-
-
Notifications
You must be signed in to change notification settings - Fork 737
/
Copy pathUSBPD.cpp
390 lines (350 loc) · 15.4 KB
/
USBPD.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
#include "USBPD.h"
#include "configuration.h"
#ifdef POW_PD
#include "BSP_PD.h"
#include "FreeRTOS.h"
#include "fusb302b.h"
#include "main.hpp"
#include "pd.h"
#include "policy_engine.h"
#ifndef USB_PD_VMAX
#error Max PD Voltage must be defined
#endif
void ms_delay(uint32_t delayms) {
// Convert ms -> ticks
TickType_t ticks = delayms / portTICK_PERIOD_MS;
vTaskDelay(ticks ? ticks : 1); /* Minimum delay = 1 tick */
}
uint32_t get_ms_timestamp() {
// Convert ticks -> ms
return xTaskGetTickCount() * portTICK_PERIOD_MS;
}
bool pdbs_dpm_evaluate_capability(const pd_msg *capabilities, pd_msg *request);
void pdbs_dpm_get_sink_capability(pd_msg *cap, const bool isPD3);
bool EPREvaluateCapabilityFunc(const epr_pd_msg *capabilities, pd_msg *request);
FUSB302 fusb((0x22 << 1), fusb_read_buf, fusb_write_buf, ms_delay); // Create FUSB driver
PolicyEngine pe(fusb, get_ms_timestamp, ms_delay, pdbs_dpm_get_sink_capability, pdbs_dpm_evaluate_capability, EPREvaluateCapabilityFunc, USB_PD_EPR_WATTAGE);
int USBPowerDelivery::detectionState = 0;
bool haveSeenCapabilityOffer = false;
uint16_t requested_voltage_mv = 0;
/* The current draw when the output is disabled */
#define DPM_MIN_CURRENT PD_MA2PDI(100)
// Start processing
bool USBPowerDelivery::start() {
if (fusbPresent() && fusb.fusb_setup()) {
setupFUSBIRQ();
return true;
}
return false;
}
void USBPowerDelivery::IRQOccured() { pe.IRQOccured(); }
bool USBPowerDelivery::negotiationHasWorked() { return pe.pdHasNegotiated(); }
uint8_t USBPowerDelivery::getStateNumber() { return pe.currentStateCode(true); }
void USBPowerDelivery::step() {
while (pe.thread()) {
}
}
void USBPowerDelivery::PPSTimerCallback() { pe.TimersCallback(); }
bool USBPowerDelivery::negotiationInProgress() {
if (USBPowerDelivery::negotiationComplete()) {
return false;
}
if (haveSeenCapabilityOffer) {
return false;
}
return true;
}
bool USBPowerDelivery::negotiationComplete() {
if (!fusbPresent()) {
return true;
}
return pe.setupCompleteOrTimedOut(getSettingValue(SettingsOptions::PDNegTimeout));
}
bool USBPowerDelivery::fusbPresent() {
if (detectionState == 0) {
if (fusb.fusb_read_id()) {
detectionState = 1;
}
}
return detectionState == 1;
}
bool USBPowerDelivery::isVBUSConnected() {
#if NEEDS_VBUS_PROBE == 1
static uint8_t state = 0;
if (state) {
return state == 1;
}
// Dont run if we havent negotiated
if (!negotiationComplete()) {
return true;
}
if (fusb.isVBUSConnected()) {
state = 1;
return true;
} else {
state = 2;
return false;
}
#else
return false;
#endif
}
uint32_t lastCapabilities[11];
uint32_t *USBPowerDelivery::getLastSeenCapabilities() { return lastCapabilities; }
#ifdef POW_EPR
static unsigned int sqrtI(unsigned long sqrtArg) {
unsigned int answer, x;
