt!c*I!vJ&!8C8TSC&Fn?iwY# z-R!G=E0yXCZ@}ORqli1}7Hk4R42KK2#L%Kn9Blc@}^+f^I}%*8Y;iA`kd!_N}0C*tOBy4^9} zc{GtV8^|r3&lBhIN>_NFZq}FMS{Xt#IFv=nGaddqGeAkq8UEK+!c=-RwhXY&yt^jv{y9L1Gf0v{GhYJ0_$7Z+`t`Ax(&vj_cBCF< zAn)p&D%Eq24i)g7WP= zF2uq3hw%}B?tuA0NQeZGiIDnW!C-!(!ktlp#{{_bTYy|_{b5jmMfMrSNp!ll^`8;W zHf_F}!Rj{ZfcXao0<--FfEQ-u+0x;`faSyT@$+X|xi*$7biXMscCVOK>q z3V4WZ<@;!X!q)kb|7=3J1=B9U+jnyCt7*XJpM!{eil}}>^+CUWSOXE+&h;*S;eT-< z!`)F}85#vSy9N+-89;gYA`7 zPgD)>zs36M=0%CimJW+E923~@*E;sVHGM@jNosA9Ff$_$h7K_PhUYfjJNs<*zY{AxQrYkbGTM z1n%C&OOH{Y`{VZ=HBLpw3P5d|!I5vn#?}0L%d}c>eZQfp5>x=3O2J0TftW z$a+5Tio6#V$W7kgR{EuDz{m6bw!SWq(q8p5KhWOIZm-%&>wSX=$==S-+|L#uE;O^F zzMf!I?_W!tf;8w6(^fDPubR{ z)4SR@fgiR1)6Ka)=%*PY{86=a0nmz{vMmG{sEsXO{*PVt5A<8F#HU;8Puj#!ClRD+{Y@`)YlVy0uB<=jy(eEKZ?)04RGG1(r$i@$m0H6*8jsRSgdD8fZ(ggmLjC zwgE(73x?u@3(|JAj;J5zJow==O+@t1oI`vbJpu=D&nBXyi}yo9@`prlXleO^L}?@I z_rrX%o3TMKd-0Q|_a6m+9{r5dwAtF;vdwxUt=|;=Hu>>j$d?EFf!_(^D2_4zbC@-^ z@}Oz)Tdro>f#Gk^loP3L%^eD?wsYQR)3IfPt?f*qWywI8ZhT;fQCMj7rN>U$o6&Ae zN7>WPXPLGfddpRwCdJHl_D+Vx9Zykd9;x*JC9`x|0Xmi2<=|Xl1o1@|z`|;`Y*P3& z`dDUGFp}co5C&WzrA{^Gd1fOLk44eaAjr;&^UU;8pj+k^(J}Rtr4VM@S$KiPq9W=%Q~dfeXhP4vFGp~t*{C5LY|PEbi<7~jJrPmgKBt0pyX zBH6MEpm>pZ6gQbx(uS9a?PJ{E=qMfaI6m+tCA+Sg@=~fCl#%{05OE8iBsqakh|qxW z%8I(BDj#)ihntXrTgLSn*vrHnGl$~oS9 z(+@W@F10Z_Ag6#hoN{k%q3u(>TAW*xgavtG6wTNspr&}_fI5@M*ziGQ+Fs$MiLuod zjs$0dg7aX|zNzp>JoSsn)S9&55CaF!@Sc#5&v2!Ot-C$sF0l7rnK$mo`ui+(v75>qI~;hP3mT$zs#eK%SB38X24K5H z8H$Czz0JtR2IKAVf_uX0^+xZn2Fzh;K%G_&Q=4new~%1^+aUb%8l0`8?PA>|I?PkZ z=%B?cvX1$fY&l8dL(Xhc!Wrtc$+?iS@W#r@by}G8tR#rvkxaJ_uhzJ;P<*w7 zu-?P;V&4P2{PA0@Hk0<`u;$x}N=2woXVILmAnm~i7u?{6`Ra_Q8#FEvZ^x}kREgJQXZ$>H68A|y%PGm-2%sm#BK?V_p|Q+sV+OH zr1$ERvvK>bR{v7-2dIIc8wB|l1DxHdb0Z!pnOPKPz_i1=2R4iph_0@bO2W)X>B9G< zGI>kXj%pZM4QE`fMbuNzZ}CC;n~s>!iv>f1FG~5EY}4?&!-O+SI~s~pm$k`l2y7!8 zdc6~#URj%d*JOlzlOt?C_~KTMlgJiwMQ!tMaLVewSE4q8KF41$d51>%4hk`aQzMy$ zO(MLJl0df$udWtPQZuw1I&gZU-DHX`H_K)N+TM!Db0Db=+3^9!4TSo$uNM@pB3?2wi~mtc@lew5P5`3#T8gCpkbrL?o*b~4xxa2Ed}Z_ zS$g0$ZU1T!ez)I0*j{BWqb1p0Bt}bvHuWuNth7qks%4CLxR0iW$P~j$B&@k(KgsQm z`FFM$Ef~B_jni&+8>!PQd>BQCJ<9ZvmS)hre(bBtvKzGOWQmV8-q3>8i1L{H-X^X- zt3gjuGsH1btR*TB+u2t@AAT_A=5O8s+Z-PHyV!f2GN~%^GH>yTo8>j zE?adwAt5mLAPaU&;a^#?(3TKy>2|DbJ(I22_;=|ox|m+hCLhd_Z>S$N=<`5~qOL9w7 z+-QH~6Y}M-3XMpl9NddObIcA#_kr^JzX$1AHR}sa|TXB-gEd zK0EJ*O6pK2-t_bvTESLzd^&Yk)uZqpQVW(1o(@WD_i(I(@j@y((s={hH|? z*JIhD$ofrDN@23}9G~ZFHz(S?V3!SGX;_VU8;;8il6XD%YUX9Q4KMt8D8qHh`rxtZ zrY*1`in`2%d>CSCQCS)}npGE6q!X+d^8KbKpP@*hSfD{pIx+0}AWtwc=V*x%UyN=# zDAW zCJ?MlAgT*Rdg>x(sM5O!jO^wz+MJe+Al58 zFa5V}QG=kR0I#K+^~nQnd}vdGn6nRhPPaf^zYjnGg04(9oi$mBtGayH1eE$lV`eEVfeukvrwkjHPTi3lCEs_ z68bz37h9S;v|!(KPrhv4*-{P)a{Lt;0qe&>{S~6;8gX^@t*!bj!kR;2M~O4^qs(+Q z!xkqQu+wzJ`C`lNWMy%d>!Dz**ehy|u%l~?9)_UP>21v9I*)!|GRPD_iI3~p84XiQVONPO%F_4j6w+z$yY^0rWzQYeP^YUOES)NW@->9Vw`O zHpr1|oTyg^#dx|%w32M)SkY`Gn3`cn2b^SX2muJFJ1Ho;-Oe&7KXRMEYdvJOL*#4N zoJnZ?UTrqeaoKiikwmX)l@(Y=-S~%jE&M41^!-Nlpt4u)ku|%D&NtLsKN9kDD%i~h z!n>i%qrTN}h3)=(^z%LP@1BCKSgwi+T*$lW{!-7Q(n2T)8pK$peK~#op||tV(FKi_ z*9JA8uI4Ge&p%j;z9&oMY)W38g}(pFpezc(S-FLrO(iu;uyLFlP4}_QGr_|C!eWA5T4B_R;Tny@Xz5$t`05$hC9iO`XmyQMAYqo2e3QD0 zyb$B7%_}7a1|8J`Sy-ssO8T=!X0#`cw#S!7#maLRQ*K1NH67(upwkv@qyhMIQF@@Y zURdkQ2f;U-A%~~cBZE`SOr#CJH}>luA&O~0wE+ZloFy-!IvUIKf>zk>Z)AE=Z~qs! zhwqL!85>8M>rP<}&*f_!%Ry=0Rst9A7vrh&ZwlIRxsQ)pV1!fekg|bB$Hov+Ku_;R zn;a74DBT57iC2A_MU|Ete(YS|?`^2qZA~dNAP+`I*d=N&6I7!ZO+I)$bnFCN&2$(a z;+>93$0C`I7uqcdw^*Io1uFj+CeKz^WX;J(nmz@prr;ee=y%|;46s~A8VdG90*;-?KY?5#U~I7U6rJwzIzLxWxcxct40IoZ`nH|aARNKXS@z|9y> zPudA0h(-VB9*Tskkm~tss@oUB>uimsp&%+EQo-_YlT2;0;m;Pklu$WP=+0GZNFe?6 z<8!P*(LEw{xw)xcHow)Hvw~C!0>GgHl4RsBSdz3U56er;L~BSPAwmLTFD7zutqsPU@ist6 z^CSoG@+j8VxJ++U+~010`SP+WNWl!9fY9eH*??>8=#cz$ZNK?>8IZ#U z4xqrmy?#a&1{X!?0Xbp>pAWr2*!T;qriB(2+0ur&YZu{*#;*w1 zJEz0QH#Xg?KF&o3M5nh?U8cK`@|yq+KFzB+k@E|0Y_{aEeF#b#wVhmJ?aG(&E6QNt z)Ju(-qP=h<9fz)lVrKSyfJP;XBWC2n6Ye@8vGZTV;v$)w(h#5E}Gpo&ybz1mKcqCv`dJQQjEnbDGtjtvu?>0xm*e=MKGt0Zc-Ejm;>NPlh zlDj``{oW8(*n;-#bP!K>xX;d3?9DwKWl9qk)9Y?;2TQjMk16e~XoCyFq2`n2QS)lw-sQ_2n6McNlO#ydg41cgLkDH;&YU37vdawLIxLKZs6f&o<9&(7<4AV_&J_FLsaf0V@Uuu;-F|=YuR%OhXF$ zT%MFLo@F(IYzAY=BRW{Tys4zfxS zU+>!c4=A#Ou&6OMFSJ2D?c$i`&)gu67Q)XKWQ8{wQxm0_twE3G)Qw^K7>7sTGeH%Um0ntnM=d?^^E(Jno`G;=h?Lw2t6^ zNfT!Wb0n7}6Ky&nvZmO`?J+(AYD7klB){(Xj;K43eiaq1_X;rm|7k-PRb z#lxG@BV(S-4}^k}djRjC;e*>$IMtejaaSR|$tigrQx}%WQ=Tc(%}rspI0?JN`8gXS zHDUIH?mU4V(2aLxQc{M=CB{hn1t>ut>Gl; zxg5BP(?l}tHR|uso|WtrT%u%1>sYSlxVZG?7|T%jR6=Z}A;}yrBF07GHN?r*i=vVy zvc?6$9n0~gN$?ATtmPr?o;7e90Gjnt+Dhok*h+#PK^T4|m$_Bhk(^h#oH2LWgF5|g zgbh_XU$-}lj%ss-;`mNgtLjjlupjr;ZNhKsZzNN5XkX?}?wCZpLe5e(1qqKS_F1F= zqMwVIhL5h9Oj;u9wM%!T7ERGlCiyovU=P zlI#zRI^YKdB(KH#uM^9)RMlTC*Yjah7J&+w+;Y0d@?GPcU!fFv2gA16GJ#I6^8Iaf z>)Wl`EA2QhJ%6h70XOb^`HY`H$uK?Gzh)Vd+!dd{mkLr1V3|wkam-T9$i5b!&G^+8 z>Ln~_eFTDqUIMg>!a2ee%XJCU|2nuuZzug?3IaoJH26rP=<5$s1FQg*Pb}K~%i8li ziMJC_43I9xfQ?QeQQ6dP4K&X!ki9nQ;dryS0@Tx#F7n5sJ1>|1>@D8!)r`#qQ%V@C z4q|;%@P&TxVi&d~9&B>iiZTYTi+pKbzp=)y-JKX#Az0{{>&8NE}|U& ze)91B&V7rJJ(z6nmhdPSQ02hgh818c0Iid8`myb6D~gxPTpEf+X^E{;nctLaYASy{ zvC#Yb<>U0)bcML{rX58=fUzc{QHM?W6r&)kVv+~V5MoLZOYn|Z=wXvV->Uz zrzr86bziaBxA~vb))$om3$i7V=fbn1E)Qy zAP;lbSTg|dLf97f*WC-IQKCpopXLa-kHyX)Y+65TG-z42wlB&g)2>b;3g~LWN%|vp z>GU4J08#fea%H`Vih?s3rxaGCU$$>$oOa*L6t}-Wq=*gLg4qp~tc>H3*lZ@^jg%1< z_LAu5z7{N2;(QmZ5G1fkF?)B?cU2pGbmC#aLJd)sM9RqWFSUk;s!S8Z3a-W#TaeK& z{dfWc8+vO&eLbZ1x{es&T_sx_Y|jD7yojV9nr~mjsw7g}x*C@8L!|}p_vEVGiC7ZErbBj!ybRc{|bJ)o1^Ry*su)a1W4Jd6SqhY93iR?&#&a zn0QwfJveL~M2ElK-Qv9jiyVC>ke<#VHR!B*PTi#dyW0n^C7!CDa-dsV!=^ro$G}1Q zwthBJCBbIXqd{!MvxA8tAhlG!%DI$(WwkE)tx$B2TT$h<#{2U;N0qjNhMCpzOJiMr zR}G&H@x8J3BgkQgW@IGp&&XnNmi^3d_AJ^@0!|-lU5LBJ%yma6z7k=mlmDXX(N@b~ zOf&>unWj95IAnM6iXw!C2@EU8&+%6qt_ z*L=HkS+=HsCX1JnTX2bZNjbYNpBMMUg5>^mwS}~oc8CnLt%6=g{mCf22_(FUS>R7m zjuhd$BsI_*6IY^pY^G$NYHA6TE@!R(;A5JJbN*bymlr=Uy=QJdp3NCJ*2R?j!C)0V z#Ws{maz7s$E-{kAd74aNrv9c2Jo?QoY9~)wlRYOv7GoGJO88mXpuE|-@<7^*8hW)( z+}N*65$e=5o&yo`c*a^rC{aE0A(^8)OCV#fGtw2?!LYX!9{hzU@S_|0-vJDa|K+s( z{{%3|O3P?yDF4s)`oC29f3sIk%gFq{2Fn>3=>LC;ue1I8ssD$;a?}3=4-9M!jsKHB zZ~@p`{BMZC{{#yDcf{adP@Txm&=Q85`#+%q1|mjwrvK7kXJn>l{0C|L2XXLU`|FG> zEF4V#6EgTe_t&GJ!IjZAJ|JKg@g<9f=C-%DX~}Yg5QN~j$zTG5iF6hgawOd(-Pk|^ zowx6@AGqAVcUxDwqnblKb~a|Uyb$3-I>@7fONuz;SCHWh_VrCL!NkkE4)h`G8lCDJ z8l4K~=gijy`TP8a%$Yg)G1auh>h=gB6zTYxpp?mNAObeZ*#m(iZHa&&G5v$o;)CSk zbMX7dXXtMEgv2lf{F^d5tI7C7(DTorAUX=?#W^@V+SfEU`SV9VZ>aru0)hL8iTXxA z)42Etfd3658$dw(Nf)s8N0>vUo#F?Q5rfqt8oJ~oJ`1rSLZT30Wkp0pRAquxQx(Is zQh+e^52GD|xP>``adv>z1o5SSlV@=P`p&_o#)0Rb99em?YcDNA9~ztjhw_KvZ^7WN zqh1<>w}y5G=0}7y|4j+Hlu#OB1-2%eE41pjSl3lX0(2b3;=`boi~ z28*dh5l&rMNqgoNY27=>Ur7VnlI-Yg4-`mTW8V8FvDpDcn{V=B_|e(;tS^RGH_O*I zfnja$IM!{-RSKWv!FYr!?`UmPt!W2Fj$bD^n{SB-Qh~EroZgC*=%FUe?K(VJM z8M|v}4&loy8!HP$ZH~gvr$tTlNSGN{nZbnw^0s(%M6S5tf8MFod+I#)szVK`R{K>lARruZw{ro{mbO80v`pB?rX2Ar~+bMu!^HIRCK^&21OnWe^>P%VPmnfP}Jh#=c(uh@h? zEgr33EfxhLpl@n;cnTJN!%}E|&S)i;> z)B}(@DsEz1psWMbz(gfaL3zgsIVeflV`zc#a$aIe%w|7izT~KP)Ii61cR_i&+FYdM zs1qeod3~#^+hh{HLKw0w|x#Dk3?@8oy(|o6TMrbN(nlWJKol5K<^ktDhu$r=L{z&xE5J zV&g{dz-;-z)E0iseCo#$U&cTb4-)7cZq_}&nd7}+#z2J1jLK;x9={LvP64$~Ka`qX z(Oe87rZ5W9=bs3g0=EZ3NI_haC$NHos&D_T-hwN_GNC)vqy2aI?YvjVPYmw)y*Hcd zvy=N#3wh8>J|gCCC4#NFkxh4wb)cVO$doS!Ualr0S3iDp_^TiPIadE~|2YDV&jg$% z5V-`8{2Ki;ncFae%+5np>_3f%eoJ%4*||$|`m%G71fO{h`zNnr@4E*3p$)Eqy5q5O zSEr#E1JFm$VyAwqGjHWOy$QH;Pqnar^@vZCZuxZ3UZwV-fHgCNzJ7^nD>hnVj5>J_>g8{Clcf-G9%A z+?_WjK=%^Pr<8-$b!d+lKf7^nX(JZ$qvMtHy>XgT55n6)tDX10 z^fE*Fu=K9PwsDQlH)DR`FYL%dO9>W{^4@&eSy!VNBj`bX&LWXXZN%kE^+dQ%5lhQ9 zb8)*Hn9Dk+jk$8vC41~VxS>(lxPcFXA-8ClUMvfzOdz5uri^B%$X!c1#YAP#D2h9Z zte5^b`mUhu!TVmBJ-@27BSof}U1Kw}H1sZ9e0$0+blAk3*clNS%)}ew5yjJ(8#CZ> zl#xD_hoO;Mf9+VBy4e#6w(6$ZfjI4Ryf!5X6ui*=w|_gjmZoBq$)P}b5Maj|F%+Wg zxDG1e)~hK&*Q|Zkq_yrtl7acE`vsLgwA9D}Wo`b_UhSZJL3n1+?)^}HUeW8TU$iaP z%3q}wJ+u)Nq%blMOwoz*q|I5ry76&aWEP-aQvsu6=k=Q^71T(es5>u~79Ov+c<3c+x*|RIfQ?eF6eWr_-pWkgyDH<++@#I+7h5;ojHn>ROtsbQD}W@itl-`kR21N%Kr zqKyk4IYa0H2Vnn3)Id2ZHJ5A74CohfX+;)`Z2)~r8BNctm!ID5#BYj9m%qa%ywFRX zPCjlShWB0}ni2mj)%kZ;0uv2A@M067Nl7s@BBwjHkO=!|nl+se2F&gm7j-9R3dXdHKCH|QsQarI#Z;p1O!+RDP zs*^!X^%T+kTm8&?vG$B_CwSr}*KQ4Of0LF*g*=qia?HF)$V6#6GM~(007VVYsF?e+ zF$Sxj?{0_w%!xH@_~P*kW-9a+4PRGpIczAe)_%F&xPeMg1B^Ovkw?!5E2&R$h|WwT z`?4ZY5idX?7;SLQ_5GH3_*S)00sK7LCAJw~T4qwNJDM-bm>Q=qF{l1HKl%9Wwg0f} zM9Xsbew0WIem@~6LGJAAu=Lwy;M^GRuSgH&c-+9W7s4pZ(`uu|*CuKV^DlL=o~#O5tqSAQnp7xn+sADUl20~k*9BN#yD{fWnY<%%l=gt1^y+&} z*-*zH;ilc$xfy9nw)`WbXH`i(MY&GMta#nKDLQa2HFt!+nD zw-UM|$)+RTQ`ZPnfWtVDT~Qddp$=YZpI>$QL^yce+DzQ_Gr`FVk?1zUajst-;G`D# z?oA_ht@36X6*!VC#V4^-l{(UKk*DX5o{2a2TuPK$zJN{lbN9X8@q)qU9yvwfuKU$# zM40C`*KTXE8>89CI90VZh2vFViZNmv*!ub}~-k6p+#bf*30;w)tw+k661>5q$LJs&3 zZ4{Ej7>fyDM>W?^N$#v=4>Qg`DWW=|Oj_~MVu1omiWxRqZRvaAkge*!g$^DjOgP2= zOqtce=j2vcJhPCfV^GDSkfD%6lPB+{_CJv`IV3ckyrZlkh0MT7y7>4~8`qi&r? z$aT!B5r`XVF?6%4xDtAR_8P0;wCZLGFpenM{DeQF>V46Zimd{evSxfA@R~t`|^hLI|fXCw%5pOB}Qo4I%~A{aJ6-mzv7< z!E4gC|AYz44-)?lr`>}gZs$#H2_!8YKYdw?O%8ynI;YM$9V4emDUWp0>YXkH?m z-4<%7nfC{sa*#!Q00?S>SRdHo9Bf1Rjs*9xnSi`?@wbCnYRitMhif6sCTX7hA4dtgp{vtQQgMG&nn&_S<06~VD{I<#?D#0PTp=p z(@1ACvZyvkt7x5I_;|fsMBqeJhp9}|?2?UZn;NF=k_>waQrrO7h$s!OJ9)nYtok3iI;NI`hSjj?u!}Dkc45loJk7^Ht?reDY(`(wlwTAt3HN z`$MSjkrXH=q6YP4&IT;kQO-UeG>_fm>s8I9ZbR!v(rJC zc8?G%wRU%4BOna>wP;+=piuMdcx4QT&y@xNRgUBG9Wv+`yBYC38F6l65c6;%|Lr`0 zx3{gwBpYz2g&Fc&onWPvM=By2ek-5;p=926HGPXP)XR|>g|+ix z=mExHXUj1x)ary!UveS?{Nnm#y@t)zO=16PIAOxHld|2FCZQhz3cn8Cq9n)6@Umk$ z9X+Z2AHw6`NC;A99SV}69%qcTUbKJS8E)!kT@JcljCk7F6IGx@Ga1US6|rb3S|MeT z$8deJJQI~(uv#aKsH#roW%@qv9xzHYeaWx;>TD^BXkzD4w0g?b?!00oms-CF;aN~P zbtf1x02`LbpV1pEs^Hq{nck`l@Z&y35=AQ28^uE}1$ZInD))~C0aCgbI(a)DY}bf9 zX8C$j$28EQx<|)Vx^3^%fF@)Ob(@Ur!N#x`3RFpA8>O}ToAU}w5rZd|A+b926IEj7 zJT^kq#SJ(Z?AH$S-W`+mX#Yiq-w`j5XXKbuoEJ@;ehb~M(COL|rl48=sC(!sjnH!n zXQ;#T6|M~sql$BqRw@!c$;MV{7_!kBp94gRHI}TiwGB zdVH$78rB;#`>{X63BvgPmj^_5?njyatMg8-Fe`ciX41A8R2_KsJbVt)!%Ubj5l@+- zVg>PuByo?#P5cJS@N>0X+~k|46ktWQnOq?nofQ-sijC2@y2)|Ur3=4dxqO8BEczh! z4PRN`%T{i0cIuwp$W|CMVjexc&^yB7YcrH3Jk#KV&3fL3sZMy;0|UWY{Z<@#QFq>O zR{k=9^W7=efNCBHvL`f;;(;^bOrYtF;u-EY*-RY z`IZ?zJizJ3HqtNg??}zQaLl;ptC%1)>>wLjhhVRtT%FMnTZ3Z9RcZ;N1+_%ed^^b8 zWpWKB&+|YP?%&|YP}G}Zu^{pQ$o@1o+~M7l~lc z=ytMJUAD!diF#CP{RDxON2x9O5RWqTGv^7PXnEj=ehw1eruUafU06#2fp02TwxA>h zkz<9?(6Z5=ze3F$r1h;)TJ&Qu)h_b{<{ktnCz7iS|B4kP8o%B{1L`Vkd=k32TYzOA z59!XbLY4kzVd^=8kYjD^ES2c3p5!!$KoeV`EE-_3<-*zuBB4=V4ZYlP_bP{t%{5NK zL&Y%f1I*b6MKGUyn^p_0xX0belZo*TKT)_l&oRJ&siYi+daprl;d)<#Pw==Fk3V?; z;?_)#Q&~ciN#!v|jhtd-eAsn_vPn)@IhRp}g%h9r<{;tUr^2)>FdC?JdPY&x{Sql+ z5s0cU1X%l%bM5q<))>Tj>Kzrk>$^!Zro%?k%(C-x3el`?a>5^alK2+-H&aZ zr4_a_mt|4xB1qYpxi$C~#W6pgSmh)?;d8=Ra<=xGD6|duS{x4ea2+*k``M8S7)H%v z!J=Ftx)I&{qy}Wz0|^X-1j4SSkvkY$#^QQ!CU?Et#Y*CwEFB;kUbX+KZRAS5xWs!8Ym5ndZ-sB zPD>HKjofk4YEA5mEt#HKT)8_OykYmGn|&59nFWCH2~TS!68BC7>46MM@#h-h)uD~j zA2L+2WuTuvv#nRf!C*;awDA<0Un4G1chSC@kHv~J?WQbU`9SgMPdLn}ncuo* zjUM*5cw2VE0gaIX0K%mHH159rw5TO_Q=$wDpkS`yiPfgX&nju>Enl z;X=)KyQ0g#|5VFfIV)muczYRF^wKKb=JZx;f&hz>_f&sftI!nVqR9B0&ivk>dHOOT zr6~R{3Be|E?3hQP7Br4kXOc&~zKyP%5xVxC z6$6%{HWkgCNZy&FN51!3U^TxpacbE&UrS5R zm@772qGObKv9+RQiuu+kTM=i(v`3EXqK-TyL$G7vsD)v$W$`LiRi4zp$1(deQ6Ex= zSYn73zw<9}>=K5Bs$LUsDn?`@O1;&8TKj3k`TakPC-1ap<)=a00_jxvP;hh0x* z{b=Tx`O%CL)`cM(mI>k(#C4qiEhmKY#Qerd&=kgAiDTNdiUAQgU%lmy)yu>FYaBNY z!(*gcLR&o8OdCmGrMzse#-5Ug_st@@LtaYuD&(#DoNh1ngp9B8;PQduRbme<)Hq#n z&8#R--KtVl<=j0T2EMXxNy`plBs1iI(Li4pw#&oxuH~}~f&IxqwWfERcIJ7eP>U4M zyn~;FNuf=<3qOBhO3e4KlDGA{NqTW%eq%&>dTO1&^45I=YhUJ5uRy zE1rwj(dbU>NwHRIr(^r8 z?Neg!FF<}m%jbHVsJ z$IeXV&e4O2n_SX^W3+F-In1U7^rd8{wp*v)JF7FH#FE*D>=78CI;@013yzPXJxW+A z$2`x`DI9K8246vYX?A#nwg`t=2|Xq$Aq!1|a2f$}Q&aDg070yG#XjPtNam_dKyo{| zF)~RI9)`Bfm7X%@W1t{sH6V)WoN8paFqe3($RcP3hmjW2yr~D9NCY+u2-l$3nX6JQ z{Fb-TO8@;EZD_Kv)-B$Q32frm8y1ImzX?!wY@YNd zyyNvHox+k!87OH|n&pyXzk#PMn4}35w>mp&$1ZCLKnOFx*CyFh2*=RS+IF`d~^l15Q1A21Y_sr(vxlwui z`Ecyd&zKyNlF}9=ZJsKiLH*eQB`hwk++{=y2n`nU6u_M~k1osB7cj^DDsn%bd4Z1i+x`RS zjwgDW>;>s}6M^+X#+SOgG+EycaG>$@Vbd9I}<;P0R0{+IoiNA3f z+PaiWYOtW^;UmP0?G-PAwt}cw%sLbUOuiY2h&LKYC0vuy2YkRRw}JW@`~{(}^^tB^ zKBtc(kUn5hN1VkE+dBZ4Q>5}@O=viKlcbk21CTj!3dV3N4=q@KKm9FEf2- z$jL#K7RR^aTvLto33#JTLQXB6%~rs(!oKS$DJ>ODw~!70zW_l%zP~u#(ILM`GWdnb z86Ze8*e;CWX%{1&?z%x#2*cB!n?KW&@b|1&R#dw6Vhm006CZ9&zA=14$Sf}SP=`J^ z`}roGrtYD56gb<*J6asCk5fzoN+AAqWh9e9K3*S1d>Ja(V6&&}E7J7(D~sRi$%f6mtm32ag3w2r_A_wnuuKV~_H#Zq{_gZ_!bdxo<^zG6$ixSDy@)45v}PF8oLtbzgzg z$O*%;=bt$7&sKLN`o-jqAd1TJe5k#}J!L-c#%<;~NHLsvp4shl1tp;nh(&MM*+eI; z6)cK6~wHPM*b^ju@_2);a7?zA5>wS zUktly>nR12;q_5Ab1uCdUE3l(eij#v++b{af3GrNqt0sN=L`<>-FuZ#{pr&h zn^(5B-A}H|6#efJM=GN9EtWK$C}XTuT${L6Zm_&0^LM;?UvInObIJq+u1gn^PXtRl zBoht@q8HwU4x^9zPk(fOMgjhM^e6-47d0Z}YF=mXg}(LvIs20Lt?_Viq5%Cz&C%q5 zFDxeSL{~8-ga(!#5|=h$;NprE9vY+y){wN;ekt-rcQz@6HPyV|yZGqQN8&-^j5Uva zQ(hF+p8URpe_5}tB}Lu$Ev&rRyWj^)4w8F*&jqk%0V9qJ&KF7(dfjm@uONBUm|-JY zMH$~no#qa;gF3pG)xl(~x>9mIwF4J>TT{DyGUe!NgMKm2vUanhRJt(wZ}O|kM=7iZ zq()3566SIPQQnruT}=?Q^2& z)K8rGfSTrxo78gzLMc=#I+Es-wVK(a6ML+WC9LBk`iUh zz;K$vD;V=(P+HNU58uw*?stglgNC~xeu6pr)=(^GXk8EQp_K2@mfy@WwP#K}wv3Q3 zc?I__4&cX(;OkuSz!ZH-S+ntr;o=t?TJ=JKAJmK4-<7$Vv4n}?*UyoTcvpGe`?$MN zBPGK}X6?d*JOWKi)##TD;HVU?vE;BaAhJJeD6AM*T>3u<>@VFhY6l7~(I4GB(qwO; z37ls5KieAgcQOndjcC7|p=o(w_VFyj$Pp59yG%2wYAhn4Gft?1{|+gmE4a=m8?uI> zLV~kIoO3!@7kg$Ah#P>e^^RKh;DctabgoZcUEd9ap%hLpQ!0r!VuW}fiEKvHESAYl zEUiQ0+E*R7Ki_dmj&GLHC*Lt^Yrq}Zk{S7kbm9ZqqTrWNgyBydMBT0>namMjvaznR zwQ7~&UQWwBSxPIqUHrrbq2dPNxBXd*9l+h~ah*F3>5PtWre%~Dsq16kk^3-iw%5P+ z)P1)!iOvb2X$p2T{*n~KA2sdk+$UiUlVvEgQ`DRm_bRc#{R?w*L!mFKfPyyoz;f$A z8S93Jcq$ADXqul=CAe)*9wo3hP$-iuZRhqa8WD9q08=s8cQ?jWBB8?g6=i@P`b8X* zq2y5*uaLYo5eHuXJ1xuNIxnQdbJwHhknQW`0sc^qSO@pE+nPa#a`+A#M5e<6$6HN3 z1m>AxZthA(kA;&9aL4C{9`_d7=6xi3MD>9EY zewQl8LZVo|V{zT8QLZ}31EhJkY)fNMh^*N3j7xYbI<8J*@0B)-(H& zfssjq?FESAFSt&pMAtzSw;K%gKVNZh&ExYae|rJgWy7v8w$6WR5O+2iTmJe7QpeD1 zRO^;ICi)JmoW2)3=~n|9Gya1j&A|v%Loa*6g-=qqnBs3s^*ixfu-Xk3*oS8LcxDny z(|P1kZE!_*0_@modkFVoaW$kHxwgc^$GLHWgR}8TWj17YR&?0g$TvAynn${F(%-)o^?6Qqgz>H0d#>I~5y>|@4!bDr8t&{q%KK*qh-j8e zZ*aV10XPP!zCtu}I|BF(?bMTksx>%axk|x2vg&y9&ns#aXOm6!=DH z*Lth_=1m{FUIN?KHF=6giz~z|*dy8Rn?KMn2NGiCH z+?K*}NOhu@>O(R`_Q@f3N!yIzDF3O5N7Hu<$E|7~vWk)TW@&*N8I`1U&3M=7t`7#X zA@>^|g}X4{uJL$2cNrTA;!|6Z#wx#FU5?8BqL%1!^>#}ro?0d`RBxFAvBv_iIC%AXbj~sIiq5o|Dwwd9x&o9vZ1bP96}W ze0{S>AmN;P0WxkGPAW?wZEG#PZBS*vyN>ctIcAK9g{->XaLd%!C@qrf@9S)lRpkUk zntr(+!g~xw`Iu%>K_Nn~3+k!TY%;XKK z;jfa#t~OB{OY^*DU{Y2q2`JK~gHh)KEEb3OzI{|OhVS;wY{SH?^R39dpSt#u+_GXG zV=Jy6tlaTpd;;RZxx95ef7Jr$%{2`Bj5Zt(L_*l;f@WodOa0QUhkUo0TC;2L6rsy) z3Ge1vS{zTolu`SK_h&UP9_t(`L!M<6qwljrO7+cA-XTA$%_NV&bNC1=#)(-p3ga3# z2R9V!uoSRW;?cUokKyb1GHC!e?