unsigned long temp;
if (sqrtArg == 0) {
return 0; // undefined result
}
if (sqrtArg == 1) {
return 1; // identity
}
answer = 0; // integer square root
for (x = 0x8000; x > 0; x = x >> 1) { // 16 bit shift
answer |= x; // possible bit in root
temp = answer * answer; //
if (temp == sqrtArg) {
break; // exact, found it
}
if (temp > sqrtArg) {
answer ^= x; // too large, reverse bit
}
}
return answer; // approximate root
}
#endif
// parseCapabilitiesArray returns true if a valid capability was found
// caps is the array of capabilities objects
// best* are output references
bool parseCapabilitiesArray(const uint8_t numCaps, uint8_t *bestIndex, uint16_t *bestVoltage, uint16_t *bestCurrent, bool *bestIsPPS, bool *bestIsAVS) {
// Walk the given capabilities array; and select the best option
// Given assumption of fixed tip resistance; this can be simplified to highest voltage selection
*bestIndex = 0xFF; // Mark unselected
*bestVoltage = 5000; // Default 5V
// Fudge of 0.5 ohms to round up a little to account for us always having off periods in PWM
uint8_t tipResistance = getTipResistanceX10() + 5;
#ifdef MODEL_HAS_DCDC
// If this device has step down DC/DC inductor to smooth out current spikes
// We can instead ignore resistance and go for max voltage we can accept; and rely on the DC/DC regulation to keep under current limit
tipResistance = 255; // (Push to 25.5 ohms to effectively disable this check)
#endif
for (uint8_t i = 0; i < numCaps; i++) {
if ((lastCapabilities[i] & PD_PDO_TYPE) == PD_PDO_TYPE_FIXED) {
// This is a fixed PDO entry
// Evaluate if it can produve sufficient current based on the TIP_RESISTANCE (ohms*10)
// V=I*R -> V/I => minimum resistance, if our tip resistance is >= this then we can use this supply
int voltage_mv = PD_PDV2MV(PD_PDO_SRC_FIXED_VOLTAGE_GET(lastCapabilities[i])); // voltage in mV units
int current_a_x100 = PD_PDO_SRC_FIXED_CURRENT_GET(lastCapabilities[i]); // current in 10mA units
int min_resistance_ohmsx10 = voltage_mv / current_a_x100;
if (voltage_mv > 0) {
if (voltage_mv <= (USB_PD_VMAX * 1000)) {
if (min_resistance_ohmsx10 <= tipResistance) {
// This is a valid power source we can select as
if (voltage_mv > *bestVoltage) {
// Higher voltage and valid, select this instead
*bestIndex = i;
*bestVoltage = voltage_mv;
*bestCurrent = current_a_x100;
*bestIsPPS = false;
*bestIsAVS = false;
}
}
}
}
} else if ((lastCapabilities[i] & PD_PDO_TYPE) == PD_PDO_TYPE_AUGMENTED && (((lastCapabilities[i] & PD_APDO_TYPE) == PD_APDO_TYPE_PPS)) && getSettingValue(SettingsOptions::PDVpdo)) {
// If this is a PPS slot, calculate the max voltage in the PPS range that can we be used and maintain
uint16_t max_voltage = PD_PAV2MV(PD_APDO_PPS_MAX_VOLTAGE_GET(lastCapabilities[i]));
// uint16_t min_voltage = PD_PAV2MV(PD_APDO_PPS_MIN_VOLTAGE_GET(lastCapabilities[i]));
uint16_t max_current = PD_PAI2CA(PD_APDO_PPS_CURRENT_GET(lastCapabilities[i])); // max current in 10mA units