~vdNCF+1;f@20Ed5q*4BaB4&#a5-cO`XeLl!M?$ z+<}jzRW)#wUe)mu&OqSeY_?&)_xE}-vEXomstQzd4^KPlZtW9ie3>h3rSws`bC40X zdue7MidFF*!+7!xf>~EN?-+_K)13j}dVg|&p`mT|qtM}4lJy0y^I>hUqA#%Sr2bil zbf6zX^Nw-YxaZBK3U0RsXl59Yh;ilJ%V61(g9_d5K!az}T41*pkFu&>Q=YickpA*R8@VgzOWrV;?=nuW z^B3J~%-j>L(9K?wj=;HUxhbMxR0w}v);M3a+ z?T?=hB?<74!i^>`+sE)cly*n*4bjj_LsU;5Lb1%t?bAi`u0I29-^#r_Qlyz}dBkzW zC1s3-G>M{Tl3!&A1B1Ec+Q`1h;LK#W2WlJ8kIxde8|Xxr*?c^DCVB=^VRcMgm?j_^ zn`1~BDVQvVy)1DA`@ruVdBgG~U;4%7_IBHpSyYnZ=ccZViKCmJ%$ab-5?COryO8>^ zglBeeY#DA%0_V3y#Hz8L`JTV4c!U1NpA;BOq%cdOpAQoAIF$ud8lAh1y8C}e^{M0E zBLbo(hvp9aY}wAlMibYG&%dP^kn@W{b50DyOWxRJwpvI?`h4>^FpHxumxjc0)Ozw7 zR>iC(;uClN@X>;}hRkRj8?d_kt8ILnIJz;ye(A^4R(u*NF5|IuZ~2jshQ^P3?RwOG zE(6G`Y+|JaN~Z+yYrLt{Nh8b5E~fkKCJmgjDYfM&Zr`=>#&im|Qbpo`2>y^)$%G@M zFR5aquZ4Hp8wUcSG=}-;s#dS%TV%w!@6dX3loaA_~SEX@V3wi|P? z#;c!G?^qG^gb$SL;#F^r3Do$ku~ma&WK9OMoNBj6a4v#f=e{=C$WC)VkF2F#YX1uso&zOx6P|ma>2`tfGz%;nhy(Qqn|{8m69wkmo#yK zsxmREj>*9*Ri8K=a@FytLq)h~zPGZBVtJ2Gna4N)z0k(Ln{eZgK_lIa~Xyh$k6q{Cm3 z*au%b%=84OWL6)bWvbT=-7%X<=YErhe+9>9(BmI*_6{M<8}35@ZOv>sifyk`Oje-nO2_MfDQP2zrc6g86qyR|$2d1V293 z25BnzOHB(gpDoODQ*1Ry-{`>mRPA*h(Qy`p>_+JnEizHE{(5islePNvdXXiKyJY-P z%R$fd?lX*f8}gfH(RVaA;>g9y)q*@GTILQc2#GY$Nv^`pWigX#d{Z}K#g3V2G9!Am zeHpDN z;R*ZYLug=&#dXV^kgdL+zuxN@wEmPvJ3SMlQ7#Z*w|fTgKrd37+P2&coso>vP#8D; z3OIL~Q}7hopyCb@LDg6G?<|oVKqv@nxk=aZHCRM_LBO^>JvvMIq5#kyQ~|?)x`kmK zHh*_Ir=EvpJLcwX|dR$)`A#3ytTR9^LTzM`b*V&Cid0%n<2yi#(tRt$2Wo zvUP8Q;~CPcAEA}@%Ax!{jv;|lLrF3ECxv0yj3Xzfj6zsR)TPsc5iiYb#VaF_19%6c zPTj_oW)g1Bhch!^@9BFHqy1vv%c07&6Oo*jV)m$a4&qv)U-^O2<&xQfUtT&8L>#F) zeDmD(rD04-J81_Ssx^>}o?=%O+O&IfD~d0zSB6QozC-UbTX7;|p4* zVnNB^gZ6L%a}%pIOH@dkgmf>5@X0VkN$htB{h1v$#G9bD-}toZ+vF5uycjQ22?&>Y zsnu7@*CohEFp2d!TLSM}b;H*v^ZWxxMlp+pU19=d9EQJU=P?g3 z5RZZ~m4!IlRj0;*uR5Jn6LTC*^K-*j?5mp@xzs*SwC|CLxIQ!c?dC)G$Y?(vh;h2WYFI!bmn4g^qC{D*6tB$D2saQvq^tiS z3jb|=Mq@(f$KDp_?tv`bByX^ay%1O4*jn_!U;yStXtu3T%iD9xY#38SHIj+K@zLT- zbw&$}6?RtSQiD5Yjl$~48&B|C#n78Tt>C)Laj9w*2Tk`er<#$H+PFDZNajzS ztJ-~Js%~%UxmDSQPj|;OdRz6hONF%a*w=O6@|dcWh=?hWvT!_h5yD%}={V7&C*!H9 zFJ~cz`uZIS$@CnDOA@nn(jx5dCpRZJm>UY;s~2nxQ^^Q;K&_`(S)z-`$j} zRP&2zf2pnI11a(dhrvuRSw^so@5cp^h9R?xXuB?+lh?D3{fC;4{>n<`0UA{p`7^4M zwCnCKf8cX9>>SB}3(6{=iL)olLVB^LO13C1iG>y^*$j?)y6L|GUU-Hy6o z_X$vf{qt1ov|MZrS!wNcQr3iz-B)1X;X~?OJCIN5bj{E(AH9mD+%Z z^|;UVUMYf*t;n|%CUqP1kJ}`u<)?bBCQ+$CDU~0q1f12=s|>mFVu9kP$_rfV42hLe7aDD{ zBYhk;$S>>&Se3lzRaiYG1pB6>oawEdyWY6OEY2Wk@98}YwUzDT*7twhwBC9{lw>8z zUwrX7l73_y1383Y0!2*hn@dGIB;mo2oYXvLjdepKF_-n6Me}9{WXKcK!d(_u*>(+v`sl<8r{KMQ_>e+1n+VAT085Kxg%5{9Lz6BH zLy%3zW)zQ&H*HrcqRSgLQ)brR)35C?vV|)G!5~#5sEgZXCbh_vxsg)YfkEF*l;9U_ zVQElR2RNc3;9}EX(~-lcf+Ga+6Hl+%>sA5M{sn|o=OQEF8`!0VU}o-@>0m6;lyH(U zk1L7h%w~P8~yf}9+ zcB$S=?E&6xf11uY{5*UR=yqY2a@nZLktR-wsJPvF3P*Ys0E z-R>YoB&H}0V~j}Z9{$$-LFX%TZG#p*NzIX=Bnj3C6SNz27|liDZB7D5=G=Ol!RAD{pp!`!qQwx`N#lsnlhEl|P_4eoi21tg zn?hFF!K&tJ-cyewD-iwZBH^`bX6MA1k}mAT_2-1 zI_jL}r3Ytuh;*_kFg?6<9TrwGqX(Ffb0+xwJ@Mb%fLa$%@NHstUxrf`jpztYcIRv) z6ErHWB+03fOvNmlp3|U!UMeWFq3T#ZoE&5r+}YI$V_a+VFI&(K#34+P)Fp(oAR$Uo zZAFZvUD}RAXsRxy3mdSLoYNZigz}D$^nX-waL|f{DiLX=Y}Tc8*7Z7lJM`Qy{s^0L zhU@B43dFHDRc+&kC4U9fy0-5irgY>RFsh=ENyzb}Q|0BUH7=TGdK_x7rHA*Td~|`S zosZQyMiWsPJeH|`N0u;Ja;}a4>tMI^d)=? z8Dz-fHfyf0$jg<=x*EC8d#01Wyc|e+W&3!pq zd~m7%@#nS6>tzdg@jinuM@V=_ejDE?LMKIsaj`p?^ORaD4_j3=a?Lm z6sLcjxAg67yV2YwY*iu*Ov1(ac=oNU{QTQ3qB(i2v0l86q+K1`_T_tsjuBN!I}X0$ ztJj&by9mr#8(^8x!1(HH-4>TESrj^fYuIdyAM(@!v^fbc5|5Z2u3QPFWColmINIfs zB5NiH)K~KBy{YDK$ju&q7U@ZgLK2$mw;NTxh<=*VF6Oluz7BN}#I#RN3OE6%DIZ{p5;UxI%PvSTqO zHHNC26pbRjaz*vDf4wc(_Yha2QX8Cgjs&|WhC%IxlHx8Zl6xJE{06h<+^iUlAa!-t z^GZJcy~c^Cc=`zPiu8ej;9c6WuaSNRB-!5?*?f91r|>7*X0q-%eBonIZxr`(i_20* zk#6Fc{%#cnsd|q^wrT#=+tpyJCIO1Qw@XnUu`y)3Z_}C%La{0h{89 zZ1c~M>hl8U;|v%YLOrT$ByMIPzF3+foF{lb72s8{xy)wTGAJ{Q9;0Xc!YTLkp~_Lw zbCf*bu%xW>nma1Ae#cJH|G{cW8e<W1<67Jh$o}!%=&*(rP?t!4Ke>u-8fWO*Y&vc0vY6#li)<2kS;atT+E^4_M^sOfo zRqh@|M=^V5IeHbYH=T!O=aGXhXdw+-azgmCx%15($v^|OEojW$5Fp;c=t4}G$dpfJ z6<*rV8U9?RQAVtKw|bTHmyr&YRT39y-T4Fh7h6LhzIf^g{WIj099k>OA$E3YiiMo=;ggNbIurr0QwVbJD3Oil>q`>N=sPr+!+Rw@0bXFg zih@UZ)pT{1TvZa*lttQ) z>bw0>#r{SsGEMl$ujw@g%C-~#V!vFK&OMpM^>`75Uj)H8JHF)!-nY?ywA%h_E`j$= z@^H23UntQKac$!uI!+Gx3mpZ?dh1#2LiB7Am@(DCT~bE~H7{p-%uDmRW$8mr19(J) zY>C$1RNnLsS|8d|*qG*t`Pl3?EnIE-Q4ML*iR>OBRlbFfK2i*}WMM~|{iVnBo?xbj zOI_LFTEt#Aq|=AfTGGJ4|9XP7!{laCVJ2vPzOA)%=?pWInixCm^JK7U~a zW0N0%ttlKxp3jG|`fXik|Lnq8-=ws&X?Grn&^5`#Wv>}L@Z#Qws$DGQW#3@28Fj6E zP2cz&ffAZkD#868wT~CAjPl^Z&k!+Tu-6dWDhWLWn#OZ7x5zPVJZfZYOq0}=sx&rn zqd8{|(`R9v$Y(opw&G!S&wWMXzsB6Z6-=0T@9iO#&7`MXYaWea8N1K>2*!q|&mk1d zv6$c1N+0n+Q(!+P6Lsa}@np-KyFcLYyV9?oK4_^@aXX1?zF$kk@yZM;VFxqk3D&Mf zZ@am;zjNgmvF)+sRyr*$45p9_Q&l^9->q0-xoFUl*kwBBQ9|5Wzv<7}t6fb0d9ng? zm6*SCY^UdDpexU4zu3G;bhXfrX5>o#lXRET81=*_WX_p!JzPfb;nse|*1)9MYeTC* zDfkZ`6xwUv=6KdIhhL@2Rq&gBXX%^PX>8Z|wA#UjNkq`|!v?hziKoYf&@Z!Hha;`y zz_M0;*jy&dnCxf&5*xqIbiI*#mI-UR9f@ejBGvw(oBmRpruIo zX_UM}cf~iq)yt-PXG&k5HqfrN)pL3f3;W!mvsj^uEoql&IO-~9HtkiUh{4@wnM{oK zkk{jsoybH|8J^8{bs9__(l+dMwR20N2iS2Rt!R4I>@mtbFYGYohDjsojS-Y zWlg)mP#m&f=chBg+^AB7nJsf>xP_#Q{JO83-%)qV=hfMXnzYS?Aa}I?PXGoY`P~Ql z_4+c9T7}8KvKfZ9@f9tI8yg$`6y%=&S2Sv_>ct5gvnoU)r(;g{>V|@n2VJoQ1W8?T`(~{TPVP?k$GR-W!$f3K71_yN?=6f$wG@HdCZ4bR;f?l;7 z;3i7>?_e8BNa$enfd0#Rgd_p}#dzlK1%xcS>p@;lS3(6K1X#HD<>T#DD!usR{dEIw z!&n^2co&?o2JWt}N(D&d%(E%0i6-wT#wr$txDofRd;$9lLgdqS!{LsdI;@wNs)7io zD+Jfy-*^QHny%P~dPF{y6dXDrS};aLr?6o^`60a*|88`Oc5=ecwRN6KOarv7&B}CS zv8U!V>eR7XH)k}3Gmp3oCd$;<^|`m;a((Fvhj-@}`5(e+A+ZtQV0SbKk;a$lyK_bQ zL@0S0Mzpl8DY=L6HPpWQqbJAT)g*qY{fYz9~pOM7}E zvSK@fwDSYZv>xs#c#2p-;Gx8TtlyJI&JU|D0uWtEy;I zsf}af$jd$JgSc07o6w-KTGNKW{G5Itw@BwlltqF&jKu~`aMyZwFC)lu2?mb_9Hba9 z(0=xQJEltz+zHDuY!ch>3dA16-K6{%|Agurp%!cMqOS6~wt|54RtFs0XNFc*kueAV z2Nk*X*l``95jzhlobU_zP!hV}tplW}ehz}Uyvi4LTCItX!?hZrmct{>pNspOChtF@ zk_{@n&4T_zv&MK5{*gf4fwsNYD32Zd(%GTf6Dnal;t2L49q%IsGC59o zrLdm>L-|HBZ|wn_qv&>wYXlUe6Bg&`#VBnK*hs{$vBCGFxbJ4UoP z?yE#q6no|mUw${f5KzRTdl=ZxAj1mXkm`Qy{SIO3=}=WLX{E# zUTJRdUFn7ehYt}s%NsqVIJJABI@-FB4Q5ji^=Q+-XHfilhVUD&xy$o8;5R3U?gtlf z$O0YBsyX>2PnkSp9y+?T;-^z+E6?}BsQ}9>>0xQ`T}z<<=qL@&Ga0^oZkYV~tU8r& z-}^ovsG3rkmX+i;@%zp|^_WR{mpPJ=O66AtqfecfpADzyV@YB>JaDwfwo0>Hoq>%g zWjU>>A;JnK@?v6qw7Mh{B)i@H{YM-aP4Tt5>+1r_8k_2;{w4lodmb(p8W{cvSU=!B zwcBL*_6MPW-Ze4QZ#S)x)2kYHIt*uSzAua*E4oaNHL>}L`_ltknK=JjJVIq*ieWyX zw|7ztet30tda18bQ`toHCh7m+Iz|tu=*Dh9K`i=ZHW!K zV^Y@#NM<|dU=Zak8m3nkWzyhVgCG$_vj#=!a1-+6w$w+r5K&VDJZiu%xAKX(-D!Qf z*Yw{rdzt$S5anXY{U3j&{xa?Fu_5#*oC$fo1cIKBC_LpQI#aD6+%62^z=&wW`H~r_ zeWrtybk-44EP8^f;VSz3qybjSz@;C5ix>L>D6EeZk3*`R?=?0$!h3PpO|?xm2pMHpDsg~fRrwCEZ! z6NI>de+*->&U{i`KOtAn)EM9Tb)`bhbb}DupaYDeLCviJCAUb#E1sR1Y;vg=>GmE$ zlTuHWHiuk4k!L=$DgS)c0@9aS(QP*LwTnR@kT*v9ErMvdU z#bJ|9{SCRtr3V8MO@vjtQFiHiRblCXjbU|6s$=EuBn|lYw?pF1Fm3(n^4t3`2F-?vn&feg?{ z(CRt9z0YBmoymPCo-h4caZw9E>h*3%Jjrs1M@i?Vmc8)>W~gbE zZ9H9c3IHL$&^5U#`l^sl;pCIRb{kAC99E!Mh0_v^H;+SdLFcr4JjP=X6Rj>7ZDjbR z?jGvSeI$SYu|{6-cf98J9{6IawmToCm#!JY!^U8H8(B^j0qvS?UuAyKUqaL4aWF!F z92dQLlz$xQuvaD}_LaZUR#cL0VaSv=YBL{%T?@+TOU5ZGMJiMqoKV2yTC{BKuC)%0 z(j6f^YatYNUe>?^l=f1>WZ0)z>r=vRhHC@}f^$)f7DZbKdc=s&y7!X^chBIEbAH+O z$)E(geq|a^`t+3Lj$9P2$)zV?6(2^9;D8@6~qNygz_;9v~qH$~t}$ z@3UT4D?Qo;$9WH%!k**`QL=om(z|t4?vNy)+UQW#eitkDqbZ8wFNZD zbZp7KILs0wsC6 zegu&rIZeGIBP&lEn*f3D@@1i)0g_!BMF!a!y5CLpe|dGOeJGWoy8bM`p-VUzz7b$F zQKxK6R7-ZLGQ~X~062%*smS=+>dP>Wf;L(#^EV%>ocM6qy4p!QV7bO z&oro1NCA%0t>hydaeo9a*=Pw&cRN75=r>z0LJt7YvFFyZic(t(dQ&0H+!