// Using the current and tip resistance, calculate the ideal max voltage
// if this is range, then we will work with this voltage
// if this is not in range; then max_voltage can be safely selected
int ideal_voltage_mv = (tipResistance * max_current);
if (ideal_voltage_mv > max_voltage) {
ideal_voltage_mv = max_voltage; // constrain to what this PDO offers
}
if (ideal_voltage_mv > 20000) {
ideal_voltage_mv = 20000; // Limit to 20V as some advertise 21 but are not stable at 21
}
if (ideal_voltage_mv > (USB_PD_VMAX * 1000)) {
ideal_voltage_mv = (USB_PD_VMAX * 1000); // constrain to model max voltage safe to select
}
if (ideal_voltage_mv > *bestVoltage) {
*bestIndex = i;
*bestVoltage = ideal_voltage_mv;
*bestCurrent = max_current;
*bestIsPPS = true;
*bestIsAVS = false;
}
}
#ifdef POW_EPR
else if ((lastCapabilities[i] & PD_PDO_TYPE) == PD_PDO_TYPE_AUGMENTED && (((lastCapabilities[i] & PD_APDO_TYPE) == PD_APDO_TYPE_AVS)) && getSettingValue(SettingsOptions::PDVpdo)) {
uint16_t max_voltage = PD_PAV2MV(PD_APDO_AVS_MAX_VOLTAGE_GET(lastCapabilities[i]));
uint8_t max_wattage = PD_APDO_AVS_MAX_POWER_GET(lastCapabilities[i]);
// W = v^2/tip_resistance => Wattage*tip_resistance == Max_voltage^2
auto ideal_max_voltage = sqrtI((max_wattage * tipResistance) / 10) * 1000;
if (ideal_max_voltage > (USB_PD_VMAX * 1000)) {
ideal_max_voltage = (USB_PD_VMAX * 1000); // constrain to model max voltage safe to select
}
if (ideal_max_voltage > (max_voltage)) {
ideal_max_voltage = (max_voltage); // constrain to model max voltage safe to select
}
auto operating_current = (ideal_max_voltage / tipResistance); // Current in centiamps
if (ideal_max_voltage > *bestVoltage) {
*bestIndex = i;
*bestVoltage = ideal_max_voltage;
*bestCurrent = operating_current;
*bestIsAVS = true;
*bestIsPPS = false;
}
}
#endif
}
// Now that the best index is known, set the current values
return *bestIndex != 0xFF; // have we selected one
}
bool EPREvaluateCapabilityFunc(const epr_pd_msg *capabilities, pd_msg *request) {
#ifdef POW_EPR
// Select any EPR slots up to USB_PD_VMAX
memset(lastCapabilities, 0, sizeof(lastCapabilities));
memcpy(lastCapabilities, capabilities->obj, sizeof(lastCapabilities));
// PDO slots 1-7 shall be the standard PDO's
// PDO slots 8-11 shall be the >20V slots
uint8_t numobj = 11;
uint8_t bestIndex = 0xFF;
uint16_t bestIndexVoltage = 0;
uint16_t bestIndexCurrent = 0;
bool bestIsPPS = false;
bool bestIsAVS = false;
if (parseCapabilitiesArray(numobj, &bestIndex, &bestIndexVoltage, &bestIndexCurrent, &bestIsPPS, &bestIsAVS)) {
/* We got what we wanted, so build a request for that */
request->hdr = PD_MSGTYPE_EPR_REQUEST | PD_NUMOBJ(2);
request->obj[1] = lastCapabilities[bestIndex]; // Copy PDO into slot 2
if (bestIsAVS) {
request->obj[0] = PD_RDO_PROG_CURRENT_SET(PD_CA2PAI(bestIndexCurrent)) | PD_RDO_PROG_VOLTAGE_SET(PD_MV2APS(bestIndexVoltage));