&BymBzuZ zur|5}sTu*hBcXE%uiT=tp#@c84GCCmuT_I-71qt)X=IY%r zeo*T2t=J~8O8yjySx4)%d2s;RbR2q3ry#?&0Dh`UHWV-Emt{|#w3GBVhw%gu{rO%= ziy^!zZM_Di|`j!*r(% zBYFb*Q3{{dXDZpT6U;*(lfaSX^2Ztw&wc|hq5E23J}vvL^|{zr=8(4o{4#u}djPV) zyasDoMA>E`+YU=`R-fBfpN(hC--^GC<60BL;PJ01tpDpiu2AbV+`3&53 zx<<;GB_4>>`u9;Izq!RvBvaoIf`SRor}YiW*cR0RrVOos*d_%hJ-tBtQsMWH=zNc) zorarzV7uDh75oV?VYqVV3{Y@;#$~lpSMeDz$aQKi|L>ss^tI#qtlC)=@b@qv&*My! zn?D~gfvku~**lB?m^CsdZPowFPDD|I5gTb;y1^tX1^YBW5V868oND;fZg# zVhKQ4QNX?{b%}TWb>eH|;gn)XUsBqs^Ha@poQI*R4xt!Ee0(}-e@MRXX( zRG4jEJ&&3|K8sjQ#R*a{Bfd<)a7G>DJHrO)+KT}gDE@f{{U=*OG@Kwns57K&MBVft zbIH@Mo!f--C;)qrfeKT~GZsH_$W(@>sZ*4Bidy@6=^i?|Cn&p@$d8}jpv+dyM{tGt z<16rM=+1z4yIXNO? z?PY%<`p)RW!Jb+MSBy7esq^s02O<|8DWUMAr1^?L*-7935(sV9eV>}CrZrPWx2J7s z8y%=$q2h^8gNLKe)7p1?l7$_N5oxTWt+It_hCH57(Fmvl>AD>WPMwXMdyf2GwYp8Z zPS07e9C{x<5fyN6@%LM|hKS9`s#|Iu2dwOGJx1`+))NDEr#W5xi=-)D@&}4dm~Ga( z#nEN0vx)N6d_`myu}VXOEL>BIiQmo$mC7)>QB{d#a&&5Yk@!W}#_2N2@5j!j2VdlB zq4N7BLmk$60R%1c3D+a4|st(Z7Yuz4N1ec^PTNNyezxncUb0+l#+&9~vtL z2YvS%x#3^ykI9tAm_(8{x< z!C*NLDFL&i-L}3Ccew(rA(lC*tkfMeA~_Y`(96Gea%!TvO9xfX-7Rta$z2z*4itHT zSS$PQ)o~ptsn@~aWdno$v00hX{t(%Bz0IJY5CL_mfg8CC-qd*J`}cVtrkuSJaP3cI zD194sN8?@7Ph9LXAK81eF+3_iljsJ{FiF6g=g+nRJnx086u7?u4wDC!s`kP(SfUK{ zdG)zrXS99rdNcM3Xm0Lhx-q%(Y(OfcARES~Xa62<0tdHMsPDYS00M{Ya#c)Q zBrI9vMqB&46#5oSX_(`Z@mtPrL2Xov7@datXt=mC#a+(^V7h5IxWnEE9uu6zV_z*g zMu&Wzh*&^?6$q&hE~en}>LaVSKTM7_X`g!rs9c|pfzqdyU6_a($8A?^Fx`;}k?Cv)Tg5yTcPyrgsdv3jyv%bNL|Ln#y7 zg;KJ}Hr%9Rz!zM9$D&+*Vm}oh^#6bNW=8@mJ?gbBQWxbW5WJ(ZY9FvHPT;HRjUP2;WGli zOy?}^AS7o$SFpuY%bI=#-pIka`@a0hx4Ae$t!(sjWDkR(iVCujTbRpHGk{pN(u6k) z1JH3CC&Gt}zjNaRJBy8t`|VIVh+oX0X<;%tklx&vezPoF=F4DWArBNhUvI5GNhSYZ=) z=^z}_izF#RC_jWsI?vc0k8BuuNi z*;H!{W!CzK%E3;M1j>cHda1gD`RiL1E1Q0~57RXWnyhfy>DK+{X`NM7Z;2f#DC-m`mYlsQ~rF89bcqd7tFG4W zx{IK5N!*xK?kcK&uzAVJq_6+cq`6lbZg9MJzk>QEqR5yku2IkqxRYEV?f-yPr57YP zWABq4C~tWH^4t0(FY}opV*U5fY;^$*@H&Tm9TRN<+x2Nh*FOF<3-@6L`eMJa688)M z6(pqK%#q>N6v_Mny*M{W1cz^60LT#%FatGTrb`glRAgCNInvK}@6N83M5Fvl{4uc9 zx}iS?swBQr%sa)jPg&EMv=i=UnN{1g394=+JWH?OBNT_HF+Nx{(xz5o#Wj9se$I!{ zi2iZthV_A>X0u8ao+7|r-sWJ9z1vrWJonQG={efm;!jdF^Fz0YLln<&j zK5DwD{66q9hs?HYDMw4oR8genLRmOs?*|C7MYX~Hk_cG=T;L1A-ShVQRq`pvp-Kgi zG7FDL^^#&w*xf+2Yi6`+Ji$WQ6=rq0vH{!Mq@#GY+y~9T|0@Bc{{SbJ@NZZH$q+@n zg}qJ8nJ%S@L#}{(l3RB_nr{_nOinF861Yk9<5$J=F?K^&k^?%qB#I$xxT453)6_n^ zcQ^{M6Ben2kA7<8pJQ4znQpLhxxVB_=q&akd6a3Sx%X`2N7UN`o@@@gXBl5TsA>kL zKjZ6rk!UuM@y3G1sG3qLmVOa_-drOv{)Ot)-wB5wjzP2NSv!Z6K%7V7Bm;(HAV{}! zcLh3{giDQ)w6L+#X8?N_jjNAgXQWN*MBI+CY<`y-^nL+ajV{E?bo?2^BDYTo`L@E( zU)=EIAf%{S>_>-3Q-^}RBAp$=LQ(nGpDPQa=jSCoTSNH%)Jmg4cFKeuyvVZNW;A|0 zFfY;HHYZFt7xn4~Y-+t{yIJz8@aB{pT$>%5`k#0D>6}X`Afju<3Qp}O!cTlZ86Ho( zs)cg}^4B|cy=mgcpBU%PSi%gIX5A_B}WIsHQv1u7Hc{P8Id_JegMINhNWW55n0B zE#i>)UmC8@57l&UlLO zEOG-L1G8T9<~k9bP-2D@XRLd?v!PB}QmTG5{}AU#5icfsjo$46jc8 zq&_Pl`ZIHUX}RY5u99tniDb{M_kQp}x~+S(QG6sVe+~!%pQou=$Z;E4XQmi{JAdX~ zH`xQAT0mGt3om43YDcZot&&zDMQ`y75vM8xXt>0OIw!lD!z^#tpp;RYBZ@X|g}RAe+B=SN zxUg<4X`N~!741u%(DQVV*=(k^q=aeXJd%H_H7Ez7mKHVI#>_-#@ms5KBU#zH_zehB zIPju{%|a!r-q0Ji8PDQQLEu{;GnBQ&Jj>+~K5DN%cHhrV1S8$Eh8ueD#4s0lX;iaN zX=Fr)w}z$){$C(dC8e;7!8!J1swkLThUp`zLI`E@F0Y4!-aDYqDaZ_|)T5bJCd=`v z_vv)*o?AqJvDLg9rTA80A}Xj=|AX$mdzOo&E}y|Eaw>CMSC^GBh^%IXF#1A6mLXi8@Y|p|9CxBg9X!k3u%d*(6mb_461t zVz$hc-qn-ngpfYH_^jYU{Xf2XSN~;+Szc4!NiXa2p1tlsjT8oY4B(9~fcsDz?CM_G zNFR}wE%IBe-2;#$U*9kIwrx(^sJ5qVPTRI^+qR8q+jdWD+O}-*-WI+Cd8+Z4Z7;d4=`9|Ni+k8AFcnJ*2x+8_Z{TFZ-_iH-BpYs z9YU5H=*6O2Knsns450%)3Hh>mViO5z(QNP1H8Hcu2kW<@dhfY%>Z^#OoQ9pBYsN>X z6BXJ}H!sCC2Qg&66pJ0@M$@&f8hW-^1!L1kFaD zoO_LE{#MmN*H#@38dX5HQ;<(WK1!YQ?m=@Jf3Y2?gy^*VEBZqkZjKg9@fw8 zKI>5JdM8jo38i&4E>=q>b7iGW*b8XQ^2>dnyR4@H^as0(n$d`F+z#RGtx$6duJDRtV%9De zBq!^wP6z}vlZUQJ@ z13caQ-UMf=`oJb_=^b27`?w?M58ax-(k+@}khi7=y5RI!IkY!d_Bod5`sU9{H6f_eN^H!9kO`X3~*OFC7<^xW)Z`3eze#8~%nmLbno-0DXWunj2yP1qxFx^2h z?LxRJ?d#Td>Z9Kg_HGAhEGhgw5SYt5Hts#@Dx%xt0#W+b!MSYoepn;1fqDyr-c@NK9+{MNSaQdlu#HZqe^SpmA0SunjqOS$#|ErNF52Z^NE_qsfvC(cK~x3pQNiLsUt zcxm0v5yMl0CB%|WHu&LESRK;nexf$E=M4RZZOwMom^Z^wV%gNVhQrl)Odk`muvC+?U|mlIN6C1Ye=2)#Zy*shhl(!C#&3s$(V zZZ2*nD~;9I#O2EVjhSU< zBy;DDY%t~gs>`JhiiQ(9Q#JPZ!6tX=E!k5w3k`}V8-}>Lhtg!r-#F76~%!-JB zr1*EeDj^vKMuz`BW`%{}f5faXFmV2ViCOu6c||8tRnq5v^~I6wj*36KIv17rZQ06D-ffIL6}pa@VjH?`IWC;^lKDgaf0IzR)U570Ms zb}|MS01O=T4K0nGtc*>Z{?m3aH#Ktt7y=A!t!!<+_txKojQ~dG#tz1g=8gbkfbqYc zU~FTg?`Q@vws+RI0vNj)TIpN=j|U@LR~vu{z~rCJ9PqEr#TZ~>1u(I7b^w?H%m8NY zc4o#l0CRu^z!G2uum;!wY|L$p0k#0!@4X$sPT#@U=3jIASL@$1vNLutw>1LTSvflb z>;d-9#*R+r-xK^#<6rM;?`-R2Y-C{dud)B>{CoJndjI$Fe;;%JI077vt^u8zho z-?MTwcLO+D{c~4`Y{HUhw)!JsZ5mmQ`zk3M}DJe$frs%)Rr_HY|ALIg#!Mb_8* z&`9_65cTy#IQ;lOzZjkDFo491^v|WMBv~1=*yLvmd?4%nX&8{a6t!*p{I$&uYUNGW)QR=j-ihIYvAwT;?T~* z*5D+Vm8HR}#kJ`HIS{tJvfr3xpl{2O!6BSWP-|_wpY@kn{6#E7O)0IlE&Yj}DP(;_znQ#^#%?9&j^z%X1;LqpBF2jAv~kjkwOKZK5jjEgzE< z5?C)h7>N5z8xSD{(CENK#6|2iPEJf7U-G$cm@fDAgNu_Lm|7)$y(IV`@UBn)f~^N#=Ku0vuTiJN)5`uT z_Knti0F1)xfqubuA2z>Wddb+l0Y(w^8r~r5drX?YFuf+vuK~{)t2ep*?m9CxLinG` z)NhtlU*%CBO=zjUeX59~e9@hU0j*!$@0N6zU;Hsk-wPX!Jge4V_uo@re502q7FJ#! z65br4b&tOIo~Loq!ES-li2wkOH0ThurBJ8M#R$}nhI3h{>DhCOQs!DW0Jm$~W+71t z!@LosHHU6wX_VKH+FD9U4~iy{?=7#Dr7)bWoWh0MwL6RCuguL0ew~bd+$>sNG+Qh} z5n}xrq_sPDhuayLMt|$TOZmJpSBC>3MXJGW=d08QGb~D7d|1t8<&BCR_t0B4-T{<^;rIXoGE^C=!+GLWF)dw7z?-;l5C3lFp^oBObBf*`2%SMqSC;VqlwV&@y3OHY#U z2&sUe`5+IlqFPlo!@0&yl(*k7&ykzPWVlm?=67z|dzvm|=gn{TIvtW0EmM$3A&o4F zAooFFR<#_r1cmIY2PhZ3@}$Ie2U*orR&JxYcg^YT3^Wu0x=GgVxUCDno?Sh!?r=IE zkx%T;oUsNLD(w_;Mlar42PE?EaLi_iBV6c0e;8gb@xi5g6MV$X&Hsrtp_N%(M86(j z>e&2wz1;yZG@3C|`@WtYup}L{*2h*zH+531p7LD?Z?iSB4L_gA2}VXyG49&O+EX$I z4F>f_tTO~pVaf87&A_byt32s^;+<`Z96gDMB=B`Z2rZ;C<0A&xb$>0)Uw4h;AmaeA z%c}h1wURa@?hs~Q=Ss)0qq$e@R6xw(=vfi-9ghkwC+v&#YJ?XoltdU~M?#6!E?-N1xagGQv(jWgLK zoba|g4eG-@sfWNRamOoJtU%zIJGsZldm{)EbqRo$|IV%d`5>xPO;}~O7R=yA3~-jR zjNuzw23=^f$oJk00h8>hOwH6v1Fd?+?E3f!K1Vv_T#p_3{#qHZ6QXN_{Ll+j2$jo= zy9$s9dod2I1S$9+j|CiJ1#v8tLT`p-JSp{3-V4xe_fR+*yt^$33E{QV?aPkjT%ow> zmysT*%;RN8#!phOZI#(iVZJ|h3uK=PZ za&f0NF4RuF8p8h=U}8_HZt`9maVyDOtdK?us$EMh8Vr~VZE<&@Mu+?1^t5K*h{v-z z9D@O?avcB6o*0W2#;DgyG0v4X=S)D6y%VaQSdv?aP ztPA@X(!A4BS44Tv{N}s%!1prbBdpn+$n-Gc3#GS{+86iclzn$(7@236lcIY45~?w0 zKM~Wys&rTB9`eZ^Tyeaj-HA?ge96XlqumuRVjT@W>()61n1Ne>`deVCX_ z6~Cu40rX?KRn1JEnFr-JPIJ!2@heqkXCThnh0c+Og6|L$SXT^hB;!WHt=5O|+@72g zKvH+o1^zj5;1&N+W6Rj>-6|x0jW9eKm2TvHl`YM_D0|ouYS7se36Yc1u2F)8 z=p!^=pJ&b>lAZ1j7kO@T`GNUnV~*h*0xL*f6dqZmnSn3IY;-SoOUiENCZzJT4 zA%Mx=0&eh|8HsVT~0w z8YYc{cwKFfIk!xlugb1A_26S$Q7BeCM)U%ONw4SdD**MytpXf<`1+pxFs4MJXy`^` zd<%&PVmA~LuGFyz`6p}IwlJ?xfq=IJ=H7uIvZsIl$B;;_`0N-p+y^d$tW6fTp~#UM zXT#)v{4QJd9lg_dvX zFU-$z(R1kyGg_Bat=YxDNct15#py%gx|QA@p!fALq$*1{S`lemyQl}%SO-}~Ap<@6 z0a87QG)4nU{%Ry?3RB#qBPmMr{mCWG#A1K@HndrB{c39~R)RW4X@z!~r&=-a@IfNA zv5f`0&#=Npkt&N~xQgWjG{Ix>J z1=rF$2yG#$Fc~6 zw&SQeS)|Sg2`@7Laz}tYFN!#L?7qs~OUsi@1WU@zTpo_H9SrcDI-DH7+!fr3v1=M; zQ=ud*3>MGx!NV=7{>z$PlRO}TB6r;awmViqj;aGy1xsA?v-JfE|Bi5KjQ%Q2z#z-1 zzd)o}bQka7roznPWXy?vLqYV(&3gs+CEuE6&~md%36ekYE=jLjLWWiRbV%<{=T>Ed zOe@Q7Uss+K8Bf-(7IU-yJim2G&8Jn|TIke3Rr6rMmJ~qSnY5a}?}Qi#(Ettb-lW13 z0#oy(#Y=lJTgHNKy=2Cw>@)nQ-Gd?k=abdokw;Uwi6W~xn!|at(BsLja&nv(zlwr* zLbSeev0oz7nDc-tZG>tTIG%AMKKx;Ic2xzil|BI@h{sO!hpJZ|M4eajv4|{XEYA+J z-G!J>fV=u4PG9-kI+H(llBH20H1@E|RAM-vjVvl>=qZTfu2=W{*v_9U<^AIkhADV6 z_$qP`=EJNGYbl53Wv)G5UY8gE;*2g^E2rs?J=MaUdZf%AM{2z6>O@)^L{?4$=U&;#x5bj=ldJD06m7CQ;Bo@SFMcR-szZ2} z>ytQszED9KZaH*{29uu@LgvlBtIC~X#=djjP&5qq-_Jab1@wz)-(B4kMS--nATS;d zBL@fXMm$lM5Y6b*J`O?eK(ZpW3WJuHB#a7ZO0CAL|5DdLfAuM+YTn&dc4q=ro&x*aV)ViZ}g0}Iwz1=RLPj}k6uWuG4Bhf@%j}Xx0tAC8xF|pYXO3| z<&ze!Gdd&PRl}(_Mct)z;))1APEIjlNL=`jta{oUyIjW#IW2bC9A~4J+kod390gUA z_Nm*yZ`J)QVP6OSbs^r+ezc*^0?mBkwfzT}(ftClps)P7Df_qJ;}c2~dZL;V4EMud znNnT)oVO_r3H+NI|JFSqyfWzQU*NP8L9U%1SH+Yv5eoElkNYd*;=)IjMBYv$ULaQY zGq-K^;O;bGP`?Ugc;tobf_6@9g9FlGPWiZXL2Vj-I;2*D_CSlVye>IiKb?C#jJYcI zCL^$M8wMC9dpITG4Us6eA+cz~NrTg&=8YMsZNk1sb?XmQY5o4;ILM|h=^aR4`*Y~h zo;}Hnx6?4oFYkfuAWB68haB*$aRn|A$a)6@QrUsknldo8C1=RZEFGu1L~_O&^ak?; zz>^#DOC$C37<%5~2Y!T)6t(BwnB51d>qK@OzvnB`-N7ZJ-d3UPlZH#%6*x(dH_C?3q(fJB z^T1Wh%Jp#Jewl3Kl`;j!BjeKgF93M%UbyCA}o%w6t>*DGJnYp#O^Rl*K3!k z@VE_a11`5=n&hCo#8xY4#{x=8Ki#F$2(}V5pVij>8hS&O{TA|0h(#JEDKK? zr1ZLwJ_m-#;l#l&U~)rZZ${8fBKb2@1$Rj^(hayAM}Oh?z?yT_;e`_<6@09mp+xR=^+~u;y{l9=g%`rykdAkInvcoGej*RPtJ2O z%F4rwdM>#sMR&YC$qWuyoLD!vw!skpJAbLB+fOXd-B(fHTP@Fq^EcyniK_njt1j|3a}VvfkWyn`3OXQ zva`wuVr#8rmzWF}-j?O%URhv!&>U8^iHpxO%w)0JDQpk}_PL*T1F*J~Y5;7oDkY!Fb~SPGc2J(A13$_ ziYR84Fp;D;A=vrT2B@?*xzgF|89p#qM)GjEo;dq?M6SYuIDzy6HzK6_2}1wyicCxM zWMeKA(hT^n9wzFT!g1r2k)I&TTOw8M>Y#5zrBv<8!(jEbrfYH`SKg6OrqZr8P;0(z?bu#oz8cIW z1@Jfg>r6!l(n8Ew!$XMDsqi8;QYOa5LC;nz(@bN}2ny)Q-L?I%Ly=D1O7CsxiO(gtT zELCIccw zHA_7*%P+LKdLgCq(|{;Bydz?msIG#p+>`ox5}scqa(3xVsPR2Jupbx!wB)xm#`I4y z*2{m!;}3mZ$4*dr?Sb=`Vm`0}2YMa>CaP(aUlUjjYHN2dT|S~xzEQA+=?BTn3Ax$P z!J6r$TTe4Y=W(?ywlA!B4}-gKjDaH%`h3Crf$sR4)EpU#0ZLn{EZ2*e+&=DW0jBhi zi2{>(PeYPUB3tzH@=2$og_Q84a7Wz~r`rp5ISciVqMxA^2|;*V8^}%r=Cq%FDK4Bg zEWrrVc$A8zdjXSMO9zXNJQR0nJ`1V2KW|%MpN&V1Ie!)q>!Mq(be(|kALfyB)B{r~N~Y;^V=m!!%eX4hAcaslBCL}&YO z=O2Z;4w`z;9b~weDnSRump(r_&AZmF3PJur9b0{V)KWO;`&i4h4f5KiW3(25cX>ZD zrusO{_66a~HChaPmKBAb50I}HLEO+sQ*2P4g^fW2eruEaeo#eV-Uo4>ksr&Hdkw-d zskrOmjN$(KeR2NSb3XjrPEMZUBs_-K$J&Yy)x?aoRm|rldN%{l*USL}gfFKe=fT3mn(XPB9ZeM9Xra*0+fU6H)otuyD5wgbtP>%j7 z!r0BT$6}WfbX8rjMAE=BpE0S2H1J%_9QF!a)%zU5ZS|DaMkRO=40+`(9r00lLqluu zwX5YZkh+=Qjs8bQ4p{`uRzNxCGc`Cu>f>& z%%1P%IzX5^*_zM`=Y3(8hAH}VmQjU#DPVHy#@fd{E@Rz6Ga~gjV^4B>$S?sKabxQB z=0?mPc1>NnSL9zGCbnQD;NZ>t=$80r#E=^0HkV67fs<8I7Wv8IjwSYHf;kcsrpX!} ze3m%Lr?rba$jDCn+D@`l2Y zLlZOWBe$8}zXXbtic7V`@So*m6mh3wWP2yY6GjfY7szG^>Q=5S$H+e`(3MdMb zXzBSRZ6WTBroSZ`;qrb`4DviAp<(~%sPbG_Mdh|P>u9?wL91Cvf;#G%Iv%|SQU&4NP|nw)_{4!UesF5q?AR2u`L0ixWLm;rt- za;Cslgv{$Wm+d*hu)Is2U%sqSXSX%Va`p)~%?x?T9QSFX+Ym!tgBqe~2H9SBR(-qj zF#yfc^->%iRJPR&l3JhOXhbc>1(lKZM=ra1Kz7lgLZn_K^?te=w^$FCq-`M{?3@Qf z!;BcFN^+!^o16laDk4kUJ?_?b-5eciG?b#0s&RJD)`yc~0qYKxNF}!CsO2!i1SF2b z#*fU=#(Nlop=b`5R|@}iv3C$b;7N1W$SxpLv)=?>f1*6q%(NrJZS+Z6PIz$}r*KP_ zYU!$ROk(ILws5NQ!XsyMq#|3^ObVH+e6Fw2u$q``iGga?QB|jof|wByCQ*dWZ!NEaAf_d-$p`3TP5?ONHG zhQ@n`-u_1E)k^50hs`RfcEeO%qlv~qj=@B=_URl+JGQ!y>1q7ip-vm|TrIdFV69>1 zs$0-DKzjwFX7viF&wwxTVv)36G1CU0gS%=pCTllsj`uydWx}$Ru`@NY#hAVf9a28X4A{nts~zEPV1Z;Q^5z_{AdZsf?gQ z%~Ma-AHg5ZHH2NroWw%StZ>gwt9-`A3CFL5jvkh`WNoP)Z?LHz^?G7-UKazUbj!G7 zYucxg-hNb7qVM_oG7kEi1(NPyLv(o9uN%-NtOfc>n9L8ZN_~wK0YC*vE~f)7B|npv zaNT`o1rIcNlGpbsl)L|ammD|tdTraFKaylnZbZ=KTuGuC6Nk64LdAw=+Jexw*A4@o z1e3(0u8en$;>-4gSd;dp7af*+()SdcVoPEr zZp0yNN^layMt0q7H^2dEJGGiYYy!7QmfiZ!uaWqppg3b^D?eRdgMS1&T<_#q51#wC97Fr6uKRVcWwQn-lpdMHDpGs^_Q;<@^4 z0Hz1`unH|>vc9>DwU65A)KYhJ0ocW~By6Qc5yDgIS*Dxcwp1|=v+i1C2lU|94~zwx5^dmOq6>(domdLuFC}&Xt>G` zsSUlSWX&k18p5FC0%eQ#P)^!@%35NdYT0kzwuJaa63vF06$7wJA)}G%sgEkof3x-j z&tT5ID~q{SMR(GxKDP21BDvt69Th;z?M4XfK+iOun(F1yMKT}zx}=)z#v$U#Blj7i z{-yDr#tmyy>s?_H_X~9ocZ$vLq4YpA*(^j1z#F${*ti<0$pY|@>>i|Nx=RYtwqqUE zqzyoy5h%9)U>fHBqrOwobFQmUoUMH#w6ih5KY?~#%G#*M!+;~iCPh&!dVi}d-akT# z6~3J6b1$-vz{7FRjULQE0#N5z~Kdf38u47J2ii~ zzhPgsDL9={oNgZNP3C18`gpT;E4kTgpY<|%!VwC!c*TEu1)*bmJ)D}8-v^^c!6gk` zW!^u#N<_CG+!zEwwj+YRFMzI=IP}ed?H|(TFZQwTn3@O4d}c=h>*y&gOg5MshA+)p za_4I&PP*_cgO2-Mw_ICz`&^|9$?Z8i_R)t25L3{5V|h-oi+u8);WQ9q8qU6S6C*G% z1Zd|Ijl`AA7n%oOkNMr38FB@F@_=N2p+8c7hYSe6XRj)N3O~jQoV{torOqeV%@f2L z<9#Bas98YLI&mOAH6(~t?nQ(NHfGrWaGTi5Mn)qrL@!I_&9s9^jV8pBRQOzDKYNOn zIbQ5H>Z41p@NRjdyLG^^kI0RsVc)&U?gl6~OiUNhI&Htq{$88zWKTamJv2MrInklI zDU68Ax)6{so_XE8(yY2^No{`t#xmlVm`w9-_Q>k^O`zlxYO>{SrgE2kQ<_6Vw*FHR z;>gKfS_oYEZ&A>}uZ)s5gLI-&2D(V=`sw{ipGMMx&pay$Qg!s_N1|TmD1w&c@-U>C z-QO6^iql;mme-sI?n}Zyf3duS>bNZ05=m-txf}J{e?<=lj&sYx-H?O%Bf>C^>PGWU zkp)9F@iwqX?s?||W_hnJ%>oO_Nq@93m>VwQSacd#AlN?9G%RMY=PvX#xtE>6Qy{n$ zc#cCpHz##};F}m;>|MfWiCe8dB30*Ea!$+((Q0tS=`F@XTgxYLM!?AP zmco}P*5XVF9Hs*#wmQv>I)uck)*}p8P)EB=eSkOjv+eHYK*)NVVL@h2%6YF@rOhUE znGyeTji7f>i*pd>)4Hh3gv~pPYFO|C7-9M{XN)F8Dtv}@7|tN&tsEAL7t)R&0B;&i zLU1L6bWGKjsy$Ftdm{!dSRAv8$sD?f(~jT?MeMj1vDo zYpQAx_+%YyH+yKxS3M%oOY$oFIB^f-09@(5rREH3}O2s_ga_?cN6ZiiG|=WK|9rypmRof96!251&Z48hI= zB4~sC?5u%>-o9VS9|YcVL375wjzdt{TXS{ZnL!;!)DO*(@a&8q4vEQk=(-_P!3H)a zUTwkqs&f29kZOAuR|qbewzQiQA>YH&&sCCCtM2dc;d)W;D#EM_rnbB^+LU~ z6WMrwyLh2~`A;!&SyzvTJTte9F^Ak+@UW<9Gh?hd6%eobk7~NQn4da_o?ob{hDZ| zEj5sp5jCnsR)8~cOb_-BFIiy*J-*%Kk}Tm2=*bh8cPOK2E-$w;DqSn14m(V{E{Cik zj-R=ax6;iN>p9b(@#_AsCa?g9preD(@t6e1%;XM`dKMDy7SqVCALIR97LU0kqAXb1 zg)T1wV;!3=D3iCfhzx@h&346hlf=Web}ry4m;Hxi4XlsZk;rrmTano_@m5+x@;sIe z8!8nmbrmPOLAPy}F?rENc`jSd(L7SU2&Q1rTUvOt6Fm~iM`l%~#svuQmWjkX;A)R| zDO!*ZL9B-O>lr}+tcT=aEqC-cDGo`SG@rp1MuNU7xBJ0Mb=z*yZE+{+vLcLAAqk1! z;v$I%Khbb9^ELM7?&F%v9-E@hUEz4t{&`_mlWXA=`=y&BBWA&8{V6!GBe*HoWZaH6 zl>2>6qNfg)x97H~AE4APb>OQrY^WK~t9YJn1u^TGm@wXxzj~-9uWRl;r-H zRRLVU=@iZMH&d~wjhgz83>twLz1#!PqmaPxL}ILwa8lUnXy+%U3YN2(zYFDBTZuDm zXe2LgiAl})FRh5xI2q|6u-Ijw%Vs1?XD9ojfs~^mh`9rs3aXA@#11$q1A&?f4r%$C zR#=P03{GsVE;!kG_>!lEg2jSY&YBtWB(Wl=%N$bIAK9*KGLeJF6&zqM&xgVoXJ;RP zc(|Ks0b%&NwF#GgB340(HDuS~M50{7`lr-Oq>D7a0y@-~@GChj9G-qbhYCCg3}Hbw zu{4b!v=4AzhoQcW9H+XIF_h49{hp0|jyNly!?=f?NM$w{)`WA@o#$@eL6;*W$yesn zRuYt+GK`LvCQ&{V+ZWaz;x_U-@_A9%hKWy=UkeV89Uj!@Ry$zwqzjk2ob$1A@aDIM?qzDR$A6D{Q;!-F*n{ zqOr@f*Qel=F9ptGMGj#eX_vr>3~;eF9eD5Rzxn;l?&b0A&m*y5cSW*o8|#j6vkezuZB|FsxUxNi=))(31g z1Jj5&RMs;iPTU#bF6&pC=SucHsH_(UO$oUa-fl{?;*dkqFo+}W&|xuRxO5H#nDK3A zkKtf@tjnIgN7C)0b*&zD8>vELS%{Z=1)7L-nYKTmq3uNMWPlpgO&-@coYe+(^)=3{F3gHkNx-^@)RDy^ zEuwC`F3XG`AOP}8xbUJAv&-0*%bL<&F4(iiZ>rnMy|nVcEe+Y#tqOoHb`sBjGc_?k znj~lNL9lD0DMhh-Rln7Vkeq9ndw5Js`^;SOPlcmwa9eB%tliwo#r&F1CuNU1#BWt@ zsB>#}@d>|ZVj6gB!oXSm2^_hXMZMCcVnLH9`X7))~iFN$f>GDWcqK_rZXB*~=8N2nQrd z={tJmtVlSXa&{&x>G~)_y}*bCl+ZGZMZ3VZev|4Mi*)BeHXy0}Ty`VVNNut_8YT_a zYnm1DIbM<{)Pi9|I%iQLvs57hbMoewF|K5siCH5o66bHV0X75w2lH((RrNK~XV=cx zGW>&1a$#&Er9ehc;iQoMxAL+JM#ydXM6e@7CE*eb6Ms51(HP1O;1Y<< zeuIZ{t0*Hjh+b*+SPoI2nb~IsMHC-nzUEo(yZt;;k#Q0YW1sTG!D@PS)fLd%Pn|Ru z%z5G7AsZ7D{S;?1bT@Jpcy={xb2B=WP?YQ=^L~OX3N^Y(&`J+Q&%sf*ts?F8Q0}@` zrEPaG>v?y>rWE;&eID?zWAwRW*A^FY;xU6$`l$O-Xx6y{I&Yp-QJ(Ky9+#T)BPVW) z@j=tSY)b9o$sy~Lo>mF{>YA*2vEx;5?8UOTo16W?Ajh(;#ciQI;Fp#>pS)H>pL*tV z9-Vv3Ho?P|U=0{q?B)s;II^h$fyPN^t?j_tJn=6ZPQCCZOpe5}2kdM#=OLT4G6am(UqbjUOlZtFz3fV;zYsM1LJZ=xK-C5&I!* zf4!$Gt3y34njFMs`zDS_OVRzz3t~c~`jf2@ z=^xW}kqu=^<|M-ZRo`|?C3s{75jpTFuQE8~wT&YF^{Ah}4y6qA)_$OkAsomndwH9! zaH}o444QDEq$6Wb=kl{a6lM?iM~~e|q%2shoXxn>8K-<3PS#FRmp~zx>XIER_Fp4p zAC)zsFo6+Dwe+NP#3ab}f|eu{f~{5#=CtyJYkW$=dZEb<*Uko#Dmv@+vA@dQb?c5^ z+mW~3C^E-!