} else if (bestIsPPS) {
request->obj[0] = PD_RDO_PROG_CURRENT_SET(PD_CA2PAI(bestIndexCurrent)) | PD_RDO_PROG_VOLTAGE_SET(PD_MV2PRV(bestIndexVoltage));
} else {
request->obj[0] = PD_RDO_FV_MAX_CURRENT_SET(bestIndexCurrent) | PD_RDO_FV_CURRENT_SET(bestIndexCurrent);
}
request->obj[0] |= PD_RDO_EPR_CAPABLE;
request->obj[0] |= PD_RDO_NO_USB_SUSPEND;
request->obj[0] |= PD_RDO_OBJPOS_SET(bestIndex + 1);
// We dont do usb
// request->obj[0] |= PD_RDO_USB_COMMS;
/* Update requested voltage */
requested_voltage_mv = bestIndexVoltage;
powerSupplyWattageLimit = bestIndexVoltage * bestIndexCurrent / 100 / 1000; // Set watts for limit from PSU limit
} else {
/* Nothing matched (or no configuration), so get 5 V at low current */
request->hdr = PD_MSGTYPE_EPR_REQUEST | PD_NUMOBJ(2);
request->obj[1] = lastCapabilities[0];
request->obj[0] = PD_RDO_FV_MAX_CURRENT_SET(100) | PD_RDO_FV_CURRENT_SET(100) | PD_RDO_NO_USB_SUSPEND | PD_RDO_OBJPOS_SET(1);
// We dont do usb
// request->obj[0] |= PD_RDO_USB_COMMS;
/* Update requested voltage */
requested_voltage_mv = 5000;
}
return true;
#endif
return false;
}
bool pdbs_dpm_evaluate_capability(const pd_msg *capabilities, pd_msg *request) {
memset(lastCapabilities, 0, sizeof(lastCapabilities));
memcpy(lastCapabilities, capabilities->obj, sizeof(uint32_t) * 7);
haveSeenCapabilityOffer = true;
/* Get the number of PDOs */
uint8_t numobj = PD_NUMOBJ_GET(capabilities);
/* Make sure we have configuration */
/* Look at the PDOs to see if one matches our desires */
// Look against USB_PD_Desired_Levels to select in order of preference
uint8_t bestIndex = 0xFF;
uint16_t bestIndexVoltage = 0;
uint16_t bestIndexCurrent = 0;
bool bestIsPPS = false;
bool bestIsAVS = false;
if (parseCapabilitiesArray(numobj, &bestIndex, &bestIndexVoltage, &bestIndexCurrent, &bestIsPPS, &bestIsAVS)) {
/* We got what we wanted, so build a request for that */
request->hdr = PD_MSGTYPE_REQUEST | PD_NUMOBJ(1);
if (bestIsPPS) {
request->obj[0] = PD_RDO_PROG_CURRENT_SET(PD_CA2PAI(bestIndexCurrent)) | PD_RDO_PROG_VOLTAGE_SET(PD_MV2PRV(bestIndexVoltage)) | PD_RDO_NO_USB_SUSPEND | PD_RDO_OBJPOS_SET(bestIndex + 1);
} else {
request->obj[0] = PD_RDO_FV_MAX_CURRENT_SET(bestIndexCurrent) | PD_RDO_FV_CURRENT_SET(bestIndexCurrent) | PD_RDO_NO_USB_SUSPEND | PD_RDO_OBJPOS_SET(bestIndex + 1);
}
// We dont do usb
// request->obj[0] |= PD_RDO_USB_COMMS;
#ifdef POW_EPR
request->obj[0] |= PD_RDO_EPR_CAPABLE;
#endif
/* Update requested voltage */
requested_voltage_mv = bestIndexVoltage;
powerSupplyWattageLimit = bestIndexVoltage * bestIndexCurrent / 100 / 1000; // Set watts for limit from PSU limit
} else {
/* Nothing matched (or no configuration), so get 5 V at low current */
request->hdr = PD_MSGTYPE_REQUEST | PD_NUMOBJ(1);
request->obj[0] = PD_RDO_FV_MAX_CURRENT_SET(100) | PD_RDO_FV_CURRENT_SET(100) | PD_RDO_NO_USB_SUSPEND | PD_RDO_OBJPOS_SET(1);
// We dont do usb