*%O-i(WUTSl&!1&@#-VXdQ38Mynu%UpqQij(_9Kq_!2c-^c58eij*9e z)OB+9ZRi06ywEA4`DKn>bzW0*$)9^IV^36MAiv-t9>XXqQbkY^7DPhCHl9GHFt!Q)7$0wiZmMS4DkhGkRDNl1^? zd=<~lyHE}rwp(=O!PmtD$+)Z3&bg44o9Q06eK8gkj_JoXD=%lVOGK}hVzAsNx@8$Z zs1Dh$Qi2A?sB(I!kVW9pTR<1bB|?P}Us>iv)z@7Tat{u{j(t^#538Ag_Wb$ zwphlK@6Ez$tD`Bi{O6${M8qz%ev^zu3(=q(h!+3$xz^ zQbj3izOarMx(cQE2M>Y#_tLILF3Wd36s^a-m~G!FPnWzhxzb2+(ZvSv`y%;nun&bq zcFh?n^A~eS%Uk*`TByRGuxR&^uJ!Cwnb#k7rbUWmJKHFMh`wz^qmuZiX;-K(5Q+@C zZP&3GFz|dtWML&JwVHgMW8n_e3spxB(<98KpgE(9xBBLhTJJOi)p}FmXeC5^AW8X# zUugJjzqx}kBMtV^cdDsU7mk2AxmTx&hZ*gW+!Dp)b)rzv84UOrDjB)3JSjq=WX3Fw!87BrxLRbuqI zKy)T?G|l!Vp6UKgxymf2&-?za`5*f<^UPtQh=Hit=qq{(&TB-+tsjdc^i0H1cmB z@(=0wh8y2x!}TAm@&BM2|GIIApC%zE zBNM~Fpa$Xhr82j2GIk&Yh+64884DX5+8P|A4G{-X>(7KN&#AVjuZqoz-x)6|Pp6w3 zo;90We-+9tYQxk8Ck1AIh0(xr)5H-F<`+#(fdYYWs{8XJC~0WO)K>gF1~5}sv5l^P z!v$Y|MH247F*$nIOJub1-X!HA`E_Rg{6}kiM&xFP5Ph*b z(D46&0dC8imE_0o%IaHWtCkyoKSJiW?E}&~+S}9r#797K1mX;&n;--tV^+nD8<>m0 zFnI)mF9XNg|1Nh&bqsE;rH%ixvdqK7qc(}BrItUn*bg@Wgjibv&yT+k;@|?Q4&uWK z_lwOD=;I^`JsBg<9Mt8-aLG@j%_EI75J(Qfvlbj`_ZDpjq7IA`GzSCHY?KN_2~Qx7 z&uEAb%%oS>6I9RC_=|f(ccur$pQtBrl9o0PA;ts=z%YoT2i^<`tW<=quKiOx9oPhE zTvwRc6Z2THGra?Qd2`}D{JO(|*{?ATr}zAKU(c#zogD;sd;2%lxbSTneWaP3qn8q( zCCfuVAPlR3J*{~q?VBQuEVX_zcyp|GK`MhBJOb!}hp1_MSoF_M#>>EhxHy20Nqma9 zGv$98HbAt2wEFWCA`-9z?SlciYb@7(NYa=G3y^)tW{{sB zd9ST$ZGk}5Q#OQrxxU<=xcT)BptOA$)j*DMtXKiBa*q_uqo;^ITwbQN6um&-Kg?W! zu9uFkC<-au)dh(jb-w=k<^nRa(waj8i05)+z8=FPg?<9_(q?4=VIbHL`o%`#_6`g| zUcX(@mYZz%lmmUDQbX1SfINSqy){aGQ7wPe+?9S=vS9&zWlLedl4>CNeG)|Dg0%T# z$myPcO-p{^-+obC>#Bd+;(Tod6m6Ve_;#H5zJ2l8FhkaME$IePOt!c2p6EiqvVg~Z zeXptboTx+@ML9pb?$O~?Z7AhL3RGMB>WbFGG_R!?RX{(t(7zL-^*z_<37Pl-2mD)5 zySK*%9SD{i>6x#)bgaJCvz=2b2km7I+yf`;OGg350J!O$^&4r_0GUipndp@DQV`kO zIf8mE=Zemt?7wLKgEXM#AE>~t=W_^pVNRo7&xGCmfY?rSOZdVtdrRKgclUs6(?9+} z85q8Wx=r=!pZ}&90qa0)*L-mw;c(yhf>`JaJa?4-E1(9*s`@KHPPz31mN$9l2KRG` zSFM$kn{NZGC;7Ee;;XNx1|Mk@)ySWV53~shs;LUWx~m+GJJ^j{wcI*#2>GrD_j zjz2HDw5rE;W(9mx1Uj^`YgK0da2iQfI%KV-yHFxKUo>@ z#;f+L?wsm}F1cN`>)4!1Uu8RjU+6G+*epvoRy&By$B(&pItmkrBTc02XLHW%&66)X z%U$7qxdFtcJTP4#@ik-S%h?nXJ{6|DTH2SED(8OSI{c|rXO_|547F=}!}Q_QkEo8aT}d@!fh zgWhDJ5Hg`}WR>Pk2*$#A=4|Z1PZOwTrWwsGX134vUjFLX#9O~}z-QUDTK6fsS>kbx za>|4=cT8|kqA}Vr7*+sctG71!I4U;VlOQ1*bB42 z(tHfvNUKsFg8;B+)MV0GBm=1+9l;;l!i1#&Y&re1=F;%XJN$(^Dpe;-$}@A+eIH>$ z9Xw+5vJxCZX?+H!Wbni*!G;+owF2*BMaba;#*@cna467$MIr@BEI3}yTrc2MT{)+N z!{+>DB*$4FqN2bRiG*+brj_z07{}mR2$wXJ*&IT3QH79daUohsnp0`uYDh(mUxGK^ zp2!L|2GKSG`@*a(T(EeIrxdFmThPCVzhtK5=Il}&M8D&mU4yk-kPr4QkKEpS+-7rg zBuU)SS{Ms=<((7Qx=#qwRz_m1mXjB%Y*T{G&Lk`1wf#>B5t3Y7OdHP5inB$yiRqo1 zJr@qO#1A6FC`oxNo>g$e6qUN;SdMe4(fY^)@d~KI{A}}CY-LtF8K5nAdfNG$-_zT? zTMX$JQQ^5M$d(-({k>5Dx34C$w&g-`F}ViIVs<0u>(S)f(5v|{89r1LlDp>*Jc5$y zXiQgiKX8f*Ppiy(p#=0FnkMMeV__k8#Y!?Qqr<^2!2k=3F&`(>b_b0s{aw5d=!h9m zRFed5sY_3ajC?xG7^y;1Nl$@GiI%w8;>{D#>@cWt6^eHau$14+x8MQr((E;VyQ6OX z`Ud^^O>S$K4ca8@3+1$DT|lM*3uCRO7)Il+@ZMWL1b1rU>7UBF@4;=D51&GgjX=;L z$Oc&F{`|GT5Huc!m`-6S6^c=8KCeb{H|deC+xK=m_VX-LtowsxS{5*elUkdwYg{Fe zItTn(X>~s)?acurwJP#^0KKL?>IVYqh%$vkQM0+a=-}}3TW7vrJ&ygS`pMByXHAOH zy`;v96Wrc4k>T{a#8FUrsgS2jG4so2Xwr$(C?W(EUce>|xOm}qu z+{)ZLBQhfMUC+0k-7fs5tQ>(flysmWuny46tHXs11BWZ98~deIS!&xo)qp9@#+f~^ zlHT)+5$7)WZ_q#?O}jd;*hMFjUyThc=^6&KSq!n~(cS&#rg2i(^0pnfZD6Ib5jBx0 z>1p8hr0h2BVn|*6;TTjkA|X7o{@=T1vGJP8i;S5ikWndjq|#0+jsR%5kM)9;4$8)m zEl)P;=FsclMKLIiMb=~&wFo3CcBmqV_O>>`C>n_tY=bWL?yclce)vCRTE|FBs8Bd3 zjjwa}t&^HOY8}y5qD#)kG&~6#2L7QJdt1Zvuc=mI;HteCJzxdW5Cz}vfe)-NS~=Gp z*q@e7G?&?3x1ykeMd?zKN)LIB%`)9otAAStDbS_6xUky-ngAR^>4_(fX!~Mk+HURa zsE4N|XATU4@SxIZ>$lRKM1vOdOcjeo#CBBbc`bBhk$c#R`izmEtJzM{X1YrnzQ{y_ zMsY-dw?nQSwqk5uni^=O;OtQt!_JjZW+^R`tV8CYV1#pMNP-vug9|YvFfo-Bk71!I zgD)*HO_`JRr>j4>HJF}|ZjmpSoQgX!ZUkWbU@+irX*@%SGJDR-@;|Heu@`mwRr-$Y z*7&M89QUu%f&CBs9vjbP6_2)C9+C`hj|5hwz%Ts`KrvoszJ@%ug!EQD{w6740h$N> z9k$YQqr!~{K;CE|QZkEQ?$0C`Y8+Y?(BEpJRmbMa*j3Ij{bDV?E)e#RDVUcJs@^A4 z4z&|McfiBRV0J6*!4n?~+z__qUM-_9i{4)clBm7sm|X5u_wF=aWM(UhvKX8RyQKkj z5j1Nw)ei;R;to}vX4oFPoJh491sZ9#te_Fxg>NE?P8%3lS6q)Xe4`34qnqG6{6yi} z&u4~Nr?#;|nOAj1j%+(c?HG%Rf2J}}uya(494~`#^W%7?Y+f&jn?hb9Xwx*A@s}~q z_M?kjFU#IxNWo6n4w(XZ;-aHAR9O?e+8rXg$herNAOj%M6$PzX^7jFo;KodFF9gh4 zhRv|x;TPE&GsVk1NN>B)xWHj-y-ffN{Bqc#P|BQs5{y5gPL>*&tp=eVUbqTpT5#L$ zVce5LnkRHCL*PH)VwD`3XXMuPAc09J(*bop8v4rtsJPBaL~qUFWfE+QRyl4%uCgJT z1?=(_rG)-Y#5SyLFyQ27wbf7zPRpZ(fIQ6MUn1vbRfU09qfZ^HPun#cQ=z_NM`N{7Jq6dWB zygnfs2LmAA?1^J~nRw^c2of>xBVQ$`96;uF4@qGB2{;}7!sUdil9JlsD!|-eaG2$p zNU1e<_tSmd`5q_BZA1(QKbN@th&kGfa|zpL7%z!^*VTPi(B44EPPN1#87q8CV@;>k z2F@YZ`yn_xMQmB)Zr7_r;S3iqj%(sL;EtSQ_5%_PiKI0*1O+ip=PPFOj2u1vWhd#xsWI$a z2g#M(&wX4t9M1$Pk?~q#2tSJJqmrxs`y3Pv_c}KY*?i&j6>VVlOkgKNysdgOp~fZS z6Gwzu$y~t~>Ad92IFYBf?%5yVQK{W?*y63Z8X9h9(2y?cP-o(czU3&!R}@h~IxH7L zhN-Z)-Q(p1r4Fbn4f(GS0;pGB96KZxCQ--!y$snH8d%sEXUQXT#bV66!w1w4!P^6< zjEm@fc2h`H1YzEy>#?lIf|q0prmdPN_{qB#fsXd1Asw%k#kAUk4mkNRlBFXBD1wCZ ze64VY-V~f<*++Unr+rCk+uA(!_nMtH`I+0+%{D48O1*#!*|uxrf4oM!q69tODKwn; z(MRf-=~5Z*O(O#~sh658$C2^MnT7dbB+#$1s83;hd;f+kf;&nS<(700LkmA%9-4-N zCCwTsoRwH|d=H?tdsjvH|D_B`_FdqklO)T}?bkO|npM>ueo=|HTbH)OU0YEcZ0^d+ zSIM5KP9KQ3c@67ptE?;L=}c)G-#o^&rsaQdKeHkyHs=c-q86-$ zV<{BmRtXG7Lo~C(S8a?r_0xg(*NlhIy}#5YUQa*9jN3Cj^{`kjfNRoP-*N6A;5~;9 zq`L(_O$t5@)#qXK)-zZm_f7Yn{Xp0+hN68r*_KrCl04XOpK|ZGo0c?tGWFHe+J4OH z@cC_x#xZbQRK0Lkt=eJEh?%#}HZk(?3Ci4Lo%^ z&B~c$nJbC};7etS7E3GU)9=38Y{K^v+)mc+(xvm?!Uo;NSv2G)gul5jBZhEw7N0V4MKC5y&d<0+0u8P%_IL zJiGG>n!n26vGsJ|p2JdKj+`3u-qBY=@*w5b+!qd8_NP-Y=?5uM>@!QSGmOzIaCoW2 z&7ngXbik=4bynx+x#C;>I^3LJO8=znSyPKyDUo0rb>CTcFoQ-xFacj_4~hNsB-kH-`I(iUt2I zig%3fDH>TWG`G?Fe1G+JjKx~g4-WhE8Y9E&`=q^U z$QtIg98PY*nIz7b?LaeRGQD{hRE%;xe5rAm&>2dQ5g>`_Q02OnZjbj!6SEAWUAnlA z!-3FnT&^vjL0T;^6+k^Y#up;{a)>9OncuT_pnc)$54AZ`22c}Ww;au#jw%QFuCM>F zP|546K(A!y%VV_4EY0$UDlFYW(CnkT7v0{(R4hF?Dv^Y+XlTjPeKyhRj_6alf3TjnkLLVy8+ z_uYCTHcJ+&j_uu&i-aYsGIX>Il^E@Jol=iyIr|ZBU?z3p|tTrGIb?=$gK{_eWa$+W|YAM|1 z$gNI7zK9iMJ_Hcavqxa7Qx?qYHhR zmnTyzJ->&R&qpxKL}HISOQU1H#Nx2@KoWNT>F1EBXiPaUV6tRpu`t|5|5;_aN#<|P zO2y2}kEBn}tIhVI8{wBG7ps14NEM>dj9#M|Ni+&5I3pGdx@#TaagFO!T6#*%P`xk` z`Gn!?l!(o`fi{_bjP?X5uBj1PlX!ZXDvdspolBaB?w)}5=D$TrF9vy@7~M=n`d+;y z>Yjc5^2lkN!l+Xbh6T?`&r0Mcwkc2bG^KobyAnIc_Lv9FSm>OznS%3_{^P#&ZqnVz z%J@d{lZZ`wH>z0jjZ~~e*8xPG{|!34EA(?IE0btJ7o(l!7O1SrxhXR@eU#D_^78B6 z15RClBMVTMjJfVL(Ul+{$}b3dE}2cM4=8yc=(MQCckfa{gCu-YdzMh7M*RCwZ)=`@>6t}B&6Y6h(Lnm|mLKz?swPSo7QHi>q%*nD z%ub1dMC@%8BBFfBBBWfIH-YvqmVy8$Hy+cjyNjVAY)71jt3s9kHL}rSd?Rm^;rNO! z-E)GVd}3i#x--cmz?xMJ2j4lrzo`4%0#6H za;aF(6;8uCi`jL<7_kGJ&Z=zfxkW40^dVQ%UnWuCk+eA0PsAL%)uGhAK zS3bLHdQ1$Belydu>Dq4gBBiRE1V4Tdn5jZMK)HuOCD35qD8r-9ZYM9hxYj`8eOtQAN zP+@`?F-)BNn=FC~!(y3DQFy5#jW}eWz*&r;Y_pe|Yc;RA>Y`)&ZIeir4&moK+l1k0 zG&JTOh3SOI^!B#Z#pFL3|D8XPy!+a*J#?3>%gpnA2#Aa$lGG?3^$3q|SMJgZ>Bn5r z2ZF;b?q&4?4}}B%IO=nnymOFJr*p>R`_v@Ns?efQARo#)uf3zVv~XPMHYHFiXmRu= zE9H>78rUNKi4FX}(vrjxWR!X3U;pOK)0)fQYJ`m=)9#9M717l)N%gS>h5$h4M3|heW{uRzorAs+1#8)6W#))PRy@_lJx%C za{M(D#n|H_ARLef{tgWhT)Z@#Pk^lv$lh(Y%g$x`qgh*yAn+QGE7+iZ0s$&o?bbi4 zq9=*A9g`>1&0c3F;eV!t{CRFcDuVSeSJAytmlWA<2-QSiYwdUI5~|j}1RO4A**8t| z`>g|Ru7$USR!UJQI4Rebsyue1fFaAkqCCo|JS4lEW(#uMp(>|!2YZ0)V@?|6y$qI; z*VGr)xH4vf)Snz^T2C2oUCW@&7Vny8BkCv@2Nq*I>sy}&qpBI1$VoyuO=`5i`QXbR zh|Da{)VanetMY!UMk-B@z`%5;$`@a2?odPa+CUn~-Pnqqm_UjKJ|Z12+wiI|flqsd zQr4Aq;CRg|}{MupPr#*})R#Mr18AsBAE{707Mj52$43sa3} zxHOU9pWaw2a$D-zqWqBOErsx>lQ@-b56*jW_nA+P+OQv2ucr#lwm(b?J$eUz4G0rN zYEU@bU4mLqaqMW(6?i~Y+asIQH$s%sDTG+YABvc?XxqtXe~-G$=4!0){doxyOrQ3u z6)f6&X@k>-x0pH{0C&Sbu49bL{0p~WYpW$%`6xK~F45W{{OeVtlKY(6EI{$A`>>tw z_lJ2%A!