// request->obj[0] |= PD_RDO_USB_COMMS;
/* Update requested voltage */
requested_voltage_mv = 5000;
}
// Even if we didnt match, we return true as we would still like to handshake on 5V at the minimum
return true;
}
void pdbs_dpm_get_sink_capability(pd_msg *cap, const bool isPD3) {
/* Keep track of how many PDOs we've added */
// int numobj = 0;
// /* If we have no configuration or want something other than 5 V, add a PDO
// * for vSafe5V */
// /* Minimum current, 5 V, and higher capability. */
// cap->obj[numobj++] = PD_PDO_TYPE_FIXED | PD_PDO_SNK_FIXED_VOLTAGE_SET(PD_MV2PDV(5000)) | PD_PDO_SNK_FIXED_CURRENT_SET(DPM_MIN_CURRENT);
// /* Get the current we want */
// uint16_t voltage = USB_PD_VMAX * 1000; // in mv
// if (requested_voltage_mv != 5000) {
// voltage = requested_voltage_mv;
// }
// uint16_t current = (voltage) / getTipResistanceX10(); // In centi-amps
// /* Add a PDO for the desired power. */
// cap->obj[numobj++] = PD_PDO_TYPE_FIXED | PD_PDO_SNK_FIXED_VOLTAGE_SET(PD_MV2PDV(voltage)) | PD_PDO_SNK_FIXED_CURRENT_SET(current);
// /* Get the PDO from the voltage range */
// int8_t i = dpm_get_range_fixed_pdo_index(cap);
// /* If it's vSafe5V, set our vSafe5V's current to what we want */
// if (i == 0) {
// cap->obj[0] &= ~PD_PDO_SNK_FIXED_CURRENT;
// cap->obj[0] |= PD_PDO_SNK_FIXED_CURRENT_SET(current);
// } else {
// /* If we want more than 5 V, set the Higher Capability flag */
// if (PD_MV2PDV(voltage) != PD_MV2PDV(5000)) {
// cap->obj[0] |= PD_PDO_SNK_FIXED_HIGHER_CAP;
// }
// /* If the range PDO is a different voltage than the preferred
// * voltage, add it to the array. */
// if (i > 0 && PD_PDO_SRC_FIXED_VOLTAGE_GET(cap->obj[i]) != PD_MV2PDV(voltage)) {
// cap->obj[numobj++] = PD_PDO_TYPE_FIXED | PD_PDO_SNK_FIXED_VOLTAGE_SET(PD_PDO_SRC_FIXED_VOLTAGE_GET(cap->obj[i])) | PD_PDO_SNK_FIXED_CURRENT_SET(PD_PDO_SRC_FIXED_CURRENT_GET(cap->obj[i]));
// }
// /* If we have three PDOs at this point, make sure the last two are
// * sorted by voltage. */
// if (numobj == 3 && (cap->obj[1] & PD_PDO_SNK_FIXED_VOLTAGE) > (cap->obj[2] & PD_PDO_SNK_FIXED_VOLTAGE)) {
// cap->obj[1] ^= cap->obj[2];
// cap->obj[2] ^= cap->obj[1];
// cap->obj[1] ^= cap->obj[2];
// }
// /* If we're using PD 3.0, add a PPS APDO for our desired voltage */
// if ((hdr_template & PD_HDR_SPECREV) >= PD_SPECREV_3_0) {
// cap->obj[numobj++]
// = PD_PDO_TYPE_AUGMENTED | PD_APDO_TYPE_PPS | PD_APDO_PPS_MAX_VOLTAGE_SET(PD_MV2PAV(voltage)) | PD_APDO_PPS_MIN_VOLTAGE_SET(PD_MV2PAV(voltage)) |
// PD_APDO_PPS_CURRENT_SET(PD_CA2PAI(current));
// }
// }
// /* Set the unconstrained power flag. */
// if (_unconstrained_power) {
// cap->obj[0] |= PD_PDO_SNK_FIXED_UNCONSTRAINED;
// }
// /* Set the USB communications capable flag. */
// cap->obj[0] |= PD_PDO_SNK_FIXED_USB_COMMS;
// /* Set the Sink_Capabilities message header */
// cap->hdr = hdr_template | PD_MSGTYPE_SINK_CAPABILITIES | PD_NUMOBJ(numobj);
}
#endif