<9-bSU7k}zrlXTQ+B9+#t(#Vwmxrr zly_P!w#mY_!R9{ZiUe}4+wqjANoCsu=)NbW0soFQTNw0CU%~ied#>D;Ruac^orkf?q39f4dpjk{Asm+#*Yp!3R*BraLOqtCURUwV|qv^ zl(gy=rm5UGDM2+o)Yw2h%L)?+P|~-qN?Q=I93Q{`;h(uiSmWSg zPW;N5N$ZVy_J4{>##o(E!0BWU4m1OU6M`zHFH3CA+vC+45AEbN2X6CBB2RBV!gbxA zt!~CR*J5O?>yxcw#a~_)l=ZeAo>MP{?2p5=m6Wysbyl+cE}#!)>IMjum53@4(eCPC zj^QDHajzYVq}=Kf?(%}QS|E9sNRGV?te5u7lT}-1Et(u3KdAO_B3cA)h47Wu3lwjv z8eo&F<7XUuyQ0EDFV8!f!R?G+tMxro&N00Ms{bqp5Bh6=kVqQdjB~(vg-Mh)z~(|` zG(ZQrCFA+1;Kwq2{;m1CoD|X6F3TTzFkjk&19@l~$D=K!-qx0;VbrywkIp#iD$Q0_ zl#>n6$U_a$B=rCdUg0ZD|NC&6mvotueiHj`rX;=J=ymhch?1TtjuyXDY|~?zP7Y_w zpHaf=G#Z8lu(A|Jm~f&Z5-fVm<*O3#nqJ^#-xrnq&F-`Vum80$g3j#_EJQE9?=T@= z%Y*Edw;h0S*f(*`-V)hh?Si+5=&@0x?Q97CKA+9^<&{L8!cwn%=Uq}^U{jw8*74WM z>aI;9*dmE_DZu(KrjqQ{@+cRk&GH^BEFq)LB%g!ZL$=N?`ofbwhx1%`$FGRaRPM2k zh4j@EnLL55`oq@2WJh<>X9q;1vV`}R%icXjh!xjNF%z>$SX87&bi^TEL-)YwAO|{? zdi*gO)~N#J^-eksglL5A?5T4Jy=V-d+axqr`>-%V?uIDZA8B}FU3bW}wbe3UVQnrz zd69LzO-V;vliZ;i4MAs575EelNPH5wXuZbckf+9^egCeXe70*A^ll3|_OB=42vnS2 z^+tl2w&g|fztGbv9uaveN=60pZf;}BS3ep7%t3I%i2@@G(6cp&vb4(~!lv+2Q?T9} zDu#h_Zztf=5|q?-?M3qNLP+i%qfpZ(>tS|7i#2U}hm;W9HC?q7!g5 zG`4a2wfz2Oi-h#;#QvLCmw=U>3F=qt`=7^X7&v~@QQ}VeR_2BRHl|j_{}Dd=PdPBl z?`dlP?={R!zq^IZ^c@t9od_s?Wxz7OfhogZYp?NdM#|<_tNS03C}%p?|5;l5AGxRh zISIw_U!M4XB%zp@esAHwC!tuGnSS5*KezsC5{iwPf$9G`3FQK+gkrHmOSq*SAQZSb zOG8LViaQSsLr*^mzyvHNCILB5Nia`JKoK33SV(|7FBU#edK>G}?fCt$)v?@Vxt#9) z(r~c#u{E=8$*%qc1Dc5QTPn)J4ns-s2O<%0bA%!AM_B^ z9^e!Lh`QR94c=r*XC_pR^9lx4}M*L3;7ylUSC1f3V9{?voA=4_X zcL5Is6n)T!Q19r-4^$uVNtAH=1O%kJrzdp4CPILnY>8**Cx9))JftNU&T$ia|UWpG8Y(LDe@k=LpZ)2(Bc82!Q_I<#MO07>~pi{W#YH zTbsS~BmuXoK2!*@wLI@j_|RWA71S`-un!-OE@k zu;!27&#Of*&K|%S-&nrx86TwQ*OGU34_F}j?Ts4zp4o5!AomZ#CK3f)qo^ zH4@Cw7bfIQG2+n)PdHb|Etn?b9E!^tOp@woFN`7C$WvX4cV zlquK{+3E{hC2=#vuRqwxVJtCqFtm6lUdAar0y80zD0;&^l5Yc{R-dnjOh*%O8C>a* zUO|8zb@{p*$B&b%BZ+|pT0Y|$W$8|eKBU19JPW+h4#BQE z@wX*Y(Ep%qB05V0Ft`JkeBBOM*dKJGar55Zw z*ZgszejIzAVvb=>^^(j1$fhB`)^JJxHh}Co09YM->pXv|-fzPzieJA|M?VpP6fp0r zN}34`O&QSX26rPKxP`WmUw89In_s%=o6kETjf$~WUI+mVS;hKeX;OkRZO~4y*_1Wg zi3;fpwiO&iX#xo;KTK<6B%SubRDH6f5~@hXql-yeBv!B%9>0MH%W<}4xsfON7Vd7j zD@pN^6r?Ex75h#DH4Idxe-!4o5#F0Ice=-mQ`Z^G(Nclf!gZqLjmPac{pUpfXpk-G zQ|3*0b!>BltKf7=#K13}Nbe%wXuOSBhDsNAsQFh0*f;$XU}Ju8NSsK1y zJIWYkpNZ45hev)wYten)0JxC+%22@Y1`QpdkX2F9GBg#Qr&01sCyiOS&uzb-vzmm4 z1;L90L!XR5I)wuzW~f?}m|m=)`s7Q>GyH61I?o5-l6l&5qOU2m0hg6TXR9=C%FW?{ z!k24+=IMH7^_Xws(G&)BzFdQ*wX2BR@=q@1Y$yp;FO5-xPo1g+L-;si|JrU>eL6p+ zb9iHoGUfpOY2%ffK6*-bFTgD+b**iAwqQ6U9G=gmr#b1)M6L@OIveH_F!_!PC{>lm;=??=&a8r|HyIdJ~j`ZmT zyVi0zJclms4*Kh+kQwc*d<@668q)-cemQI1&FmnIPCcLPm-S{@)a9LI3DqTYXWZ$B zlzlRFQ(k_-oYA__h?k_>g4gCMaMd}9frzUP1d8@ZQd5(Y#1K-)-PCDKOU|R0x$!7n z+u8=izpG4*Pr)~l1D&P(#lGWwby3!_MrQ!guB1m*Nq?S`m_E*$=>D#6TcrWu1O`n% z8|{z5CmS#K7Nh3{Xlr0NPU}BYMhHpSHO5X4vT4xW;z%K=T__la`yzL;V%>ZeVwt9+ zJH?rsJwBPkY2Ag06*rP`trqOqGi=}HtU^mC;WG{Ie!{IuwhXLtsPd_N?9O~Ds%qXE zGZy+8XPvR^v1QG6in?j|Vg(qEz#Zi2k6{O(-4prbp5DF5)OT?tZVjw1mV56(l++7V zs3ib1V#fzEJ~yH*#B1Y3mPv9tU}-PXZZx$cQ*n7VgWM`uTpE9fnK=*PKyC4LTG1YO zJ!@LmRT^&0)KICv_aVu|7vp{#<}R0U==`_Oge!05L@I)ZKNhia$k$c3lm9j{H-OCR z+C{JO$!gDnGHiB}9l73u6x|yv8^86lCv)P}Y9(c-tXJ6WMe3xm%N*~)JRW-gKOaRwNYXs|IfcY$}*&z#9?VfKlEwC^*SeoQ}QQL@nK!2rBD&KCF z&mYJs06#m40+!=2FbbhtE=dbUbe zR$#!bS}ZbF>6QA1?t zv3~O>S@{?LWlM2;;xUd(c}m{ogkB<0_@W5&^jSBK;5Xov$fyf)Oo$VsWQ_X46VXN; zW-$_Q2d}QEsP{WH40|zRuTa+)7ae3>VtqXi`YmtcDNdj`T$1xQ&p31bjR(6`#RPI=&pQq}t7_D%-VTh&84f|@@kkJH;=1s zi*F8tfMVLrMWS)6h5A+Nonsv2$;M00^kx|maX)z9q~^}v_RMn}oVb504r9Ga%d*`R z?*TbVDrV0c=rHw&E;ntTxbcn_6O8j$LppWYBo;PbTZH;8+czZFu>)fDZV4M{6_v47 z(Bl^^9u*Mg#6BucJn-`*+T*H9DmEMY-*$g?Ofy92{7@`po!U+;`_8rXM$D0W({Qvy z)=*XYSbX)9E<|&+CYaQUJ`~}|9|wl|oJn%*Ac~H+wrF*(2F{q1$MZv!)HR`O*2U&% z)5F6xv09A#2S35rZ{6n!AXWrmbKG{~W$;#`;>Lb#O5U2d(CMOfCNS#NHPdmss47Qae36DW>%{Pd2slEXj=A}r&0 z&AcKe4`#o=zmdW;O@pxv-|ji7E5Ep5tW-ORpqqJCuXmiQmDO3?wMf*XyTL406n?@Z zlYkSi1dQi~;q~4a0Vl=H4tTw`4$y$NZ}{{&V=f;AQ-_dAYzN z#6%gu{keJGTcum_LmD*4g*Z)=P(VJT|I6VG44ugz)wA#m)!nA3NSqOUIFf8k=|=G} z9Wr|I&BdiMXwlS`z6z_cO|t|4z?{?Q?VXGN2wCzS#;OOY2LBl4H3WO>O>p*UBaio_ zjcNtr6vsdQ=O(r`Wu&`%gh=wpC~7+0?b$@*pcwCnhQZmb;tPKZ-~nk(gwdG}O*&KJ zKqV#CHO=v_D*BMRr3se~j}CU!K%{q+!nSFCm+fUkeW#{}Rc!Kl?us3K6o_!mYVrsl zbRL?32$BbFs2d&jxp#vp?$ZQdNe$|&>ZsGLlm=<3D5yp^J>f%6allZT5f&8Cc2}VA zqTiifI?MN^Q=47&UdO%3Jo~HF0PUM;cjN{f8EBwsmH9CkdG7CZd z*|%m|As&QRPq2^?9xVaVd0S6lW}bnh&gMPKP|KYN5z*iRp}o^2%btaDq}rakW6BTI zEa6rwvP`F6m}*h}4>=%=EP^i*aME{#?p=lRLDv;c$VLLqcNuC z!zIF5>Uac)Wc5C8zB-|fZEVFcch#?5splDf zrp8dxG=g<#)T=uv``MOx@u-euoZ#4LdEZ?#$Y@K;pmSS=R;lj*72~~mg$rj}x=$GXKwh;>E$f?r?^1w4uc}!-Y`}z-LxCp zj?<{XF^@>tfmxwa=WITWblZR(k7gJj3#%$l`ABujWQ!5-YDO^Qo!YA&Oex|S9leo# zf;IlZK;G|=R1@&f6CP&a)Gg$)J&xs(aS+k5r9I~zVe(y61W`eM5+sGptR&3XE25+t z!{zhX#W6Wkzoqt0Wt_N*+;<F9kcQmz6^*F<<*WV zgY&gAPX3vx?XJC3QpnwETB}ON301oYiPL4i74PWE?x$p~^VK;*wQs4#WFw8+yJ(P} zA4_rfiChw*^^A*uAB#qoTjg@-c!tejJ3kzKcBU|i4J5w?e-B~WA#Nsu;4O0n@3PRmXGj5;?ipYhEQKcnP05oLNja0kxw8>JU|51)|!t&jv%; z5I5TZW%lB=)b3lF}>LP?Y9{@+_WFq4Bf%w-5=Dk1|Za<83ySXQ*Zt! zwtF$pXAQC$7_L zTiS@2%$G`o(9hv$S{m9~oFPdE%Y_COar#KH+ix!<)w?$hQ-@kyO0#|WRUS1xQQZvM zt1xAB13OFv`~4jOv4*tV%Dz*!UgtqtM3daLEp!Q(@#16M-4N?QsI&_{i3@_;;gkwrqR~(IUDK*m|_03u0M#gn?-zR5ko;(~w zDi8ab&!eV~%(vyQ`!pn|ZhHjiTiBj{|v)xdFb`S;9jMbvix!cZnrq-R#w zXw5kqe5?kX>L&QI2>X$JwsLFGjZWc|eN>g+;}93UY0*1Esf`zV(eh>-ywo}Di-!Q# zUZGNTT-q7G_lwCB+^pW05*<=(ulrOTomP4YzTwZfh!AaW?y@Ynt_p8o3fyg?)PUjj z5EcK1w{302P@z6CD^%1?1BJu$-PiM;on_nyin{z2SMa<#o?ZXug!QJRS+z44+b5?l z=a>_N_AozfJ9@vG`WuGerG}~>2d6)_GEl|pmEB7s!l`GXDm&3(9H06KY>h_^tBqb` z7Skpv?CMO-Q_S6%nePMd)@hf|)!WA$vjZ(q%KmBYc;B+I>-WmY8~_$?Fw99BGPjEv zf#*Vq8bQ5J@SWwUVF92x4$sDH6yh}4_;z+-D*!DTswp4GmlUW~=jSEoSPYCPZgUwD zK5PPz=}^AS;llWRDMHI0p#U7%S6l=p4OJ*Khtv(R75?_u01uY2&@Ii%k(B>&g4TJx z7@r2-jwe%{fMz<<03}|{-=^o6jw-v>Z0iUn-0t%CKgP+t`g$5ucMi^inP+fPbJ`+S zoJ{+e2D+G3yzcNWp#1Cs@=mHi;B?ptz4o>T7i(Yk4}IdiDord<){iyz8*GJY2#qcBG^@A^Z@ zzPbYqr_yGz&Jtm%y0}17MYIa?7FwZkVe|w^D>u?LU<|I%>Y!9Mo!m&r5!=o=e>8cv zMSZB3BCq;--aN&v3$S!YLDQs3Uj=DSNM=tUNqTx|^`JDl@%hUx~3{d7VvzX&d8@?@sl6FXU2W zL^G%R!Uy-aUZtZZT$UsmQ<-;tvfkbek8t8#pweVCK61sdOH09x<8MJ0q+ZmPf|A$C zCQ1ouAXaL|;)vmD7L{t?Qx6j6TJQ;SgVAc*R@cUc7zB5dh2c)WqicfLafJ%WDj9 zBDGI*mrhS+tR)p8`=mdDgrTV_H_7z*(q2n9;?v6(#=2;oO}CoWpL9=1ELxqx{Acg8 z{_K2v_{KKAG9Jm_GWqGE&DNotIL{MW!R?-+{w5f?KhnqboV{}2;*p@)26zgTv+VX2483B1b1DrJEla&rA>M`i}GMW-D$Iq_R4cX+CrQ zR2j^$=ARXbR9iT4YKz@xzn~*xN>X1_CSTB-7mwnOMkZ z-|nGV;W|v-FIptX1w~H0)F}VjJIe8F^)6UD{S_jDA%8dNi9zT_2Z{rGNHNN6a+V-w zAETVw<@RdY^-2w)BVm>f)j_J9P1FnhT;D^s!yH1-A~~-4yn=#u6ZcG)3F0sCEae~c z3U5afOhO*R`X4~0Nyo?k1zu*Q|1Yrh|Ad#-<&`9bB>n?0|FYO$!-T0L!7nuaYir{q zC}`_Oph?5<-@9j-=$ZcyR*qj({9o|$@5}rz@iP1WzI*n+b+rC38(ROPn)TPb@jqkc z|A5N>6J};*_%BcX|6yj1{{fa63D_7Je{b{ukD1vS8JYjDF|+G`V&-V45(ptSm@P5a zl0!0 zEEf}CLmv^(R$O6NIH7xJNPr^1@%F#_00eTv01zm{rlxHEMA`(ta$YV>5dFYVq2fPu zU5r3Lg8B5Q2uQ}o(4l~h+}Z$wL;!^L=7f;u1PBB$AQE3A2r>V_O8q)>p8>Q1{m^j0 z?s`pCLpt7wa${t~7HNJsfLePu0SGB6A-i|30Yp?GfS|zo0NM!(kq1$oi7^g==tBbY z5DIU41ntH+3FB<$0|K_Uw}A*$;Q`tE<+C&3cVR_10iy`;5Q5ML@op=${P0Fm?>p!L zyiA&#MgIe>6-X%YOo(_;YU!N`YwGj1GKnzDSZE- zL!1NE3t@iB;DE>}GK2WZJ$)%>fnxwV3wc1e@oW1iQ@m2cl#i9udm6V^P=ka#_WmU0 zK%oEv7PMbezj{_q)3>rs{>-caLN&O)DhG6xWaLu9oL@uEDZNbqf$seTatQtdU?4!C zAfyEKYX$zrs^opTebQcA1U*TDJ$g#t{@*rsY<|GyAYufIfC2A)FE0S@0svw`R;w!FxZ*xS&Ef-=n2t#JRix)C3W3f&ja}MtO2t%ca&@JY?}XYF-G!5PONLg!pO_+WQ3f=i-S^PlWqt+%j3?5^AL)l3+8;KTpNRV( zf>+;@g5$IOd(DX_$uD0sfoeJQot{UEZVw{)&6VH+R)FW7;^TjO7v<1(p&sqORjA02 zf>(Y-lXFKmWP&`4xx5ITz!XTAkD*k)b_=@D$3VdXFuQoOy6{kbx)2bbbhs83z0;+l z1HePSgc-uZ{67dY3{1;UllE_B5&!|{R~{xBjX@d?_!%r`X$F7yHl^p63jh-%+y)?b z1PX++3-PJ@fPxGN!O1V5D3a$3ppOFZBK!#(CIJW{55L04I6g2nv~YkA&)}B}J_!9J z_!%9RkAUL(lN<~XAVv;y=(`0ZOt^jP8z2D$@pCJv4RG<9B-dDG-%0t(}409PwJ6%DXDr z{wR`kA+<-m(DWl?Nqn8qtTe#J2V8BH5KXqcvpW;3_!5nJ^ZPOS!pHjW2fKU|U(F5M@BheZpQ(63jl|D4S%GD<7;1v7rXqVgkUppsnkZg_zPdLt zQ@8u~`Eq^x5C8q2RE~EJ(F}fv@w~+G5d3B|I^|u97P3rh=AC9WBjWREv0*_&VOOa8 z-*5eZ0bO$@p-7YIALB8qeW7C*=aEtJ6=uQ|Y1$rVo&xB>_!YEFg%**zuiMU72&PXKh1E=|X*#Mjc*!pzoh)EiX-Mw^Hf|j5Yz!M|iC}vUBLDyP@N?p8j_~TM1nxT=hu8 zq|AVrVR5$g#I&P7gx!B$(>79^4akQA zdK(Spkj*Fehl3~eQjk6FomS_~PW@HhRV*N;WOS5qY#rMoN&b?Hn}lin>&PGq7kTZs zzyg_buh?n2u^KBW$l^MZ3{EK7Dx)NHDFJXz5}T$U-%E>k`IPT2^WjX&UTFsfhJPe( z`)D>06u;gawj9d_=T*mB6B50PCoP%I_2KAqoFX38=L4htPpun^$d2wifTbGM=~>Dg zA{T-G$=~d(D2-r}6#sP4zr8p`5e%LYHJj3j#8GSXi;M?jZp#ntP~N8#r=>U8OLPg$ zule2nBzRfIgSM+0<9PDy$GGY)+BZ>A|JYQF1ng8E9s&bR?*}#)3P1zx@EkSDplA-Z za35U`v1hB{#JNaAI;O`jBv{863C96tlknvXwk-{$JPiIGONpGZ&(LAWJGWaG(vLMF z>^c~Q7UNK@@*bnBlxUBdMJme&0v;V?qGB;|k0-mOQq32ydoU>5*J9&%%0|F8Y}}_B z3~#RtgN~*85zr7MOq5KGVaCT683tGnG*`X})mLYKyHdMSGMx-Bhi#YKvSbTUr6^*$#|)EbucrRm)P7X2Xyuo+e|x zgy5cKwQuWl>PS~q``41!;r!a^r_cLFV<6v8FTZ6)Ze0bXB8A1ANoN|^Wt{d%5mRZ# z#}Z)*Oe_|lmvF=(-j_8PYrh-)=6K`Tn=BYrU$RpCjpk18PpFAMMH?7!&KRj6g#9jB zlQ2>D?(~#8Vy{p(1IrV99%h_Rx%}h)MPJJy-{47S&S3aN!T9Z>84s} zgOwiQaKb7%ybR-)?W5uaasCqjau(^!R*AT51C6Z#AqYJc16#nO4KaFew07<7nW19Y=TL>lXl%+k1E^&v zu`_wFtVpk%uqQNTs$;NSWdct%zGb78U%9&SLtv7o(tY($nzzN>x6zeV_xryjGq+96 z-%-j?*O+kTVeggQ+Uv?@$E8h+IMwAf#0li9{U9(cT;}2QHyQo1VmZlL=)(WQ*gXYl z60PY1F59+kn_bmqTV1y8s=sX8Mwe~d=(26wIK6kwoY-^D?3lUE$jFGi$jG(U^S!Ul z+b)Y`M%qyDl-T&{b|c`%h%1ZVR&aer=MHzsXI_VkdAb#BbaS=K@eSp;uVXk-%4|GW zd!kXw@bfAoGGAP7Xgo)I*D@F%7TYnUZ|cpFm|V<_SXuE(NhbD^yeiJ1#ECsz`EZ!` z4k%=82f=m%_@)nKQOB!NM_=hJ&HY&<3UO;F3u(pz(mGm;gwvGJf8JIH1Mz4=b3fJg z9$wee+zo=ohkQP;yWyA*fWj>&YteDcQ$@16jS{_5j_ZAhc5ZWJv3_qN*0~(fPW`j` zZ>@A(ttHFi>f|gq_)qYzuktD{aC!t>tX8@dAFv63LzTn z^AgDUuMEq=x$v)W{pporpPhupDlVH*h-p>bLG+WD`s94=cn|%KTnJDf#t)>>@=4?= zIFwL8M8%}SMHu~)OFSyOC3H8w{MV6q)@7Lnq+b>&U zkz&n?qlN%IU2Z%%hg4-XGf=!a<3_3##)kzXPRMLH8W?P;5b8U~%Hb7g{=155Koo?z z%(wn9t?&$+)S9O^d9N(LrW*_LM)C0&oJ)=>gV^y`B1N__^(< z&va3%!LIe<^7drwsmLSYj9waNcC_;uTdka{?WOGaZQN_&HGJy4-7Q2g&H)!eCW_(Jn@&;JHTh$2rPtOIW1}~>Mz_)@XY+=X+D8NhTuI}~Q zB{=?K!dTO6$XG{mb*1~ZC#;n>HaGR$Q<@q&OB!mXSu&&dEX!BQU=@PEakAwlCM+YV zvpl8=P!@5_^y4nG2T>)%^frS=gq(}`IVr198B#bUnmJky{q_^?1@|2;rhtj^hX|jf z2xiSYmU1rqH*UcycAMvi@jByp34VHdO+MMZ5EUxrr7#nYoOxiiDaI@-kX_rWZTEch zEleaD5-;1nXTGjerJ<{}4hjl)I#DhZcdO)B%|sC*x7hA8F(;z>p4r#XyTvVk z<6mh3od!gOzl#16_9c!X$+m6iQf=T+2S}V)3sT(uidVQ{Omk?1JaIA93`f?P%jeEH z>-3{4Y|N?q@tNeMwdpe(YM#N2@vVW%`dBsY7}=JZOah?_L_x~)t}<}17*}G1u2FVY zn@Kjk>LpQ4-0SNGbBcu>Yj&J8WvBHu=-BX+%>DysFQPw@(^o_kphuhg}e=Kyq#a=9n zo;Hagl6Lex^rkAea=T_A@2hE==?z>MW(pnfKU+#VC|^D;)_yIXi3C3LfdtU%H0eIn zNB*H-E{VcVTBG$;9G&CWtvH3V>OJBd@$9DTlIo`vFE+0G<+87(QJ2yLYakp(99|)5 z8Sw++*|(F?s@HHO`B?j2_vTL{c$ToP#~@px&s*(IqCt=-ttB0E&|sqx@7M;&OVx?f zBK}petXQ5CKg~fKAIisE_3F;G4;9SR9Aw=`rw=ATUpBsHY5Zyi(5L;fuULF=M+u(Z z@{|(XC;k8$h2^Gx^>&b(<}_E0&qGr{SyN}=>CzF~V5Cqqu1Kqb0tDwxZPPU|+%nE1 z@{z07)czQDTrGF8g>LbUxKv+J;1OZvA7Jtw&Nn9mG~mH{-+t*3&dzbPpdanHsU?iK5> z$5Ks-P7j9~YQd)8qfEDPSB5si+?zlOqpHMFWI{hn)ElNQi=1cROx zkd4KT8M;s!pTQ>sRb(`MaNE>ptnFlK;y#y-r`c)24`R?}hq_LYNL*VyUwyen{JfM) zN%ej~+nv(^zZmDWp@lqbpEV5*L_TletMJTH{wQvE!7_e3z)9XP?JT=Oo|GC(u@vGO zz+lbM06t20`MU!dD>bx{bT=To(I^j#lbvOz&r@Ng-2T!S^{#NZT`kHrbZ5EY@S?H8LHiGCxA=Y_u zO+NcnbH&6?$2_tCC~|2vS0M%FDzB-`Kg4z(f!XFXErl|#H>!DebjsFjtQhgXNK7eJ zT_miZo#UD9@1~cllaZ)eX;+=wF%yHmv&k)T%6z?Xu7~-Q78ZS2v#$CiKu*uyalMUI zjo)h;Q5hTJ+thh(oQ2QnGTX1DuU7l8bo{g6?bg~KT73Fh_AA9a?)MbvUV3wM()7KT zrV_gnMLquftH?}a3$vam!hy7+w#Azn_D39IDIz8*#~qlH{iV7BAQyx|)%`G@9S{9r z0`JW(T<2XMyt~c>^JK7oA~X&2B2g6$S|rNHRdsfN3|miSEBM;f&i78wd%kP2Gac6* zvUCD>*v!^mLr8P~8IF{cLESWEnFb(n9nZcw+K<4@# z$H_f5zD3xa=5?r1V6=-+dDliTryQq91O6p0PgM?jm{SxDhBMS*S>~piox?2g0977t z5%Epb7fIGqfRR!TWqHBAGO%LWQGhxllzqi!!^iAW=~I|;2s*0H$%IluCm;W$(YH4iw1XDIBf#=>$6r`+F!n%bhHwce#8D5Cc)D?z|H}Q3<6DX~0V~m?&_CK(J z_9Eh}5d%foyEK@fCHRYt<;kg*^xgK@J0qEKUZKzG7?ha5;D--SHA6Jt=ihx7kQFJ? z!Yr8YXZ65p=5=u9sgh1@C2FM{C$H{OQ+{E*g!KD%CVDnIdZzPGFX@yLDB9Jtu<~OW zU_^OI#Q=2E+eWNn)a(PdCcp7jG>5}^(7GCt5JVS#PM*tH3@pL#R`;Z}h z!EM`4<*tw?hcyGsf}V<{$oi&&F1LZW^d_u|X_cEVn?->sY?NX+Qswws4;V}G)HS&B zU9~1RsM0Aij_mN_ycsY;|L3=F%(+v`^HLNlXR)ZC)p+4m=;WGxZ#jKTx8&EP(*`7O zqEal@VjU?|%?jKkW&|+?9D)Lg*=kk-;l81oO z9`nDEXPEWobO+>BShW3*`(|>B+)&I}Hf*K8>3lpAmgP|>sN4vj-1pEg@1d(LH`?3= zbi5b1i{JA5x4^XP_kt~%?ER7M+YKwWe>FH1b_o97vM}vg&9U2Iceo0fmsm8WmrATe z$k5gk^CE|iGkgi5icl=Jd3fX@DCAz*0MJeQtRLT3_PfPvGAdS5EydeOX>l=fP z*b{5w7U<2G=cW;XI?HcUyR(M5vQCe6so611lRs*x_4ka4x_{7fdd^Hd5DFME2$oS` zG}oOI4yE&f=L|{}*?~h=u<0x(Yrpt-z3gu=2J@U*h9WLrrc zS1CX%6_>1eq3rgHL|OQ%F7k8Ci(FGQcZU(D`)1J&mm7Ic*#^P6nl7hSYw2VD*8Yyq z9sz9^cJKoT!Nl_RwasWP4>!Gqw6_s@N|~yzEe*`OCZo(jl}wICX51vp(1O|GNrh4w zd+!L3A?60I5jL{TFe&g2vG&y57tK8%hXLP|+X^k&FDacw?L_d{Xztg|sGW(4<%Ddr z8#IPM61~F99I<+P<$cW9FiGQd2I}T@RY2$9AJX(H+(q ze*9G|Pz-Z~GvnmtM>}{^2lLQ+RFUl9^?RNy9_39tzQ6nYRe z-(RTZNO<-Wz%lOIE=Y_I%1%Im!h*H%zb@tlAQiD1=zc77G+mAU^f26A}Oel0Nx%f(S0;sV=pyfKU2LD#)5x$88+|!=GSvd zN3|5#k4eCintO&+$Uaz9i{`E*Xy*BZ4PfGws5X}I&>`zDMU3g8lM>Lq zMpih47EOsjcPFB;MOcJw%x?frn2jDs7|m~l15{}gxWuWnw=o@P_{&M|GePg#(usYx z{D<6XAs$B5a@Qqe7YIue&;1YR31WFA>gtEx@h)OWb#EaNV-&P#dIo!rD007{+w3pa zDID*hd1vGqZQw6<=O02G#EMLk#{l(b7t*0qBki5Zb= zy0&i$`BVdVG+ED(0r%auFX3(0dNG=iE2F;Us;Y|d{Y=@haGPwR>6eknZOq6gySLh$ zG0YBZJ;=n2x{@b%sR=hOJ{(fhI@R&Ofw{D7*C#@|!&Y zyP|ZB3%LE2>CM-Svmf5YtrEA*`PW|dkuBm^eb)qPk;R(rz!}Ki(o)oHh=S5aXI;zv z1sArHG;QEH5>zq#zvxBCW|F|mBQW6JsMYMMkuoVs1iVcEY!!7ormL=36r3lyh={(l zvzOn|$qjoK$)yadrU8O*o7yCybk-aW zq~bNv1PrEPnR_fphTc&RWL-O4TIma1dZtTOD$IeHX%8iv$+Fh;pGWX%n5+qUB6<@_ ziiu+~r1Pxrv_q8K{;D`*1NVrhznTdQ69TrATw_ zoRSnP=Cqt<)|h$o8gUO)dZjUtx}h|QdS^{g*ZdMjUWBsz2#F{A5!JvqO#oipwZV_8k*$orbWbHnB2I!*^E7Zb>;v}kS zpC0@@*4_FZ0OE$3GqmP9`Q$7%bSfPOmt8X9Hfg7eqEZOlFGem6QK!B(pO&Y#i3syt zY`qM^ZR4lCPkG3zfPT5S>ogt~@EOHi^7JL_n7Pn4{JO_eUxCyl|Dl7?ss+p`?9L8+ zl@DG3`x%5Cu1waFa79?moaqxHpGEw}h@dsX3BkWMAA54OwBeaLhm&Sx7JBe|w7}rD zINp@drjLqifGr{tq?9Zc;xxP;WE#9lS8~-ccn%Sj#v*-PtqRq3N4ZW@vuoQEMCnq& z1&|`1u00DW0dXJ9_3#!U*xyX?F#D^&pIP#Sg05LYnfWbRqAov(^TG8$`u3M{~Sl>>i#A$07wCCna_pcBFdDn zLyhT}phj^Atnjmi?`>h0uZI$i`KMcUh!&e#Z>y4(STO8+J-Hd)S^D;((;;zZ!LsMy zK(Jr7myyWz-mt9+k4lr8Spk6yPo%rL<98kx=?wZ5FtKhXaN<&~^Mubz2*WOx1|cH& zBer;(1!`NxN->Q`ov+p$5g%-a8-_VP=cOjqT<1xggLL>_-l-n%w^!8}0@Pv@CPk2*1d(R6UE8CxDP*`n13ieHjw#Qt(m@ zjB*Uitz8U*m?Eb#7}(2-MlwbgFy@(nNt*?NP!LR-HcuPl;E#nn<`y1`Uj&qH-Afd# zl$FMsz&uTxf7TJQ-3AHIG$s^E5~mH7r4Y=e!wasRvtpciA*D=jHWGsO2f{3RO<^uj zw<^EdVmP<1Z~yK)nxtd8z4Ll|S5pabLz{m@KY?1-$lUsA9b=soJ>fZEVbo|_C5mDZ zci=ORp%f^!6gVqieRJp=%Mr-Z0NKwUKk2JNJQ*?Ir z&M^rJ@9#>X8?n4qMQUaAn9KrrJ~Ad|S-F?s#rRJr-qgEeY=(>n;qyf7=CIj4iBsQ& zxEqOvrgZaB9HQ{}GgMpNd^ujXQApHQRPW*zWS*5jtR6qM;8hU2YsmC#fr*voWmMA& zf{^ZJ=wXYLsP%MHj+Tx`e`B+6_Xs?_Ys?5^Z4cDX;WGXi78q$QrW)KQlDO$VKBn